Detailed Specifications & Technical Data

7977R Coax - Low Loss 50 Ohm Wireless RF Transmission Cable

For more Information please call

1-800-Belden1

General Description:

5.5 AWG solid .176" bare copper-covered aluminum conductor, foam HDPE insulation, Duobond® II (100% coverage) plus a tinned copper braid shield (85% coverage), PVC jacket.

				Je. e e	
Physical Characteristics (Overall) Conductor AWG:)				
# Coax AWG Stranding Conductor M	Vaterial D	Dia. (in.)			
1 5.5 Solid BCCA - Bare	Copper Covered Aluminum .1	176			
Total Number of Conductors:		1			
Insulation					
Insulation Material:					
Insulation Material FHDPE - Foam High Density Polyethyle	Dia. (in.)				
Outer Shield Outer Shield Material:					
Layer # Outer Shield Trade Name Ty	pe Outer Shield Material		Coverage (%)		
	pe Bonded Aluminum Foil-Pol	yester Tape-Aluminum Foil			
2 Bra	aid TC - Tinned Copper		85		
Outer Jacket Outer Jacket Material:					
Outer Jacket Material					
PVC - Polyvinyl Chloride					
Overall Cable					
Overall Nominal Diameter:		0.590 in.			
Mechanical Characteristics (Over					
Operating Temperature Range:	all)	-40°C To +80°C			
UL Temperature Rating:		60°C			
Bulk Cable Weight:		160 lbs/1000 ft.			
Max. Recommended Pulling Tension:		290 lbs.			
Min. Bend Radius/Minor Axis:		6 in.			
Applicable Specifications and Ag		erall)			
Applicable Standards & Environment NEC/(UL) Specification:	lai Frograms	CMR			
CEC/C(UL) Specification:		CMG			
EU Directive 2011/65/EU (ROHS II):		Yes			
EU CE Mark:		No			
EU Directive 2000/53/EC (ELV):		Yes			
EU Directive 2002/95/EC (RoHS):		Yes			
EU RoHS Compliance Date (mm/dd/yy	/yy):	01/01/2005			
EU Directive 2002/96/EC (WEEE):		Yes			
EU Directive 2003/11/EC (BFR):		Yes			
CA Prop 65 (CJ for Wire & Cable):		Yes			
MII Order #39 (China RoHS):		Yes			
Series Type:		RF 600			

Detailed Specifications & Technical Data

ENGLISH MEASUREMENT VERSION

7977R Coax - Low Loss 50 Ohm Wireless RF Transmission Cable

lame Test	1						
UL Flam	ne Test:		UL1666 Ver	tical Shaft			
CSA FIa	me Test:		FT4				
			 114				
Buitability	Mar Inda						
Suitabili	ity - Indoor:		 Yes		 	 	
Plenum/No	n-Plenum						
Plenum	(Y/N):		No				
	Characteristics (O	verall)					
	teristic Impedance:						
Impedanc 50	ce (Ohm)						
lom. Inducta							
Inductanc	ce (µH/ft)						
0.060							
	tance Conductor to Shie	ld:					
Capacitan	nce (pF/ft)						
24.6							
lominal Velo	ocity of Propagation:						
VP (%)							
84							
lominal Dela	ay:						
Delay (ns/	/ft)						
1.21							
lom. Conduc	ctor DC Resistance:						
	0°C (Ohm/1000 ft)						
.53							
Iominal Oute	er Shield DC Resistance 0°C (Ohm/1000 ft) SWR:	:					
Iominal Oute DCR @ 20 1.8 Maximum VS	0°C (Ohm/1000 ft)						
Iominal Oute DCR @ 20 1.8 Maximum VS Start Freq	0°C (Ohm/1000 ft) SWR: 1. (MHz) Stop Freq. (MH:) Max. VSWR					
Iominal Oute DCR @ 20 1.8 Maximum VS Start Freq 5.000	3°C (Ohm/1000 ft) SWR: 1. (MHz) Stop Freq. (MHz) 2690.000	:) Max. VSWR 1.25:1					
lominal Oute DCR @ 20 1.8 Maximum VS Start Freq 5.000 2690.000	J°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000	 Max. VSWR 1.25:1 2.00:1 					
Iominal Oute DCR @ 20 1.8 Maximum VS Start Freq 5.000 2690.000 3290.000	J°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Maximum VS Start Freq 5.000 2690.000 3290.000	J°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation:	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MHz	D°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100 .46	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100 .46 .61 .98 1.18	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100 .46 .61 .98 1.18 1.72	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua 50 150 220 450 900	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 1500 1800	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua 50 150 220 450 900 1500 1500 1800 2000	32°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: Iz Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 1500 1500 220 220 2500	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 3290.000 Iom. Attenua 50 150 220 450 900 1500 1500 1500 1800 2000 2500 3000	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 1500 1500 220 220 2500	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua 50 150 220 450 900 1500 1500 1500 1500 2200 2500 3000 3500	3°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: 2398 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
lominal Oute DCR @ 20 1.8 Maximum VS Start Freq 5.000 2690.000 3290.000 Nom. Attenua Freq. (MH 30 50 150 220 450 900 1500 1800 2500 3000 3500 4500	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 1500 2200 450 900 1500 2500 3000 3500 4500 5800 6000	32°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: 23 Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 220 450 900 1500 2500 3000 3500 4500 5800 6000 Max. Power F	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75 Rating:	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 220 450 900 1500 220 450 900 1500 2500 3000 3500 4500 5800 6000 Itax. Power F Freq. (MH:	3°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: (A .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75 Rating: Iz) Rating (VV)	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 220 450 900 1500 2500 3000 3500 4500 5800 6000 Max. Power F	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75 Rating:	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 220 450 900 1500 220 450 900 1500 2500 3000 3500 4500 5800 6000 Max. Power F Freq. (MH: 30.000	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 46 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75 Rating: 2) Rating (W) 5057.000	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH 30 50 150 220 450 900 1500 1500 1500 1500 1500 2500 3000 3500 4500 5800 6000 Iax. Power F Freq. (MH 30.000 220.000	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 20 Attenuation (dB/100 46 6000.000 ation: 2 Attenuation (dB/100 46 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.56 6.44 7.56 7.75 Rating: 2 Rating (W) 5057.000 1975.000	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 220 450 900 1500 220 450 900 1500 220 450 900 1500 2500 3000 3500 4500 5800 6000 Freq. (MH: 30.000 220.000 45.000 220.000 45.000 220.000 45.000 220.000 220.000 220.000 25.000 20.000 25.000 20.000 25.000 20.000 25.000 20.000 25.000 20.000 25.000 20.000 25.000 20.000 25.0000 25.0000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.000 25.00000 25.00000 25.00000 25.0000000000 25.000000000000000000000000000000000000	2°C (Ohm/1000 ft) SWR: 2690.000 3290.000 ation: 2) Attenuation (dB/100 46 6000.000 ation: 2) Attenuation (dB/100 46 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75 Rating: 2) Rating (W) 5057.000 1975.000 1353.000	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Iaximum VS Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 1500 1500 1500 1500 1500 150	32°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: ////////////////////////////////////	 Max. VSWR 1.25:1 2.00:1 1.43:1 					
Iominal Oute DCR @ 20 1.8 Start Freq 5.000 2690.000 3290.000 Iom. Attenua Freq. (MH: 30 50 150 220 450 900 1500 1500 2200 3000 3500 4500 5800 6000 5800 6000 Freq. (MH: 30,000 2500 3000 3500 4500 5800 6000 5800 6000 15	32°C (Ohm/1000 ft) SWR: 2690.000 3290.000 6000.000 ation: (2) Attenuation (dB/100 .46 .61 .98 1.18 1.72 2.54 3.40 3.77 4.01 4.58 5.07 5.56 6.44 7.56 7.75 Rating: 12) Rating (W) 1353.000 921.000 691.000	 Max. VSWR 1.25:1 2.00:1 1.43:1 					

Detailed Specifications & Technical Data

ENGLISH MEASUREMENT VERSION

7977R Coax - Low Loss 50 Ohm Wireless RF Transmission Cable

	Voltage					
Max. Operating Voltage - UL						
	6000.000	308.000				
	5800.000	315.000				
	4500.000	368.000				

300 V RMS

Notes (Overall)

Notes: 100% Sweep tested. Belden® The Wire in Wireless®.

Put Ups and Colors:

Item #	Putup	Ship Weight	Color	Notes	Item Desc
7977R 0101000	1,000 FT	174.000 LB	BLACK	С	#5 FPE SH FRPVC
7977R 010500	500 FT	90.000 LB	BLACK	С	#5 FPE SH FRPVC

Notes:

C = CRATE REEL PUT-UP.

Revision Number: 4 Revision Date: 01-06-2014

© 2017 Belden, Inc All Rights Reserved.

All Rights Reserved. Although Belden makes every reasonable effort to ensure their accuracy at the time of this publication, information and specifications described herein are subject to error or omission and to change without notice, and the listing of such information and specifications does not ensure product availability. Belden provides the information and specifications herein on an "AS IS" basis, with no representations or warranties, whether express, statutory or implied. In no event will Belden be liable for any damages (including consequential, indirect, incidental, special, punitive, or exemplary damages) whatsoever, even if Belden has been advised of the possibility of such damages, whether in an action under contract, negligence or any other theory, arising out of or in connection with the use, or inability to use, the information representations described herein. All sales of Belden products are subject to Belden's standard terms and conditions of sale. Belden believes this product to be in compliance with EU RoHS (Directive 2002/95/EC, 27-Jan-2003). Material manufactured prior to the compliance date may be in stock at Belden facilities and in our Distributor's inventory. The information, and belief at the date of its publication. The information provided in this Product Disclosure, is correct to the best of Belden's knowledge, information, and belief at the date of the becomes a part of. This Product Disclosure is not to be considered a warranty or quality specification. Regulatory information is for guidance purposes only. Product users are responsible for determining the applicability of legislation and regulations based on their individual usage of the product.