

Function diagram

1.) "S1, S2 activated" means, NC open and NO closed
2.) activated S1, switches "+"-potential
3.) activated S2, switches "-"-potential

- According to
- SIL Claimed Level (SIL CL) 3 to EN 62061
- Performance Level (PL) e to DIN EN ISO 13849-1
- Category 4 to EN 954-1
- Safety Level Type III-C according to EN 574 (02-1997)
- Complies with the safety regulations for two-hand controls on power-operated presses in metalworking ZH 1-456
- Inputs for 2 push buttons with 1 NC and 1 NO contact
- Output: 2 NO contacts, 1 NC contact or 3 NO contacts, 1 NC contact
- Feedback circuit Y1-Y2 to monitor external contactors used for reinforcement of contacts
- Overvoltage and short circuit protection
- Wire connection: also $2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated), DIN 46 228-1/-2/-3/-4 or $2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled DIN 46 228-1/-2/-3
- BG 5933: width 22.5 mm BH 5933: width 45 mm


## Approvals and marking


${ }^{1)}$ pending

* see variants

For the existing BG certificate DOLD has not demanded for an extension. There has not been made any changes on the product since then.

## Applications

Designed for press controls in metalworking as well as in other working machines with dangerous closing movements.

## Indication

LED power-supply:
LED K1:
LED K2:
on, when operating voltage applied
on, when relay K1 active
on, when relay K2 active

## Block diagram



BG 5933


BH 5933


BG 5933.22


BH 5933.48

## Notes

If both buttons are pressed while switching on the operating voltage (e.g. after voltage failure) the output contacts do not energize.
The terminal S22 also serves as reference point for checking the contro voltage.
On BG 5933 there is only one terminal S12 and S22

## Set-up instructions

The device has to be connected as shown in the application examples. When connecting the push-buttons in parallel or in series the safe function of the relay is disabled. Connected contactors (relays) must have positive guided contacts and have to be monitored in the feedback circuit.
To start a dangerous movement, 2 push buttons are used, each equipped with 1 NO and 1 NC contact. The output contacts will be switched if both push buttons are operated within $\leq 0.5 \mathrm{~s}$. The buttons must be designed and installed in a way, that it is not possible to manipulate or to operate them without intention.
The distance between push buttons and dangerous area must be chosen in a way that it is not possible to reach the dangerous area after release of one button before the dangerous movement comes to standstill.

The safety distance " $s$ " is calculated with the following formula:
$s=v x t+C$
a) moving speed of person $v=1600 \mathrm{~mm} / \mathrm{s}$
b) stopping time of the machine $t$ (s)
c) Additional safety distance $\mathrm{C}=250 \mathrm{~mm}$

If the risc of accessing the dangerous area is prohibited while the push buttons are pressed e.g. by covering the buttons, C can be 0 . The minimum distance has to be in this case 100 mm . See also EN 574.

## Technical data

Input
Nominal voltage $\mathbf{U}_{\mathrm{N}}$ :

BG 5933
BH 5933
Voltage range:
at 10 \% residual ripple:
Nominal consumption:
Nominal frequency:
Delay time for simultaneity demand:
Recovery time:
Control contacts:
Current via control contacts
with DC 24 V:
NO contact: typ. 50 mA
NC contact:
Fuse protection:
Overvoltage protection:

AC 24 V , DC 24 V
AC 24, 48, 110, 120, 127, 230, 240 V
DC 24 V
AC $0.85 \ldots 1.1 U_{N}$
DC 0.9 ... $1.1 U_{N}$
AC approx. 4 VA
DC approx. 2.3 W
50 / 60 Hz
max. 0.5 s
1 s
$2 \times(1$ NO, 1 NC contacts

## Output

Contacts:
BG 5933.22:
BH 5933.48:
2 NO, 1 NC contacts
3 NO, 1 NC contacts
The NO contacts are safety contacts
ATTENTION! The NC contacts 31-32
or 41-42 can only be used for
monitoring.
Operate time:
Release time:
Contact type:
Nominal output voltage:
Switching of low loads:
(contacts with $5 \mu \mathrm{Au}$ )
Thermal current $I_{t h}$ :

## Switching capacity

to AC 15:
to DC 13:

NO contacts
2 contacts in series:
Electrical contact life
to AC 15 at $2 \mathrm{~A}, \mathrm{AC} 230 \mathrm{~V}$ :
to DC 13 at 2 A, DC 24 V :
Permissible switching
capacity:
Short circuit strength
max. fuse rating:
Line circuit breaker:
Mechanical life:

## General Data

Nominal operating mode:
Temperature range:
Clearance and creepage

## distances

rated impuls voltage /
pollution degree:
EMC
Electrostatic discharge:
Fast transients:
Surge voltages
between
wires for power supply:
between wire and ground:
HF-wire guided:
Interference suppression
Degree of protection Housing:
Terminals:
Housing:
typ. 40 ms
typ. 15 ms
relay, positively driven
AC 250 V
DC: see continuous current limit curve
$\geq 100 \mathrm{mV}$
$\geq 1 \mathrm{~mA}$
max. 5 A
(see continuous current limit curve)
AC 3 A / 230 V
IEC/EN 60 947-5-1
for NO contacts
AC 2 A / 230 V
for NC contacts
DC 2 A / 24 V
for NC contacts
$8 \mathrm{~A} / 24 \mathrm{~V}>10^{5}$
ON: 0.4 s, OFF: 9.6 s
$10^{5}$ switching cycles IEC/EN 60 947-5-1
$>1.5 \times 10^{5}$ switching cycles
max. 1800 switching cycles / h

6 A gL
IEC/EN 60 947-5-1
C 8 A
$10 \times 10^{6}$ switching cycles
continuous operation
$-15 \ldots+55^{\circ} \mathrm{C}$

4 kV / 2
IEC 60 664-1

8 kV (air)
2 kV
IEC/EN 61 000-4-2
IEC/EN 61 000-4-4

IEC/EN 60529
IP 20
IEC/EN 60529
Thermoplast with V0 behaviour according to UL subject 94

## Technical Data

Vibration resistance:
Climate resistance:
Terminal designation: Wire connection:

Wire fixing:

## Mounting:

Weight
BG 5933:
BH 5933:

## Dimensions

Width $x$ height $x$ depth
BG 5933:
BH 5933: $2.5 \times 84 \times 121 \mathrm{~mm}$ $45.0 \times 84 \times 121 \mathrm{~mm}$

## Safety related data

Probability of dangerous Failure per Hour (PFHD):

Terminal screws M3.5 protection
DIN rail

$$
200 \mathrm{~g}
$$

400 g

$$
84 \times 121 \text { mm }
$$

| Safety related data |
| :--- |
| Probability of dangerous |
| Failure per Hour (PFHD): |

$4.44 \times 10-81 / h(B G 5933)$

Amplitude 0.35 mm ,
frequency 10 ... $55 \mathrm{HzIEC/EN} 60$ 068-2-6 15/055/04 IEC/EN 60 068-1
EN 50005
$1 \times 4 \mathrm{~mm}^{2}$ solid or
$1 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated) or
$2 \times 1.5 \mathrm{~mm}^{2}$ stranded ferruled (isolated)
DIN 46 228-1/-2/-3/-4 or
$2 \times 2.5 \mathrm{~mm}^{2}$ stranded ferruled
DIN 46 228-1/-2/-3
Box terminals with self-lifting wire
IEC/EN 60715

Safe Failure Fraction (SFF):
$9.89 \times 10-81 / \mathrm{h}$ (BH 5933)
(bei 415 switching cycles / h)

Proof Test Intervall (T1):

Into5 Years (at 415 switching cycles / h)
The values stated above are valid for the standard type.
Safety data for other variants are available on request

## Standard type

BG 5933.22 DC 24 V

Article number:

- Output:
- Nominal voltage $\mathrm{U}_{\mathrm{N}}$ :
- Width:

BH 5933.48 AC 230 V
Article number:

- Output:
- Nominal voltage $\mathrm{U}_{\mathrm{N}}$ :
- Width:


## Ordering example



## Variants

BG 5933/61, BH 5933/61: with UL-approval

## Characteristics



Limit curve for arc-free operation with resistive load

## Characteristics


device mounted on distance with air circulation.
max. current at $55^{\circ} \mathrm{C}$ over
2 contactrows $=4 \mathrm{~A} \widehat{=} 2 \times 4^{2} \mathrm{~A}^{2}=32 \mathrm{~A}^{2}$
device mounted without distance heated by
devices with same load,
2 contactrows $=2 A \widehat{=} 2 \times 2^{2} A^{2}=8 A^{2}$
$\Sigma l^{2}=l_{1}^{2}+l_{2}^{2}$
$I_{1}, I_{2}$ - current in contactrows
Continuous current limit curve BG 5933

device mounted on distance with air circulation.
max. current at $55^{\circ} \mathrm{C}$ over
3 contactrows $=4 \mathrm{~A} \hat{=} 3 \times 4^{2} \mathrm{~A}^{2}=48 \mathrm{~A}^{2}$
device mounted without distance heated by
devices with same load,
max current at $55^{\circ} \mathrm{C}$ over
3 contactrows $=1 \mathrm{~A} \widehat{=} 3 \times 1^{2} \mathrm{~A}^{2}=3 \mathrm{~A}^{2}$
$\Sigma I^{2}=I_{1}^{2}+I_{2}^{2}+I_{3}^{2}$
$I_{1}, I_{2}, I_{3}$ - currentin contactrows

Continuous current limit curve BH 5933

## Application examples



Two-hand control


Two-hand control with contact reinforcement via external positively-driven contactors. When switching inductive loads spark absorbers are recommended.

