

1.8 V, Micropower, Zero-Drift, Rail-to-Rail Input/Output Op Amp

Preliminary Technical Data

FEATURES

Very low supply current: 13 µA Low offset voltage: 15 µV maximum Offset voltage drift: 20 nV/°C Single-supply operation: 1.8 V to 5.5 V High PSRR: 110 dB minimum High CMRR: 110 dB minimum Rail-to-rail input and output Unity gain stable Extended industrial temperature range

APPLICATIONS

Pressure and position sensors Temperature measurements Electronic scales Medical instrumentation Battery-powered equipment Handheld test equipment

GENERAL DESCRIPTION

The ADA4051-1 is a single CMOS, micropower, zero-drift operational amplifier utilizing an innovative chopping technique. This amplifier features rail-to-rail input and output swing and extremely low offset voltage while operating from a 1.8 V to 5.5 V power supply. This amplifier also offers high PSRR and CMRR, while operating with a supply current of only 13 μ A per amplifier. This combination of features makes the ADA4051-1 amplifier an ideal choice for battery-powered applications where high precision as well as low power consumption is important. The ADA4051-1 is specified for the extended industrial temperature range of -40° C to $+125^{\circ}$ C. The ADA4051-1 amplifier is available in the standard 5-pin SOT23 and 5-pin SC70.

ADA4051-1

PIN CONFIGURATION

The ADA4051-1 is a member of a growing series of zero-drift op amps offered by Analog Devices, Inc. Refer to Table 1 for a list of these devices.

Table 1. Op Amps

Supple	Micro Power, 5V	Low Power, 5 V	5 V	16 V
Single		AD8538	AD8628	AD8638
Dual	ADA4051-2	AD8539	AD8629	AD8639
Quad			AD8630	

Rev. PrA

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS—5 V OPERATION

 V_{SY} = 5.0 V, V_{CM} = $V_{SY}/2$ V, T_A = 25°C, unless otherwise noted.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0 \text{ V} \leq V_{\text{CM}} \leq 5 \text{ V}$		2	15	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		0.02	0.1	μV/°C
Input Bias Current	IB			20	70	pА
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			200	pА
Input Offset Current	los			40	100	pА
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			150	pА
Input Voltage Range		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	0		5	V
Common-Mode Rejection Ratio	CMRR	$0 \text{ V} \leq V_{CM} \leq 5 \text{ V}$	110	135		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	106			dB
Large-Signal Voltage Gain	Avo	$R_{\text{L}} = 10 \text{ k}\Omega, 0.1 \text{ V} \leq V_{\text{OUT}} \leq V_{\text{SY}} - 0.1 \text{ V}$	115	135		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	106			dB
Input Resistance	RIN			8		MΩ
Input Capacitance, Differential Mode	CINDM			2		pF
Input Capacitance, Common Mode	CINCM			5		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \ k\Omega$ to V_{CM}	4.96	4.99		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.9			V
		$R_L = 100 \text{ k}\Omega$ to V_{CM}	4.996	4.998		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	4.985			V
Output Voltage Low	Vol	$R_L = 10 \ k\Omega$ to V_{CM}		9	30	mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			90	mV
		$R_L = 100 \text{ k}\Omega$ to V_{CM}		1	4	mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			13	mV
Short-Circuit Current	lsc	$V_{OUT} = V_{SY} \text{ or } GND$		15		mA
Closed-Loop Output Impedance	Zout	f = 1 kHz, G = 10		1		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$1.8 V \le V_{SY} \le 5.5 V$	110	135		dB
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	106			dB
Supply Current per Amplifier	Isy	$V_{OUT} = V_{SY}/2$		13	17	μA
		$-40^{\circ}C \le T_A \le +125^{\circ}C$			20	μΑ
DYNAMIC PERFORMANCE						
Slew Rate	SR ⁺	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $G = 1$		0.06		V/µs
	SR-	$R_L = 10 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, $G = 1$		0.04		V/µs
Settling Time	ts	To 0.1%, $V_{IN} = 1 V p - p$,		110		μs
Gain Bandwidth Product	GBP	$C_L = 100 \text{ pF}, G = 1$		125		kHz
Phase Margin	Фм	$C_L = 100 \text{ pF}, G = 1$		40		Degrees
Channel Separation	CS	$V_{IN} = 4.99 V$, f = 100 Hz		140		dB
NOISE PERFORMANCE						1
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		1.96		μV p-p
Voltage Noise Density	en	f = 1 kHz		95		nV/√Hz
Current Noise Density	i _n	f = 1 kHz		100		fA/√Hz

ELECTRICAL CHARACTERISTICS—1.8 V OPERATION

 V_{SY} = 1.8 V, V_{CM} = $V_{\text{SY}}/2$ V, T_{A} = 25°C, unless otherwise noted.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos	$0~V \leq V_{CM} \leq 1.8~V$		2	15	μV
Offset Voltage Drift	$\Delta V_{OS}/\Delta T$	$-40^{\circ}C \le T_{A} \le +125^{\circ}C$		0.02	0.1	μV/°C
Input Bias Current	IB			5	50	pА
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			200	pА
Input Offset Current	los			10	100	pА
		$-40^\circ C \le T_A \le +125^\circ C$			150	pА
Input Voltage Range		$-40^\circ C \leq T_A \leq +125^\circ C$	0		1.8	V
Common-Mode Rejection Ratio	CMRR	$0~V \leq V_{CM} \leq 1.8~V$	105	125		dB
		$-40^\circ C \le T_A \le +125^\circ C$	100			dB
Large-Signal Voltage Gain	Avo	$R_L = 10 \text{ k}\Omega, 0.1 \text{ V} \leq V_{\text{OUT}} \leq V_{\text{SY}} - 0.1 \text{ V}$	106	130		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	100			dB
Input Resistance	Rin			8		MΩ
Input Capacitance, Differential Mode	CINDM			2		pF
Input Capacitance, Common Mode	Сілсм			5		pF
OUTPUT CHARACTERISTICS						
Output Voltage High	V _{OH}	$R_L = 10 \text{ k}\Omega \text{ to } V_{CM}$	1.76	1.796		V
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	1.7			V
		$R_L = 100 \text{ k}\Omega \text{ to } V_{CM}$	1.796	1.799		V
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$	1.79			V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega \text{ to } V_{CM}$		3	20	mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			40	mV
		$R_L = 100 \text{ k}\Omega \text{ to } V_{CM}$		1	3	mV
		$-40^{\circ}C \le T_{A} \le +125^{\circ}C$			9	mV
Short-Circuit Current	lsc	$V_{OUT} = V_{SY} \text{ or } GND$		13		mA
Closed-Loop Output Impedance	Zout	f = 1 kHz, G = 10		1		Ω
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$1.8 \text{ V} \leq \text{V}_{\text{SY}} \leq 5.5 \text{ V}$	110	135		dB
		$-40^{\circ}C \le T_A \le +125^{\circ}C$	106			dB
Supply Current per Amplifier	Isy	$V_{OUT} = V_{SY}/2$		13	17	μA
		$-40^{\circ}C \le I_{A} \le +125^{\circ}C$			20	μΑ
	CD+			0.04		
Slew Rate	SR⁺ CD-	$R_{L} = 10 \text{ k}\Omega, C_{L} = 100 \text{ pF}, G = 1$		0.04		v/µs
	SR	$R_{L} = 10 \text{ k}\Omega$, $C_{L} = 100 \text{ pr}$, $G = 1$		0.03		v/µs
Settling Time	τ _s	$R_L = 10 kΩ, C_L = 100 pF$		120		μs
Gain Bandwidth Product	GBP	$C_L = 100 \text{ pF, } G = 1$		115		kHz
Phase Margin	Фм	$C_L = 100 \text{ pF}, \text{G} = 1$		40		Degrees
Channel Separation	CS	V _{IN} = 1.7 V, f = 100 Hz		140		dB
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	f = 0.1 Hz to 10 Hz		1.96		μV р-р
Voltage Noise Density	en	f = 1 kHz		95		nV/√Hz
Current Noise Density	İn	f = 1 kHz		100		fA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	6 V
Input Voltage	$\pm V_{SY} \pm 0.3 V$
Input Current ¹	±10 mA
Differential Input Voltage ²	±Vsγ
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	–65°C to +150°C
Operating Temperature Range	-40°C to +125°C
Junction Temperature Range	–65°C to +150°C
Lead Temperature (Soldering, 60 sec)	300°C

¹ The input pins have clamp diodes to the power supply pins. Limit input current to 10 mA or less whenever input signals exceed the power supply rail by 0.3 V.

² Inputs are protected against high differential voltages by internal series 1.33 kΩ resistors and back-to-back diode-connected N-MOSFETs (with a typical V_T of 0.7 V for V_{CM} of 0 V).

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ_{JA} is specified with the device soldered on a circuit board with its exposed paddle soldered to a pad (if applicable) on a 4-layer JEDEC standard PC board with zero air flow, unless otherwise specified.

Table 5. Thermal Resistance

Package Type	θ _{JA}	οισ	Unit
5-Lead SOT23	TBD	TBD	°C/W
5-Lead SC70	TBD	TBD	°C/W

POWER SEQUENCING

The op amp supplies must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

©2009 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. PR08431-0-7/09(PrA)

www.analog.com

Rev. PrA | Page 4 of 4