Contents

Switching Devices-Low Voltage
General Description 28.0-2
General-Duty 28.0-3
Heavy-Duty 28.0-3
Heavy-Duty—Solar Photovoltaic Switch 28.0-3
Six-Pole Motor Circuit 28.0-4
Heavy-Duty Double-Throw 28.0-4
Quick-Connect Switches 28.0-5
Enclosed Rotary 28.0-5
EnviroLine 28.0-5
NEMA 7/9—Hazardous Location Disconnect Switch 28.0-6
Auxiliary Power Heavy-Duty Safety Switch 28.0-7
Elevator Control Switch 28.0-7
Selection Guide 28.0-10
Catalog Numbering System 28.0-11
K-Series Switch Design Features 28.0-13
Accessories, Hubs, Lug Data 28.0-14
Dimensions 28.0-17
Technical Data. 28.0-25
Short-Circuit Ratings 28.0-27
Typical Fuse Dimensions 28.0-28
Flex Center Factory Modifications 28.0-30
SpecificationsSee Eaton's Product Specification Guide, available on CD or on the Web.

CSI Format:	1995	2010
Safety Switches	Section 16441A	Section 262816.16
Auxiliary Power Heavy-Duty Safety Switch	Section 16441B	Section 262816.23
Elevator Control Switch	Section 16445	Section 262816.17
Quick-Connec	Section 16441 C	Section 262816

General Description

Safety Switches

General-Duty

Heavy-Duty

EnviroLine

Double-Throw

Rotary

Safety switches have a number of applications from service entrance to branch circuit protection. They are also horsepower rated for use as motor circuit switches. The Application Guide Table 28.0-1, below, summarizes major differences and similarities between the heavy-duty and general-duty type of Eaton's safety switches.
Individual catalog pages and selection tables provide more specific information as to number of poles, voltage, specifications and horsepower ratings.

K-Series Switch Design

Note: K-Series design available where the letter K appears in the catalog number.

The efficient K-Series design uses double-break, rotary blade action for high performance and reliability. Here are some of the characteristics of the K-Series type of switch:

- High visibility handle and nameplate for indication of switch positionON or OFF
■ Clear line terminal shieldson heavy-duty switches only
■ Unique Control Pole optionallows the addition of a late-make/ early-break, 15A switched pole for disconnecting control power circuits
- Generous wiring room-meeting or exceeding NEC ${ }^{\circledR}$ wire bending space
■ Built-in fuse pullers in NEMA ${ }^{\circledR}$ 4X and 12 enclosed switches through 200A
■ Side-hinged NEMA 3R enclosure doors
- Tangential knockouts in heavyduty NEMA 1 and 3R enclosures through 200A
- Type 304 or 316 stainless steel enclosures for UL® NEMA 4X appli-cations-dust-tight, watertight and corrosion-resistant
■ NEMA 12 enclosures for 30-800A switches also rated for NEMA 3R use when a factory provided drain hole is opened
- Rated for $60^{\circ} \mathrm{C} / 75^{\circ} \mathrm{C}$ wire connection

Table 28.0-1. Safety Switch Application Guide—See Catalog Selection Tables for Specific Ratings

Application/ Features	General-Duty Safety Switches	Heavy-Duty Safety Switches
Type of facility	Residential, commercial, light industrial	Commercial, institutional, industrial
Maximum voltages	240 Vac-250 Vdc in larger sizes	$600 \mathrm{Vac}-250 \mathrm{Vdc}$ and 600 Vdc
Short-circuit rating for non-fused switches	10,000 rms symmetrical amperes	$10,000 \mathrm{rms}$ symmetrical amperes. Higher combination ratings available with upstream Eaton molded-case circuit breakers and fuses.
Short-circuit rating with standard fuse clips	With Class H fuse clips-10,000 rms symmetrical amperes	Switches with Class H Fuse Clips-10,000 rms amperes 800-1200A switches with Class L fusing-200,000 rms
Short-circuit rating with fuse options	Class R fuse adaptation and 400-600A switches with T or J fuse adaptation-100,000 rms amperes	Switches with Class R or Class J fusing and 200-800A switches with Class T fuse adaptation-200,000A at 480V and $100,000 \mathrm{rms}$ symmetrical amperes at 600 V
Ampere sizes	30,60, 100, 200, 400, 600	30,60, 100, 200, 400, 600, 800, 1200
Maximum horsepower ratings	200 hp at 240 Vac	250 hp at $240 \mathrm{~V}, 500 \mathrm{hp}$ at 480 and 600 Vac
UL (NEMA) enclosure types	Type 1-general purpose indoor use Type 3R-rainproof and sleet-resistant	Type 1 indoor, 3R outdoor Type 4 watertight and dust-tight Type 4X watertight, dust-tight and corrosion-resistant Type 12 indoor falling dust, dirt and liquids Type 12/3R convertible to outdoor use Type 7/9 hazardous (classified) locations
Terminals	Box lug (screw pressure) for $\mathrm{Al} / \mathrm{Cu}$ wire	Box lug (screw pressure) for Al/Cu wire
Electrical interlock-snap-switch type	Field-installed kit, 200-600A sizes	Field- or factory-installed for all sizes
Control pole interlock	Field-installed kit, 400-600A sizes	Field-installed for K-Series switches
Fuse pullers	Not available	Standard in Type 4X and 12 enclosed switches through 200A field-installed for all other 30-200A switches

General-Duty

General-Duty (Plug Fuse)

General-Duty (Cartridge Fuse)
For residential and commercial applications. Suitable for light-duty motor circuits and service entrance.

■ 240 Vac

- 30-600A

■ For short-circuit ratings, see Technical Data
■ Suitable for service entrance applications unless otherwise noted

- Fusible and non-fusible switches are 100% load break and load make rated
- The continuous load current of fusible switches is not to exceed 80% of the rating of fuses employed in other than motor circuits. Nonfusible switches are 100\% fully rated
- 200-600A features K-Series design

■ Horsepower rated

- Ample wire bending space provides for easier installation
- With Class R fuses, switches may be used on systems capable of delivering 100,000A rms symmetrical

Note: Plug fuse switches are not service entrance rated.

Heavy-Duty

Heavy-Duty
For heavy commercial and industrial applications where reliable performance and service continuity are critical.

■ $600 \mathrm{Vac}, 600 \mathrm{Vdc}$ maximum

- 30-1200A

■ For short-circuit ratings, see Technical Data
■ Horsepower rated
■ Fusible and non-fusible switches are 100% load break and load make rated

- The continuous load current of fusible switches is not to exceed 80% of the rating of fuses employed in other than motor circuits. Nonfusible switches are 100% fully rated
■ Suitable for service entrance applications unless otherwise noted
■ Visible double break rotary blade mechanism. Two points of contact provide a positive open and close, easier operation, and also help to prevent contact burning for longer contact life
- Triple padlocking capability. Personnel safety feature because the large hasp can accommodate up to three $3 / 8$-inch (9.5 mm) shank locks. Cabinet door can be further padlocked at the top and bottom
- Interlocking mechanism. Door cannot be opened when the handle is in the ON position. Built-in defeater mechanism provides for user access when necessary
■ De-ionizing arc chutes. Arc chutes confine and suppress the arcs produced by contacts under load

Heavy-Duty-Solar Photovoltaic Switch

Marked as suitable for NEC 690 PV applications up to 600 Vdc.

■ UL 98 listed

- All switches are single-pole and suitable for switching one circuit
■ Clear polycarbonate deadfront to guard against accidental contact with live parts
- Suitable for positive and negative grounded systems-100\% load break rated with current flowing in either direction
■ NEC 690.17-compliant labeling warning that the switch terminals may be energized in the open position
■ NEC 690.14.(C) two required "PV System Disconnect" labels included
- Isolated ground terminals (neutral) for grounded conductors
- Ground lug for equipment grounding conductor
- NEMA 3R, 12 and 4X stainless enclosures
- Fusible and non-fusible configura-tions-Class R fuse clips standard
- Fuse clips are located on the center pole to ensure that both fuse clips are de-energized-meets NEC Article 690.16, which requires isolation of the fuse from all potential supply sources

Six-Pole Motor Circuit

Six-Pole Motor Circuit

A compact safety switch that's ideal for use in heavy industry...when an "in sight" disconnecting means is required for twospeed motors that are remote from their motor control devices.

■ $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum

- 30-200A
- Fusible or non-fusible
- Trunk-type latches keep the cover tightly closed and a neoprene gasket seals out moisture and dust from the switch assembly
- Visible double break rotary blade mechanism. Two points of contact provide a positive open and close, easier operation, and also help to prevent contact burning for longer contact life
- Clear line shield protection
- Built-in fuse pullers
- Clearly visible handle
- Triple padlocking capability. Cabinet door can be further padlocked at the top and bottom
- De-ionizing arc chutes. Arc chutes confine and suppress the arcs produced by contacts under load

Heavy-Duty Double-Throw

Heavy-Duty Double-Throw
Used to transfer service from a normal power source to an alternate source, or to switch from one load circuit to another.

- For short-circuit ratings, see Technical Data
- 30-1200A switches are horsepower rated
- $600 \mathrm{Vac}, 250 \mathrm{Vdc}$ maximum

■ Fusible or non-fusible

- Fusible and non-fusible switches are 100% load break and load make rated
- The continuous load current of fusible switches is not to exceed 80% of the rating of fuses employed in other than motor circuits. Nonfusible switches are 100% fully rated
- Suitable for service entrance applications unless otherwise noted
- Wiring configuration for fusible double-throw switches up through 600A are wired from factory for a single load to be supplied by a normal or alternate source. Can be field modified to allow two loads to be alternately supplied by a single power source

1800A fusible double-throw switches must be ordered from the factory for either two-source or two-load configuration

- 1200A fusible double-throw switches are available only for two-source connections
- Ample wire bending space provides for easier installation
■ Visible double-break rotary blade mechanism. Two points of contact provide a positive open and close, easier operation, and also help to prevent contact burning for longer contact life
- Triple padlocking capability. Personnel safety feature because the large hasp can accommodate up to three $3 / 8$-inch (9.5 mm) shank locks
- Clearly visible handle. The position (ON or OFF) can be clearly seen from a distance
- Additional locking capability. Cabinet door can be further padlocked at the top and bottom
- Clear line shield protects against accidental contact with energized parts. Probe holes enable the user to test if the line side is energized without removing the shield
- De-ionizing arc chutes. Arc chutes confine and suppress the arcs produced by contacts under load
■ UL listed switching neutral capability is available on three-pole and four-pole non-fusible double-throw switches with the installation of the proper bonding kit shown on Page 28.0-14

September 2011
Sheet 28005

Quick-Connect Switches

Quick-Connect Double-Throw
Provides a safe and quick means of connecting portable generators to facilities, transferring the building to backup power, or providing for temporary connection of portable loads.

■ Single-throw and double-throw designs

- Safety interlocks prevent access to the receptacle compartment unless the lower switch is in the "open" position. This prevents against accidentally unplugging a circuit under load
■ For short-circuit ratings, see Technical Data
- 30-800A switches

■ $600 \mathrm{Vac}, 600 \mathrm{Vdc}$ maximum
■ Fusible or non-fusible

- Fusible and non-fusible switches are 100% load break and load make rated
- Cam-Lok ${ }^{\circledR}$ or Posi-Lok ${ }^{\circledR}$ receptacle options
- NEMA 1 or NEMA 3R enclosure ratings
■ Switching neutral option

Enclosed Rotary

Provides users with the ability to lock directly wired motor loads in the OFF position to comply with new OSHA lockout/tagout regulations. Also for machine applications that require compact, economical disconnect switches.

■ UL listed
■ Meets NEC Article 430 requirements for a separate disconnect means within sight of all motor loads

- Padlockable in the OFF position (up to three padlocks) to meet OSHA lockout requirements
- Available 16-80A ratings
- 600 Vac , three- and four-pole non-fusible device
- Rated at highest available hp rating (at $480 \mathrm{Vac}, 16 \mathrm{~A}-10 \mathrm{hp}, 25 \mathrm{~A}-15 \mathrm{hp}$, 30A-15 hp, 40A-20 hp, 60A-30 hp, 80A-40 hp)
- Rated for making and breaking loads
- Accepts auxiliary contacts
- Capability to signal PLC controllers
- Ground lug connection provided
- Can be rated up to 65 kAIC , when protected by applicable upstream fusing

EnviroLine

Stainless Steel Switch
Eaton offers a line of safety switches designed for your special application and/or extreme environmental conditions.

■ EnviroLine Stainless Steel Switch: Primarily for use in the meatpacking and food processing industries, or any application where water is frequently used to hose down equipment. In addition to the stainless steel NEMA 4X enclosure, the interior mechanism, back pan and springs are all stainless steel. Ratings for these heavy-duty switches are $30-400 \mathrm{~A}, 240-600 \mathrm{Vac}$, available as fusible and non-fusible switches

Window Switches
■ Window Switches: These switches are available with either an upper window over the switch contacts or a lower window over the fuse block. The upper window provides visual verification of ON/OFF status. The lower window switch allows for visual verification of fuse status if used in conjunction with fuses with blown fuse indicator. Ratings are 30-800A and 200-1200A, 240-600 Vac, fusible and non-fusible. Available in NEMA 12/3R, 4X stainless steel enclosures

Receptacle Switches

■ Receptacle Switches: These heavyduty switches are pre-wired and interlocked to polarized receptacles for three-phase, three-wire, grounded type power plugs. These are used for portable power applications such as welders, infrared ovens, batch feeders, conveyors, and truck and marine docks. Receptacles are interlocked to handle mechanisms so that power plugs may not be inserted or removed when the switch is in the ON position unless noted otherwise. Ratings are 30-100A, 600 Vac, NEMA 12, 4 X stainless steel enclosures

Non-Metallic Switches
■ Non-Metallic Switch: This switch has a KRYDON ${ }^{\text {TM }}$ enclosure. This is a compression molded fiberglass reinforced polyester enclosure, which is capable of withstanding almost any corrosive environment. Ratings are $30-200 \mathrm{~A}, 240-600 \mathrm{Vac}$, fusible and non-fusible. Enclosure is NEMA 4X rated

Non-Metallic Halyester Switch
■ Non-Metallic Halyester ${ }^{\circledR}$ Switch: A strong, yet lightweight heavy-duty, corrosion-resistant, NEMA 4X enclosed switch that withstands salt environments and general outdoor conditions better than standard 304 -grade stainless steel at a more competitive price point than other non-metallic enclosures
■ 316 Grade Stainless Steel Switches: This option replaces the standard 304 Grade stainless steel and hardware with 316 stainless. 316 stainless holds up better in high salt environments found in coastal areas, and in water/wastewater applications

NEMA 7/9—Hazardous Location Disconnect Switch

DS361UX

- The cast aluminum enclosure is ideally suited for harsh industrial applications including petrochemical facilities, mining operations, pharmaceutical plants and wastewater treatment facilities. Eaton's Type DS switch is used as the switching device. Ratings are 30-100A, 600 Vac , fusible and non-fusible
Table 28.0-2. EnviroLine Standards Compliances

UL Classified- Standard 886 File No. E84577	CSA ${ }^{\circledR}$ Certified- Standard C22.2 File No. LR 42131-6
Class I, division 1 \& 2, groups B, C and D	Class I, division 1 \& 2, groups B, C and D
Class II, division 1 \& 2, groups E, F and G	Class II, division 1 \& 2, groups E, F and G
Class III, division 1 \& 2	Class III, division 1 \& 2
NEMA Types 7 and 9	NEMA Types 7 and 9
Zone 1, IIB + H2	Zone 1, IIB + H2

Seismic Qualification

Refer to Tab 1 for information on seismic qualification for this and other Eaton products.

September 2011
Sheet 28007

General Description

Auxiliary Power Heavy-Duty Safety Switch

Auxiliary Power Heavy-Duty Safety Switch
NEC Section 210.63 for Heating, Air-Conditioning and Refrigeration Equipment requires a 125 V , singlephase, 15A- or 20A-rated receptacle outlet be installed at an accessible location for the servicing of heating, air-conditioning and refrigeration equipment. The receptacle must be located on the same level and within $25 \mathrm{ft}(7.5 \mathrm{~m})$ of the heating,
air-conditioning and refrigeration equipment. The receptacle outlet is not to be connected to the load side of the equipment disconnecting means.

The Auxiliary Power Heavy-Duty Safety Switch combines a safety switch, 2 kVA control transformer, and 15A GFI receptacle in a single product. Ratings are 30-200A, 240 or 600 Vac, NEMA 3R outdoor enclosures. The auxiliary circuit is tapped off of the line side of the safety switch and can be operated independently of the main switch circuit. Auxiliary circuit voltages are available at either 208, 240, 480 or 600 V . In 480 V and 600 V applications, the auxiliary circuit disconnect and overcurrent protection are provided by a fusible deadfront disconnect switch with Class J fuses. The short-circuit rating is 200 kAIC .208 V and 240 V applications have a molded-case breaker with a 100 kAIC rating as the auxiliary circuit disconnect. The use of the Auxiliary Power Heavy-Duty Safety Switch eliminates the need for running a separate 120 V circuit common to rooftop air-conditioning applications.

Figure 28.0-1. Auxiliary Power Heavy-Duty Safety Switch Circuit Diagram

Elevator Control Switch

Elevator Control Switch
The elevator control switch provides an all-in-one product solution and selective coordination for elevator circuits. The elevator control switch uses a shunt trip disconnect as standard with Class J time-delay current-limiting fuses for meeting several code and user requirements for such circuits. Ratings are 30-200A, 600 Vac, NEMA 1, 3R, 12 and 4 enclosures. The elevator control switch carries a 200 kAIC rms symmetrical short-circuit rating.

Why do Buildings Require Eaton

 Elevator Disconnects?Eaton's Elevator Disconnect is a simple, all-in-one solution that takes the mystery out of meeting the many codes associated with fire protection and safety in elevator shafts. The model national building codes that prescribe the requirements for sprinklers, elevators and electrical equipment, and how the various systems shall interact are:

■ NFPA® 70
(National Electrical Code ${ }^{\circledR}$)

- NFPA 72
(National Fire Alarm Code ${ }^{\circledR}$)
■ ANSI/ASME A17.1
(Safety Code for Elevators and Escalators)
■ NFPA 13 (Installation of Sprinkler Systems)

In addition to these national codes, state and local jurisdictions or other agencies of the government (such as the Veteran's Administration) may edit or amend the codes, as they deem necessary for public safety.

Eaton's Elevator Disconnect enables consultants, contractors and building owners to install a single device that meets the requirements of the various codes.

Why is There a Need for the Eaton Elevator Disconnect?

1. According to 2010 NFPA 13 , fire sprinkler protection is required (with some exceptions) at the top and bottom of elevator shafts. Additionally, NFPA 13 requires the installation of sprinklers in the elevator machine room. When sprinkler heads are installed in elevator shafts, or in elevator machine rooms, then they must also be installed according to the State-Adopted Elevator Code (in many cases, ANSI/ASME A17.1).
2. The ASME A17.1 Safety Code for Elevators and Escalators, Rule 102.2 (c) (3), requires the shutdown of power to the elevator prior to the application of water in the elevator machine room or hoistway.
Shutdown of power is usually accomplished with the use of a shunt trip device in the elevator circuit, and is done for two valid safety concerns.

The first of these is to minimize the potential for electric shock due to the release of water on energized electrical equipment. The second, and less obvious, is to reduce the possibility of elevator car slippage after the car has gone to the recall floor and the doors have opened. Slippage is possible when the hoisting equipment (cables, sheave, braking system, etc.) become wet from discharged water.
Eaton's Elevator Disconnect is a fusible switch that is equipped with a shunt trip mechanism. The shunt trip is operated by a control relay (called a Fire Safety Interface Relay) in the unit that is wired to a normally open contact in the remote Fire Alarm Control Panel (FACP).

When the FACP receives a signal from the fire alarm system that there is going to be a sprinkler release in an elevator shaft, a normally open contact in the FACP closes, energizing the Fire Safety Interface Relay and completing a circuit to initiate a trip.

The Fire Safety Interface Relay is available with a 120 Vac or 24 Vdc coil. The 120 Vac coil should be selected when powered by the Elevator Disconnect control circuit, and the 24 Vdc relay should be selected when the power is supplied from the fire alarm system.

Figure 28.0-2. Typical Hydraulic Elevator Components and Requirements

September 2011
Sheet 28009

General Description

3. In addition to turning off power the model codes require other functions that are satisfied by the Eaton Elevator Disconnect. One of these requirements is that the shunt trip control circuit requires monitoring. The NFPA 72
(Fire Alarm Code) requires:
Control circuits to shut down elevator power shall be monitored for the presence of operating voltage. Loss of voltage to the control circuit for the disconnecting means shall cause a supervisory signal to be indicated at the control unit and required remote annunciation.

Thus, there is a requirement to monitor and to annunciate the presence of shunt trip control power. This is accomplished in the Eaton Elevator Disconnect by the Fire Alarm Voltage Monitoring Relay option. This relay is either a SPDT or a 3PDT relay. When control power is present, the closed relay contacts complete a circuit to the FACP that indicate the presence of control voltage. If control voltage is lost, the contact opens, signaling an alarm at the FACP and/or monitoring and annunciating a single elevator; all that is required is the single-pole relay. When wiring multiple switches (for multiple elevators), the three-pole relay option should be chosen. However, if there is a doubt, selecting the three-pole relay will provide all the functionality that is needed.

Additional Requirements and Concerns

Many elevators are equipped with backup power supplies to allow the elevator to be lowered if power is lost. For example, many hydraulic elevators are equipped with a battery system that opens a solenoid to lower the elevator, and then provides power to open the elevator doors.

This battery-lowering device is viewed by the NEC as an "emergency or standby power system," and is governed by Article 620.91.
4. Paragraph (C) requires that the main disconnect be provided with an auxiliary contact that disconnects the additional power source from the load when the disconnecting means is in the open position. The purpose of this auxiliary contact is to disconnect the backup power system when the elevator switch is opened
to prevent the elevator from automatically lowering while being maintained-which would endanger maintenance personnel.

Eaton's Elevator Disconnect

 is supplied with a standard set of 1NO and 1NC auxiliary contacts that are wired to the terminal blocks for this feature. Other manufacturers offer this as an option.An additional concern that is not code related is accidental signaling of a loss of voltage if a switch is turned off for maintenance or testing. For example, if an Eaton Elevator Disconnect is turned off to perform routine maintenance, the control voltage will be disconnected and it will send a signal
to the FACP-which may alert the local fire department and initiate a fire call.

To solve this problem, an optional micro switch mounted on the main switch can be supplied and field-wired in parallel with the alarm contact on the Voltage Monitoring relay. Wiring in this fashion would prevent an alarm signal from being sent when the Eaton Elevator Disconnect is turned off for routine maintenance.

An additional standard feature on the Eaton Elevator Disconnect is a Key-To-Test switch to perform a functional test of the operation of the shunt trip. A pilot light signaling that the switch is ON and a neutral lug are the only other available options.

Figure 28.0-3. Shunt Trip Device Wiring Diagram

Safety Switch Selection Guide

Table 28.0-3. Safety Switch Selection Guide

Type		Fuse Type		Fuse Class	Ampere Rating	Number of Poles	Enclosure Types									
		NEMA 1	NEMA 3R				NEMA 12	NEMA 4 Painted Steel	NEMA 4X Stainless Steel	NEMA 4X Non- Metallic	NEMA 4X 316Grade Stainless Steel	$\begin{aligned} & \hline \text { NEMA } \\ & 7 / 9 \end{aligned}$				
Generalduty	Single-throw max. 240 Vac horsepower rated			Fusible	Plug	-	30	1 and 2	Yes	Yes	-	-	-	-	-	-
		Cartridge	H		30-600	2 and 3	Yes	Yes	-	-	-	-	-	-		
		Nonfusible	-	-	30-600	2 and 3	Yes	Yes	-	-	-	-	-	-		
Heavyduty	Single-throw max. 600 Vac horsepower rated	Fusible	Cartridge	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{array}{\|c\|} \hline 30-600 \\ 800-1200 \\ \hline \end{array}$	$\begin{aligned} & \text { 2, } 3 \\ & \text { and } 4 \end{aligned}$	Yes up to 1200A	Yes up to 1200A	$\begin{aligned} & \hline \text { Yes }{ }^{(1)} \\ & \text { up to } \\ & 1200 \mathrm{~A} \end{aligned}$	$\begin{array}{\|l\|} \hline \text { Yes } \\ 400- \\ 1200 \mathrm{~A} \end{array}$	Yes up to 1200A	$\begin{aligned} & \hline \text { Yes } \\ & \text { up to } \\ & 200 \mathrm{~A} \end{aligned}$	Yes up to 1200A	$\begin{aligned} & \hline \text { Yes (2) } \\ & \text { up to } \\ & 100 \mathrm{~A} \end{aligned}$		
		Nonfusible	-	-	30-1200	$\begin{array}{\|l} \hline 2,3 \\ \text { and } 4 \end{array}$	Yes	Yes	$\begin{aligned} & \text { Yes } 1 \text { (1) } \\ & \text { up to } \\ & 1200 \mathrm{~A} \end{aligned}$	Yes 400- 1200A	Yes up to 1200A	$\begin{aligned} & \hline \text { Yes } \\ & \text { up to } \\ & 200 \mathrm{~A} \end{aligned}$	Yes up to 1200A	Yes up to 100A		
Six-pole motor circuit	Single-throw max. 600 Vac	Fusible	Cartridge	H	30-200	6	-	Yes	Yes ${ }^{1}$	-	Yes	-	Yes	-		
		Nonfusible	-	-	30-200	6	-	Yes	Yes ${ }^{1}$	-	Yes	-	-	-		
Doublethrow	Max. 600 Vac horsepower rated	Fusible	Cartridge	$\begin{array}{\|l\|} \hline \mathrm{H} \\ \mathrm{~T}(600 \mathrm{~V}) \\ \mathrm{T}(240 \mathrm{~V}) \\ \mathrm{L} \\ \hline \end{array}$	$30-200$ 400 600 $800-1200$	2 and 3	$\begin{array}{\|l\|} \hline \text { Yes } \\ \text { up to } \\ 600 \mathrm{~A} \end{array}$	$\begin{aligned} & \hline \text { Yes } \\ & \text { up to } \\ & 400 \mathrm{~A} \end{aligned}$	-	-	-	-	-	-		
		Nonfusible	-	-	30-1200	$\begin{aligned} & \hline 2,3,4 \\ & \text { and } 6 \end{aligned}$	Yes	Yes	$\begin{array}{\|l\|} \hline \text { Yes } \\ \text { up to } \\ 400 \mathrm{~A} \end{array}$	-	$\begin{array}{\|l\|} \hline \text { Yes } \\ \text { up to } \\ 400 \mathrm{~A} \end{array}$	-	-	-		
Rotary switches	Max. 600 Vac	Nonfusible	-	-	16-125	3,4	Yes	Yes ${ }^{(1)}$	Yes ${ }^{1}$	-	Yes	Yes	-	-		
Auxiliary power heavyduty	Max. 600 Vac horsepower rated	Fusible	Cartridge	H	30-200	3	-	Yes	-	-	-	-	-	-		
		Nonfusible	-	-	30-200	3	-	Yes	-	-	-	-	-	-		
Elevator control switch	Max. 600 Vac horsepower rated	Fusible	Cartridge	J	30-200	3	Yes	Yes	Yes	Yes	-	-	-	-		

(1) NEMA Type 12 enclosures (30-800A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain screw is removed.
(2) Class J clips provided.

Table 28.0-4. EnviroLine Safety Switch Selection Guide

EnviroLine	Fuse Type		Fuse Class	Ampere Rating	Number of Poles	Enclosure Types					
						NEMA 1	NEMA 3R	NEMA 12	NEMA 4 Painted Steel	NEMA 4X Stainless Steel	NEMA 4X Non- Metallic
Stainless enclosure with stainless mechanism	Fusible	Cartridge	H	30-400	2 and 3	-	-	-	-	Yes	-
	Nonfusible	-	-	30-400	3	-	-	-	-	Yes	-
Viewing window upper or lower (3)(4)	Fusible	Cartridge	$\begin{aligned} & \mathrm{H} \\ & \mathrm{~L} \end{aligned}$	$\begin{aligned} & 30-600 \\ & 800 \end{aligned}$	3	-	-	Yes (5)	Yes	Yes	-
	Nonfusible	-	-	30-800	3	-	-	Yes ${ }^{\text {5 }}$	Yes	Yes	-
Welding receptacle	Fusible	Cartridge	H	30-100	3	-	-	Yes	-	Yes	-
	Nonfusible	-	-	60	3	-	-	Yes	-	Yes	-
Non-metallic	Fusible	Cartridge	H	30-200	3	-	-	-	-	-	Yes
	Nonfusible	-	-	30-200	3	-	-	-	-	-	Yes

[^0]September 2011

Catalog Numbering System
Table 28.0-5. Safety Switch Catalog Numbering System

(1) For DC ratings, check individual switch ratings.

Table 28.0-6. Auxiliary Power Heavy-Duty Safety Switch Catalog Numbering System

Table 28.0-7. Quick-Connect Safety Switch Catalog Numbering System

(1) When upper and lower switches are the same, the switch configuration is consolidated in one letter (e.g.," U " not "UU"). Also, a switch with a neutral will have either a solid neutral or a switched neutral, not both. Lastly, a switched neutral pole is never fused.
(2) Heavy-duty single-throw switches will not have a lower switch option.
${ }^{(3)}$ This field is only used when a switch is completely non-fused.
Table 28.0-8. Elevator Control Switch Catalog Numbering System

(4) 100 VA with primary and secondary fusing (120 V secondary).
(5) To monitor shunt trip voltage.
(6) NEMA 1 standard with no suffix designation required.

Note: All modules are three-pole, 600 V and contain a key to test switch and mechanically interlocked auxiliary contact as standard.

All General-Duty Switches Above 100A and All Heavy-Duty Switches Incorporate These K-Series Switch Design Features

Visible Double Break Rotary Blade Mechanism
Two points of contact provide a positive open and close, easier operation, and also help prevent contact burning for longer contact life.

Clear Line Shield
Protects against accidental contact with energized parts. Probe holes enable the user to test if the line side is energized without removing the shield. Not provided on general-duty switches.

Built-in Fuse Pullers (NEMA 12 and 4X 30-200A Only)
Provide easy removal of fuses.

Clearly Visible Handle
The position (ON or OFF) can be clearly seen from a distance and the length provides for easy operation.

Triple Padlocking Capability
Personnel safety feature because the large hasp can accommodate up to three $3 / 8$-inch (9.5 mm) shank locks.

Additional Locking Capability
Cabinet door can be further padlocked at the top and bottom as applicable.

Note: Size of hasp in inches (mm):
30-100A-0.344 (8.7) 0.250 shank
200-1200A-0.50 (12.7) 0.375 shank

Interlocking Mechanism
Door cannot be opened when the handle is in the ON position. Front side operable defeater mechanism provides for user access when necessary.

Tangential Knockouts
An ample number are provided on the top, bottom and sides of both NEMA Types 1 and 3R enclosures through 200A.

Bolt-On Hub Kits
For switches in a NEMA Type 3R, 12, 4 or 4X enclosure.

Accessories, Hubs, Lug Data

Table 28.0-9. Safety Switches-Accessories

Description	Catalog Number
```Neutral Kits/Ground Kits 30A DG 60-100A DG 200A DG, DH (NEMA 1, 3R enclosures) 30-60A DH 100A DH 200A DH (NEMA 4X, 12 enclosures) 400A DG, DH 600A DG, DH 400-600A Fusible DT, 800-1200A DH 30-100A DT 200A DT 400A Non-fusible DT 600A Non-fusible DT 800A DT 1200A DT```	DG030NB   DG100NB   DG200NK   DH030NK   DH100NK   DH200NK   DS400NK   DS600NK   DS800NK   DT100NK   DT200NK   DT400NK   DT600NK   DT800NK   DT1200NK
```Ground Lug Kits 30-100A DG 30-100A DH, DT (1) 200A DG, DH, DT 400-600A DG, 400-1200A DH, 400-1200A DT```	DG030GB DS100GK DS200GK DS468GK
Switching Neutral Bonding Kits 30-100A DT, three-pole, four-pole 200A DT, three-pole, four-pole 400A DT, three-pole, four-pole 600A DT, three-pole, four-pole 800A DT, three-pole, four-pole	DT100BK DT200BK DT400BK DT600BK DT800BK
$\begin{array}{\|l\|} \hline \text { Control Pole Kit } \\ 400-600 \mathrm{~A} \text { DG, } 30-1200 \text { A DH, } 30-800 \mathrm{~A} \text { DT } \end{array}$	DS16CP
Auxiliary Contact Kits All switches (except 30-100A DG) 1NO/1NC All switches (except 30-100A DG) 2NO/2NC	$\begin{aligned} & \text { DS200EK1 } \\ & \text { DS200EK2 } \end{aligned}$
	DS16CL DS26CL DS36CL DS46CL DS56CL DS66CL
$\begin{aligned} & \text { Crimp Lug Pad Kit (NEMA 4, 4X, } 12 \text { Enclosures) } \\ & 400-600 \mathrm{AH}^{2}{ }^{2} \\ & 800 \mathrm{ADH} \text { ³ } \\ & 400-800 \mathrm{~A} \text { neutral DH © } 4 \end{aligned}$	DS56CK DS76CK DS800CNK

Description	Catalog Number
$\begin{gathered} \text { Fuse Puller Kits } \\ 30-60 \mathrm{~A} \mathrm{DH}^{2} \\ 30-60 \mathrm{AH} \mathrm{~B}^{(5)} \\ 100 \mathrm{~A} \mathrm{DH}^{(2)} \\ 200 \mathrm{DH} \end{gathered}$	DS30FP DS60FP DS100FP DS200FP
```"J" Fuse Adapter Kits 60A 240V DH (2) 60A DT and receptacle switches (2) 400A 600V DT ©  600A 240-600V DH only (3)```	$\begin{aligned} & \text { DS22JK } \\ & \text { DS26JK } \\ & \text { DT400JK } \\ & \text { DS600JK } \end{aligned}$
```"R" Fuse Adapter Kits (2) 30A DG 100A DG 30A 240V DH, DT 30A 600V DH, DT, 60A 240V DH, DT, 60A DG 60A 600V DH, DT 100A 240-600V DH, DT 200A 240-600V DH, DT, 200A DG 400A 240-600V DH, 240V DT, 400A DG 600A 240-600V DH, 600A DG```	DG030RB   DG100RB   DS12FK   DS16FK   DS26FK   DS36FK   DS46FK   DS56FK   DS66FK
	DS426TK DS466TK DS526TK DS566TK DS626TK DS666TK DS726TK DS766TK
Hookstick handle	DH800HSH
Lubricating grease for safety switch blades and contacts (Each kit contains three 30 cc tubes of lubricating grease.)	DSLUBEKIT
Auxiliary Contacts for: 16-25A three-, four-pole rotary switches, includes holder and contact (1NO/1NC) 30-40A three-pole rotary switches, includes holder and contact (1NO) 60-125A three-pole rotary switches, includes holder and contact (1NO) 30-40A four-pole rotary switches, includes holder and contact (1NO) 30-125A three-, four-pole, contact only (1NC) 30-125A three-, four-pole, contact only (1NO)	CMAC CRAC3 ${ }^{(7)}$ CWAC3 CRAC4 CRAA CRAB

(1) Ground bar kit is not listed on device publications.
${ }^{(2)}$ Order one kit for three poles.
${ }^{(3)}$ Order one kit for each pole.
(4) Order one kit per switch.
(5) Receptacle switches.
(6) Order one kit for six poles.
(7) The mechanism is reversed on these contacts.

[^1]September 2011
Sheet 28015

General Description-Accessories, Hubs, Lug Data

Hubs

DS075H1
Table 28.0-10. Plate Type Hubs for NEMA Type 3R Enclosures (Up to 200A)

Group 1 General-Duty, Heavy-Duty, Double-Throw Through 100A			Group 2 General-Duty, Heavy-Duty, Double-Throw-200A		
Conduit Size		Catalog Number	Conduit Size		Catalog Number
Inches	mm		Inches	mm	
3/4	19.1	DS075H1	2	50.8	DS200H2
1	25.4	DS100H1	2-1/2	63.5	DS250H2
1-1/4	31.8	DS125H1	3	76.2	DS300H2
1-1/2	38.1	DS150H1	-	-	
2	50.8	DS200H1	-	-	-

Note: Catalog Number DS900AK Adapter Kit—Permits Installation of Group 1 Hubs on 200A Type General-Duty, Heavy-Duty and DoubleThrow Switches.

Table 28.0-11. Myers Type Hubs
NEMA Type 3R (400A and Above)
NEMA Types 4, 4X (Stainless Steel), 12

Conduit Size		mm
Inches	Catalog Number	
$\mathbf{1 / 2}$	12.7	
$3 / 4$	1.1	DS050MH
1	25.4	DS075MH
$1-1 / 4$	31.8	DS100MH
$1-1 / 2$	38.1	DS125MH
2	50.8	DS150MH
$2-1 / 2$	63.5	DS200MH
3	76.2	DS250MH
$3-1 / 2$	88.9	DS300MH
4	101.6	DS350MH
5	127.0	DS400MH

Note: Contact the Flex Center at 1-888-329-9272 for information on hubs for non-metallic NEMA 4X switches.

Table 28.0-12. Standard Lug Capacities

Ampere Rating	Minimum Wire Size	Maximum Wire Size	Wire Type
30A DP	\#14	\#10	Cu OR
	\#12	\#10	
30A DG	\#14	\#6	$\mathrm{Cu} / \mathrm{Al}$
30A DH, DT	\#14	\#2	$\mathrm{Cu} / \mathrm{Al}$
60A DG	\#14	\#1/0	$\mathrm{Cu} / \mathrm{Al}$
60A DH, DT	\#14	\#2	$\mathrm{Cu} / \mathrm{Al}$
100A DG ${ }^{(1)}$	\#14	\#1/0	$\mathrm{Cu} / \mathrm{Al}$
100A DH, DT	\#14	\#1/0	$\mathrm{Cu} / \mathrm{Al}$
200A DG, DT	\#6	250 kcmil	$\mathrm{Cu} / \mathrm{Al}$
200A DH Type 1 and 3R	\#6	250 kcmil	$\mathrm{Cu} / \mathrm{Al}$
200A DH Type 4 and 12	\#6	300 kcmil	$\mathrm{Cu} / \mathrm{Al}$
400A DG, DH, DT	(2) \#1/0	(2) 300 kcmil	Cu/AI OR
	(1) \#1/0	(1) 750 kcmil	$\mathrm{Cu} / \mathrm{Al}$
600A DG	(1) \#2	(1) 600 kcmil	Cu/AI AND
600A DH	(1) \#1/0	(1) 750 kcmil	$\mathrm{Cu} / \mathrm{Al}$
600A DT (Fusible)			
600A DT (Non-fusible)	(2) \#250	(2) 500 kcmil	$\mathrm{Cu} / \mathrm{Al}$
800A DH	(4) \#1/0	(4) 750 kcmil	$\mathrm{Cu} / \mathrm{Al}$
800A DT	(3) \#250	(3) 500 kcmil	$\mathrm{Cu} / \mathrm{Al}$
1200A DH, DT	(4) \#1/0	(4) 750 kcmil	$\mathrm{Cu} / \mathrm{Al}$
Copper-Bodied Lugs			
30 A Cu	\#14	\#6	Cu
60 A Cu	\#14	\#4	Cu
100 A Cu	\#6	\#1/0	Cu
200 A Cu	\#6	250 kcmil	Cu
400 A Cu	\#1/0	500 kcmil	Cu
600 A Cu	(2) \#1/0	(2) 500 kcmil	Cu

(1) The maximum size aluminum or copper-clad aluminum wire allowable for applications where the conductor enters or leaves the enclosure through the wall opposite its terminal is \#1 gauge.
Note: Although certain lug capacities are larger than required, only minimum wire bending space is provided per the requirements noted in NEC Tables 373.6 (a) and (b) for respective ampere ratings.

September 2011
Sheet 28016
General Description-Lug Data, Connection Plugs

Table 28.0-13. Available Lug Capacities of the Double-Throw Switch Assembly with Cam-Lok or Posi-Lok Receptacles

Double Throw Switch Size-Cam-Lok or Posi-Lok Receptacles	Service Terminal Openings	Load Terminal Openings	Switched Neutral Pole Load Terminal Openings	Solid Neutral Terminal Openings	Ground Terminal Openings	Receptacle Bypass Terminal
100	(1) $1 / 0-14$ AWG Cu/AI	(1) $1 / 0-14$ AWG Cu/AI	(1) $1 / 0-14$ AWG Cu/AI	(2) 1/0-14 AWG, (1) 2-14 AWG Cu/AI	(3) 2-14 AWG Cu/AI	(1) 10-32 Screw mounting
200	(1) $300 \mathrm{kcmil}-$ 6 AWG Cu/AI	(1) $250 \mathrm{kcmil}-$ 6 AWG Cu/AI	(1) $250 \mathrm{kcmil}-$ 6 AWG Cu/Al	(2) 250 kcmil-6 AWG, (1) $1 / 0-14$ AWG, (1) 2-14 AWG Cu/AI	(3) 2-14 AWG Cu/AI	(2) $1 / 4$ Studs, 1.75-inch spacing
400	(1) $750 \mathrm{kcmil}-1 / 0$ or (2) $300 \mathrm{kcmil}-1 / 0$ $\mathrm{Cu} / \mathrm{Al}$	(1) 750 kcmil- $1 / 0$ or (2) $300 \mathrm{kcmil}-1 / 0$ $\mathrm{Cu} / \mathrm{Al}$	(1) $750 \mathrm{kcmil}-1 / 0$ or (2) $300 \mathrm{kcmil}-1 / 0$ $\mathrm{Cu} / \mathrm{Al}$	(6) 500 kcmil , (6) $250 \mathrm{kcmil}-$ 6 AWG Cu/AI	(4) 250 kcmil 6 AWG Cu/AI	(2) 1/2-13 UNC studs, 1.75 -inch spacing
600	(4) $750 \mathrm{kcmil}-$ $3 / 0 \mathrm{Cu} / \mathrm{Al}$	(4) 500-250 kcmil $\mathrm{Cu} / \mathrm{Al}$	(4) 500-250 kcmil $\mathrm{Cu} / \mathrm{Al}$	(6) $500-250 \mathrm{kcmil}$, (4) $250 \mathrm{kcmil}-$ 6 AWG Cu/AI	(4) $250 \mathrm{kcmil}-$ 6 AWG Cu/AI	(2) 1/2-13 UNC studs, 1.75 -inch spacing
800	$\begin{aligned} & \text { (4) } 750 \mathrm{kcmil}- \\ & 3 / 0 \mathrm{Cu} / \mathrm{Al} \end{aligned}$	(4) $500-250 \mathrm{kcmil}$ $\mathrm{Cu} / \mathrm{Al}$	(4) $500-250 \mathrm{kcmil}$ $\mathrm{Cu} / \mathrm{Al}$	(6) $500-250 \mathrm{kcmil}$, (4) $250 \mathrm{kcmil}-$ 6 AWG Cu/AI	(4) 250 kcmil 6 AWG Cu/AI	(2) 1/2-13 UNC studs, 1.75 -inch spacing

Table 28.0-14. Ouick-Connect Double-Throw Standard Receptacles and Corresponding Connection Plugs
(Part Numbers are Cooper Crouse-Hinds)

Double Throw Switch Size-Cam-Lok or Posi-Lok Receptacles		Cam-Lok Connectors		Posi-Lok Connectors	
		Receptacle	Plug	Receptacle Panel	Plug
100	Ground (green) Neutral (white) A Phase (black) B Phase (red) C Phase (blue)	E1016-1635S E1016-1636S E1016-1600S E1016-1602S E1016-1612S	E-Z1016-8366 E-Z1016-8367 E-Z1016-8387 E-Z1016-8389 E-Z1016-8393	Two-pole, three-wire with solid neutral or three-pole, three-wire with switched neutral pole (two-phase and single neutral pole): E0200-1696 / three-pole, three-wire (no neutral): E0200-1686 / three-pole, four-wire with solid neutral or four-pole, four-wire with switched neutral pole (three-phase and single neutral pole): E0200-1687	E0200-281 E0200-282 E0200-283 E0200-284 E0200-285
200	Ground (green) Neutral (white) A Phase (black) B Phase (red) C Phase (blue)	E1016-1635S E1016-1636S E1016-1600S E1016-1602S E1016-1612S	$\begin{array}{\|l\|} \hline \text { E-Z1016-8366 } \\ \text { E-Z1016-8367 } \\ \text { E-Z1016-8387 } \\ \text { E-Z1016-8389 } \\ \text { E-Z1016-8393 } \end{array}$	Two-pole, three-wire with solid neutral or three-pole, three-wire with switched neutral pole (two-phase and single neutral pole): E0200-1696 / three-pole, three-wire (no neutral): E0200-1686 / three-pole, four-wire with solid neutral or four-pole, four-wire with switched neutral pole (three-phase and single neutral pole): E0200-1687	E0200-281 E0200-282 E0200-283 E0200-284 E0200-285
400	Ground (green) Neutral (white) A Phase (black) B Phase (red) C Phase (blue)	E1016-1635S E1016-1636S E1016-1600S E1016-1602S E1016-1612S	E-Z1016-8366 E-Z1016-8367 E-Z1016-8387 E-Z1016-8389 E-Z1016-8393	Two-pole, three-wire with solid neutral or three-pole, three-wire with switched neutral pole (two-phase and single neutral pole): E0400-1696 / three-pole, three-wire (no neutral): E0400-1686 / three-pole, four-wire with solid neutral or four-pole, four-wire with switched neutral pole (three-phase and single neutral pole): E0400-1687	E0400-281 E0400-282 E0400-283 E0400-284 E0400-285
600	Ground (green) Neutral (white) A Phase (black) B Phase (red) C Phase (blue)	(2) E1016-1635S (2) E1016-1636S (2) E1016-1600S (2) E1016-1602S (2) E1016-1612S	(2) E-Z1016-8366 (2) E-Z1016-8367 (2) E-Z1016-8387 (2) E-Z1016-8389 (2) E-Z1016-8393	Two-pole, three-wire with solid neutral or three-pole, three-wire with switched neutral pole (two-phase and single neutral pole): (2) E0400-1696 / three-pole, three-wire (no neutral): (2) E0400-1686 / three-pole, four-wire with solid neutral or four-pole, four-wire with switched neutral pole (three-phase and single neutral pole): (2) E0400-1687	(2) E0400-281 (2) E0400-282 (2) E0400-283 (2) E0400-284 (2) E0400-285
800	Ground (green) Neutral (white) A Phase (black) B Phase (red) C Phase (blue)	(2) E1016-1635S (2) E1016-1636S (2) E1016-1600S (2) E1016-1602S (2) E1016-1612S	(2) E-Z1016-8366 (2) E-Z1016-8367 (2) E-Z1016-8387 (2) E-Z1016-8389 (2) E-Z1016-8393	Two-pole, three-wire with solid neutral or three-pole, three-wire with switched neutral pole (two-phase and single neutral pole): (2) E0400-1696/ three-pole, three-wire (no neutral): (2) E0400-1686 / three-pole, four-wire with solid neutral or four-pole, four-wire with switched neutral pole (three-phase and single neutral pole): (2) E0200-1687	(2) E0400-281 (2) E0400-282 (2) E0400-283 (2) E0400-284 (2) E0400-285

Note: Switches are not supplied with the mating plugs. Eaton will supply the plug if cord sets are ordered.

September 2011
Sheet 28017

Layout-Dimensions

Dimensions

Table 28.0-15. General-Duty, Non-Fusible, 240V, Three-Pole, Single-Throw

Ampere Rating	NEMA 1					NEMA 3R				
	Dimensions in Inches (mm)				Weight Lbs (kg)	Dimensions in Inches (mm)				Weight Lbs (kg)
	Width (W)	Height (H)	Depth (D)	Depth (D2)		Width (W)	Height (H)	Depth (D)	Depth (D2)	
30	$\begin{array}{\|l\|} \hline 6.38 \\ (162.1) \end{array}$	$\begin{aligned} & \hline 10.69 \\ & (271.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.88 \\ (174.8) \end{array}$	$\begin{array}{\|l\|} \hline 3.75 \\ (95.2) \end{array}$	$\begin{array}{\|l\|} \hline 6 \\ (2.724) \end{array}$	$\begin{array}{\|l\|} \hline 6.38 \\ (162.1) \end{array}$	$\begin{array}{\|l\|} \hline 10.81 \\ (274.6) \end{array}$	$\begin{aligned} & \hline 6.88 \\ & (174.8) \end{aligned}$	$\begin{aligned} & \hline 3.75 \\ & \text { (95.2) } \end{aligned}$	$\begin{array}{\|l\|} \hline 6 \\ (2.724) \end{array}$
60	$\begin{array}{\|l\|} \hline 8.69 \\ (220.7) \end{array}$	$\begin{array}{\|l\|} \hline 14.19 \\ (360.4) \end{array}$	$\begin{array}{\|l\|} \hline 7.38 \\ (187.5) \end{array}$	$\begin{array}{\|l} \hline 4.21 \\ (106.9) \end{array}$	$\begin{array}{\|l\|} \hline 9 \\ (4.086) \end{array}$	$\begin{aligned} & \hline 8.69 \\ & (220.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.38 \\ (365.3) \end{array}$	$\begin{aligned} & \hline 7.38 \\ & (187.5) \end{aligned}$	$\begin{aligned} & \hline 4.21 \\ & (106.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 9 \\ (4.086) \end{array}$
100	$\begin{array}{\|l\|} \hline 9.13 \\ (231.9) \end{array}$	$\begin{aligned} & \hline 18.81 \\ & (477.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 7.38 \\ (187.5) \end{array}$	$\begin{array}{\|l\|} \hline 4.23 \\ (107.4) \end{array}$	$\begin{array}{\|l\|} \hline 12 \\ (5.448) \end{array}$	$\begin{array}{\|l\|} \hline 9.13 \\ (231.9) \end{array}$	$\begin{array}{\|l\|} \hline 19.25 \\ (489.0) \end{array}$	$\begin{aligned} & \hline 7.38 \\ & (187.5) \end{aligned}$	$\begin{aligned} & \hline 4.23 \\ & (107.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 12 \\ (5.448) \\ \hline \end{array}$
200	$\begin{array}{\|l\|} \hline 16.00 \\ (406.4) \end{array}$	$\begin{aligned} & \hline 25.25 \\ & (641.4) \end{aligned}$	$\begin{aligned} & \hline 11.25 \\ & (285.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.14 \\ (156.0) \end{array}$	$\begin{array}{\|l\|} \hline 48 \\ (21.792) \\ \hline \end{array}$	$\begin{aligned} & \hline 16.00 \\ & (406.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 25.50 \\ (647.7) \end{array}$	$\begin{aligned} & \hline 11.25 \\ & (285.8) \end{aligned}$	$\begin{aligned} & \hline 6.14 \\ & (156.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 55 \\ (24.97) \end{array}$
400	$\begin{array}{\|l\|} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{\|l\|} \hline 44.75 \\ (1136.7) \end{array}$	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{array}{\|l\|} \hline 7.27 \\ \text { (184.7) } \end{array}$	$\begin{array}{\|l\|} \hline 100 \\ (45.4) \end{array}$	$\begin{array}{\|l} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{\|l\|} \hline 45.19 \\ (1147.8) \end{array}$	$\begin{aligned} & \hline 12.63 \\ & (320.8) \end{aligned}$	$\begin{aligned} & 7.27 \\ & (184.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 105 \\ (47.67) \end{array}$
600	$\begin{array}{\|l\|} \hline 24.00 \\ (609.6) \end{array}$	$\begin{array}{\|l\|} \hline 52.25 \\ (1327.2) \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.95 \\ (227.3) \end{array}$	$\begin{aligned} & \hline 130 \\ & (59.02) \end{aligned}$	$\begin{aligned} & \hline 24.00 \\ & (609.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 52.70 \\ (1338.6) \end{array}$	$\begin{aligned} & \hline 14.25 \\ & (362.0) \end{aligned}$	$\begin{aligned} & \hline 8.95 \\ & (227.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 135 \\ (61.29) \end{array}$

Table 28.0-16. General-Duty, Fusible, 240V, Three-Pole, Solid Neutral, Single-Throw

Ampere Rating	NEMA 1, 3R					NEMA 12, 4X Stainless Steel, 4				
	Dimensions in Inches (mm)				Weight Lbs (kg)	Dimensions in Inches (mm)				Weight Lbs (kg)
	Width (W)	Height (H)	Depth (D)	Depth (D2)		Width (W)	Height (H)	Depth (D)	Depth (D2)	
30	$\begin{array}{\|l} \hline 8.13 \\ (206.5) \end{array}$	$\begin{aligned} & \hline 15.88 \\ & (403.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{array}{\|l\|} \hline 20 \\ \text { (9.08) } \end{array}$	$\begin{aligned} & \hline 8.13 \\ & (206.5) \end{aligned}$	$\begin{aligned} & \hline 17.88 \\ & (454.2) \end{aligned}$	$\begin{aligned} & \hline 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l} \hline 22 \\ (9.988) \end{array}$
60	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{aligned} & \hline 15.88 \\ & (403.4) \end{aligned}$	$\begin{aligned} & \hline 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{array}{\|l\|} \hline 20 \\ \text { (9.08) } \end{array}$	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{aligned} & \hline 17.88 \\ & (454.2) \end{aligned}$	$\begin{aligned} & \hline 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ (9.988) \end{array}$
100	$\begin{array}{\|l\|} \hline 11.13 \\ (282.7) \end{array}$	$\begin{aligned} & \hline 21.69 \\ & (550.9) \end{aligned}$	$\begin{aligned} & \hline 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{array}{\|l\|} \hline 27 \\ (12.258) \end{array}$	$\begin{array}{\|l\|} \hline 11.13 \\ (282.7) \end{array}$	$\begin{aligned} & \hline 24.00 \\ & (609.6) \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 10.25 \\ & (260.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 30 \\ (13.62) \end{array}$
200	$\begin{array}{\|l\|} \hline 16.00 \\ (406.4) \end{array}$	$\begin{array}{\|l\|} \hline 27.63 \\ (701.8) \end{array}$	$\begin{array}{\|l\|} \hline 11.25 \\ (285.8) \end{array}$	$\begin{array}{\|l\|l} \hline 6.14 \\ (156.0) \end{array}$	$\begin{array}{\|l\|} \hline 52 \\ (23.608) \\ \hline \end{array}$	$\begin{aligned} & \hline 16.00 \\ & (406.4) \end{aligned}$	$\begin{aligned} & \hline 34.38 \\ & (873.3) \end{aligned}$	$\begin{aligned} & 11.50 \\ & \text { (292.1) } \end{aligned}$	$\begin{array}{\|l\|} \hline 6.44 \\ (163.6) \end{array}$	$\begin{array}{\|l\|} \hline 61 \\ (27.694) \\ \hline \end{array}$
400	$\begin{array}{\|l\|} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{\|l\|} \hline 45.19 \\ (1147.8) \end{array}$	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{array}{\|l\|} \hline 7.27 \\ (184.7) \end{array}$	$\begin{array}{\|l\|} \hline 120 \\ (54.48) \end{array}$	$\begin{aligned} & \hline 23.00 \\ & (584.2) \end{aligned}$	57.63 (1463.8)	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{array}{\|l\|} \hline 7.19 \\ (182.6) \end{array}$	$\begin{array}{\|l\|} \hline 135 \\ (61.29) \end{array}$
600	$\begin{array}{\|l\|} \hline 24.00 \\ (609.6) \end{array}$	$\begin{aligned} & \hline 52.70 \\ & (1338.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.95 \\ (227.3) \end{array}$	$\begin{aligned} & \hline 153 \\ & (69.462) \end{aligned}$	$\begin{aligned} & \hline 24.00 \\ & (609.6) \end{aligned}$	$\begin{aligned} & \hline 63.00 \\ & (1600.2) \end{aligned}$	$\begin{aligned} & \hline 14.25 \\ & (362.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{array}{\|l\|} \hline 203 \\ (92.162) \\ \hline \end{array}$
800	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{array}{\|l\|} \hline 56.69 \\ (1439.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.95 \\ \text { (227.3) } \end{array}$	$\begin{array}{\|l\|} \hline 168 \\ (76.272) \end{array}$	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{aligned} & \hline 71.75 \\ & (1822.5) \end{aligned}$	$\begin{aligned} & \hline 14.25 \\ & (362.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{aligned} & \hline 213 \\ & (96.702) \end{aligned}$
1200	$\begin{array}{\|l\|} \hline 41.47 \\ (1053.3) \end{array}$	$\begin{array}{\|l\|} \hline 70.31 \\ (1785.9) \end{array}$	$\begin{array}{\|l\|} \hline 19.94 \\ (506.5) \end{array}$	$\begin{array}{\|l\|} \hline 12.44 \\ (316.0) \end{array}$	$\begin{array}{\|l\|} \hline 465 \\ (211.11) \end{array}$	$\begin{array}{\|l\|} \hline 41.47 \\ (1053.3) \end{array}$	$\begin{array}{\|l\|} \hline 70.31 \\ (1785.9) \end{array}$	$\begin{array}{\|l\|} \hline 19.94 \\ (506.5) \end{array}$	$\begin{array}{\|l\|} \hline 13.51 \\ (343.2) \end{array}$	$\begin{array}{\|l\|} \hline 510 \\ (231.54) \\ \hline \end{array}$

Note: Not applicable to plug fuse.

Figure 28.0-4. NEMA 1-3R 30-100A

Figure 28.0-5. NEMA 1-3R 200-600A

Layout-Dimensions

Dimensions (Continued)

Table 28.0-17. Heavy-Duty, Non-Fusible, 600V, Three-Pole, Single-Throw

Ampere Rating	NEMA 1, 3R					NEMA 12, 4X Stainless Steel, 4				
	Dimensions in Inches (mm)				Weight Lbs (kg)	Dimensions in Inches (mm)				Weight Lbs (kg)
		Height (H)	Depth (D)	Depth (D2)			Height (H)	Depth (D)	Depth (D2)	
30	$\begin{aligned} & \hline 8.13 \\ & (206.5) \end{aligned}$	$\begin{aligned} & \hline 15.88 \\ & (403.4) \end{aligned}$	$\begin{aligned} & 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{array}{\|l\|} \hline 16 \\ (7.264) \end{array}$	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{array}{\|l\|} \hline 12.13 \\ (308.1) \end{array}$	$\begin{aligned} & 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ (7.718) \end{array}$
60	$\begin{aligned} & \hline 8.13 \\ & (206.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 15.88 \\ (403.4) \end{array}$	$\begin{aligned} & 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{array}{\|l\|} \hline 16 \\ (7.264) \end{array}$	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{array}{\|l\|} \hline 12.13 \\ (308.1) \end{array}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 17 \\ (7.718) \end{array}$
100	$\begin{array}{\|l\|} \hline 11.13 \\ (282.7) \end{array}$	$\begin{array}{\|l\|} \hline 21.69 \\ (550.9) \end{array}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{array}{\|l\|} \hline 22 \\ (9.988) \end{array}$	$\begin{array}{\|l\|} \hline 11.13 \\ (282.7) \end{array}$	$\begin{aligned} & \hline 24.00 \\ & (609.6) \end{aligned}$	$\begin{aligned} & \hline 10.25 \\ & (260.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 28 \\ (12.712) \end{array}$
200	$\begin{aligned} & \hline 16.00 \\ & (406.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 27.63 \\ (701.8) \end{array}$	$\begin{aligned} & \hline 11.25 \\ & (285.8) \end{aligned}$	$\begin{aligned} & \hline 6.14 \\ & (156.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 46 \\ (20.884) \end{array}$	$\begin{array}{\|l\|} \hline 16.00 \\ (406.4) \end{array}$	$\begin{aligned} & \hline 34.38 \\ & (873.3) \end{aligned}$	$\begin{aligned} & \hline 11.50 \\ & (292.1) \end{aligned}$	$\begin{aligned} & \hline 6.44 \\ & (163.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 55 \\ (24.97) \end{array}$
400	$\begin{array}{\|l\|} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{\|l\|} \hline 45.19 \\ (1147.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{array}{\|l\|} \hline 7.27 \\ (184.7) \end{array}$	$\begin{array}{\|l\|} \hline 110 \\ (49.94) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{l\|} \hline 57.63 \\ (1463.8) \end{array}$	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{aligned} & \hline 7.19 \\ & (182.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 125 \\ (56.75) \end{array}$
600	$\begin{aligned} & \hline 24.00 \\ & (609.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 52.70 \\ (1338.6) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{aligned} & \hline 8.95 \\ & (227.3) \end{aligned}$	$\begin{array}{\|l\|} \hline 135 \\ (61.29) \end{array}$	$\begin{array}{\|l\|} \hline 24.00 \\ (609.6) \end{array}$	$\begin{aligned} & \hline 63.00 \\ & (1600.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{array}{\|l} \hline 167 \\ (75.818) \end{array}$
800	$\begin{aligned} & \hline 25.38 \\ & (644.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 56.69 \\ (1439.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{aligned} & \hline 8.95 \\ & (227.3) \end{aligned}$	$\begin{aligned} & \hline 158 \\ & (71.732) \end{aligned}$	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{aligned} & \hline 71.75 \\ & (1822.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{array}{\|l\|} \hline 175 \\ (79.45) \\ \hline \end{array}$
1200	$\begin{array}{\|l\|} \hline 41.47 \\ (1053.3) \end{array}$	$\begin{array}{\|l\|} \hline 70.31 \\ (1785.9) \end{array}$	$\begin{array}{\|l\|} \hline 19.94 \\ (506.5) \end{array}$	$\begin{aligned} & \hline 12.44 \\ & (316.0) \end{aligned}$	$\begin{aligned} & \hline 430 \\ & (195.22) \end{aligned}$	$\begin{array}{\|l\|} \hline 41.47 \\ (1053.3) \end{array}$	$\begin{array}{l\|} \hline 70.31 \\ (1785.9) \end{array}$	$\begin{aligned} & \hline 19.94 \\ & (506.5) \end{aligned}$	$\begin{aligned} & \hline 13.51 \\ & (343.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 475 \\ (215.65) \end{array}$

Table 28.0-18. Heavy-Duty, Fusible, 240 and 600V, Three-Pole Solid Neutral, Single-Throw

Ampere Rating	NEMA 1, 3R					NEMA 12, 4X Stainless Steel, 4				
	Dimensions in Inches (mm)				Weight Lbs (kg)	Dimensions in Inches (mm)				Weight Lbs (kg)
	Width (W)	Height (H)	Depth (D)	Depth (D2)		Width (W)	Height (H)	Depth (D)	Depth (D2)	
30	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{array}{\|l\|} \hline 15.88 \\ (403.4) \end{array}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{aligned} & 20 \\ & (9.08) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{aligned} & \hline 17.88 \\ & (454.2) \end{aligned}$	$\begin{aligned} & \hline 10.00 \\ & (254.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{aligned} & \hline 22 \\ & (9.988) \end{aligned}$
60	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{array}{\|l\|} \hline 15.88 \\ (403.4) \end{array}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{aligned} & \hline 20 \\ & \text { (9.08) } \end{aligned}$	$\begin{array}{\|l\|} \hline 8.13 \\ (206.5) \end{array}$	$\begin{aligned} & \hline 17.88 \\ & (454.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{aligned} & \hline 22 \\ & (9.988) \end{aligned}$
100	$\begin{array}{\|l\|} \hline 11.13 \\ (282.7) \end{array}$	$\begin{array}{\|l\|} \hline 21.69 \\ (550.9) \end{array}$	$\begin{array}{\|l\|} \hline 10.00 \\ (254.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.25 \\ (133.3) \end{array}$	$\begin{aligned} & \hline 27 \\ & (12.258) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.13 \\ (282.7) \end{array}$	$\begin{aligned} & \hline 24.00 \\ & (609.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{aligned} & \hline 30 \\ & (13.62) \end{aligned}$
200	$\begin{array}{\|l\|} \hline 16.00 \\ (406.4) \end{array}$	$\begin{array}{\|l\|} \hline 27.63 \\ (701.8) \end{array}$	$\begin{array}{\|l\|} \hline 11.25 \\ (285.8) \end{array}$	$\begin{array}{\|l\|} \hline 6.14 \\ (156.0) \end{array}$	$\begin{aligned} & \hline 52 \\ & (23.608) \end{aligned}$	$\begin{array}{\|l\|} \hline 16.00 \\ (406.4) \end{array}$	$\begin{array}{\|l\|} \hline 34.38 \\ (873.3) \end{array}$	$\begin{aligned} & 11.50 \\ & (292.1) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.44 \\ (163.6) \end{array}$	$\begin{aligned} & \hline 61 \\ & (27.694) \end{aligned}$
400	$\begin{array}{\|l\|} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{\|l\|} \hline 45.19 \\ (1147.8) \end{array}$	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{aligned} & \hline 7.27 \\ & (184.7) \end{aligned}$	$\begin{aligned} & \hline 120 \\ & (54.48) \end{aligned}$	$\begin{array}{\|l\|} \hline 23.00 \\ (584.2) \end{array}$	$\begin{array}{\|l\|} \hline 57.63 \\ (1463.8) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.63 \\ (320.8) \end{array}$	$\begin{array}{\|l\|} \hline 7.19 \\ (182.6) \end{array}$	$\begin{aligned} & \hline 135 \\ & (61.29) \end{aligned}$
600	$\begin{array}{\|l\|} \hline 24.00 \\ (609.6) \end{array}$	$\begin{array}{\|l\|} \hline 52.70 \\ (1338.6) \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.95 \\ (227.3) \end{array}$	$\begin{aligned} & \hline 153 \\ & (69.462) \end{aligned}$	$\begin{array}{\|l\|} \hline 24.00 \\ (609.6) \end{array}$	$\begin{array}{\|l\|} \hline 63.00 \\ (1600.2) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{aligned} & \hline 203 \\ & (92.162) \end{aligned}$
800	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{array}{\|l\|} \hline 56.69 \\ (1439.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.95 \\ (227.3) \end{array}$	$\begin{aligned} & \hline 168 \\ & (76.272) \end{aligned}$	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{array}{\|l\|} \hline 71.75 \\ (1822.5) \end{array}$	$\begin{array}{\|l\|} \hline 14.25 \\ (362.0) \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{aligned} & \hline 213 \\ & (96.702) \end{aligned}$
1200	$\begin{array}{\|l\|} \hline 41.47 \\ (1053.3) \end{array}$	$\begin{array}{\|l\|} \hline 70.31 \\ (1785.9) \end{array}$	$\begin{array}{\|l\|} \hline 19.94 \\ (506.5) \end{array}$	$\begin{aligned} & \hline 12.44 \\ & (316.0) \end{aligned}$	$\begin{aligned} & \hline 465 \\ & (211.11) \end{aligned}$	$\begin{array}{\|l\|} \hline 41.47 \\ (1053.3) \end{array}$	$\begin{array}{\|l\|} \hline 70.31 \\ (1785.9) \end{array}$	$\begin{aligned} & \hline 19.94 \\ & (506.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 13.51 \\ (343.2) \end{array}$	$\begin{aligned} & \hline 510 \\ & (231.54) \end{aligned}$

Figure 28.0-6. NEMA 1, 3R 30-1200A

Figure 28.0-7. NEMA 4/4X and 12 30-800A

Figure 28.0-8. NEMA 1, 3R 30-800A

Figure 28.0-9. NEMA 12, 4X 30-400A

September 2011
Sheet 28019

Layout-Dimensions

Dimensions (Continued)

Table 28.0-19. Heavy-Duty, Non-Fusible, 240 and 600V, Three-Pole, Double-Throw

Ampere Rating	NEMA 1, 3R					NEMA 12, 4X Stainless Steel				
	Dimensions in Inches (mm)				Weight Lbs (kg)	Dimensions in Inches (mm)				Weight Lbs (kg)
	Width (W)	Height (H)	Depth (D)	Depth (D2)		Width (W)	Height (H)	Depth (D)	Depth (D2)	
30	$\begin{array}{\|l\|} \hline 11.94 \\ (303.3) \end{array}$	$\begin{array}{\|l\|} \hline 24.63 \\ (625.6) \end{array}$	$\begin{array}{\|l\|} \hline 9.88 \\ (251.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.38 \\ (136.7) \end{array}$	$\begin{array}{\|l\|} \hline 34 \\ (15.436) \end{array}$	$\begin{array}{\|l\|} \hline 12.00 \\ (304.8) \end{array}$	$\begin{aligned} & \hline 25.88 \\ & (657.4) \end{aligned}$	$\begin{aligned} & \hline 10.25 \\ & (260.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ (27.24) \end{array}$
60	$\begin{array}{\|l\|} \hline 11.94 \\ (303.3) \end{array}$	$\begin{array}{\|l\|} \hline 24.63 \\ (625.6) \end{array}$	$\begin{array}{\|l\|} \hline 9.88 \\ (251.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.38 \\ (136.7) \end{array}$	$\begin{array}{\|l\|} \hline 34 \\ (15.436) \end{array}$	$\begin{aligned} & \hline 12.00 \\ & (304.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 25.88 \\ (657.4) \end{array}$	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ (27.24) \end{array}$
100	$\begin{array}{\|l\|} \hline 11.94 \\ (303.3) \end{array}$	$\begin{array}{\|l\|} \hline 24.63 \\ (625.6) \end{array}$	$\begin{array}{\|l\|} \hline 9.88 \\ (251.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.38 \\ (136.7) \end{array}$	$\begin{array}{\|l\|} \hline 34 \\ (15.436) \end{array}$	$\begin{array}{\|l\|} \hline 12.00 \\ (304.8) \end{array}$	$\begin{aligned} & \hline 25.88 \\ & (657.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ (27.24) \end{array}$
200	$\begin{array}{\|l\|} \hline 19.56 \\ (496.8) \end{array}$	$\begin{array}{\|l\|} \hline 37.38 \\ (949.5) \end{array}$	$\begin{array}{\|l\|} \hline 11.25 \\ (285.8) \end{array}$	$\begin{array}{\|l\|} \hline 6.10 \\ (154.9) \end{array}$	$\begin{array}{\|l\|} \hline 80 \\ (36.32) \end{array}$	$\begin{aligned} & \hline 19.50 \\ & (495.3) \end{aligned}$	$\begin{aligned} & 41.00 \\ & (1041.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.63 \\ (295.4) \end{array}$	$\begin{array}{\|l\|} \hline 6.48 \\ (164.6) \end{array}$	$\begin{array}{\|l\|} \hline 105 \\ (47.67) \end{array}$
400	$\begin{aligned} & \hline 23.13 \\ & (587.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 53.81 \\ (1366.8) \end{array}$	$\begin{array}{\|l\|} \hline 12.50 \\ (317.5) \end{array}$	$\begin{array}{\|l\|} \hline 7.25 \\ (184.2) \end{array}$	$\begin{aligned} & \hline 140 \\ & (63.56) \end{aligned}$	$\begin{aligned} & \hline 23.00 \\ & (584.2) \end{aligned}$	$\begin{aligned} & 57.50 \\ & (1460.5) \end{aligned}$	$\begin{array}{\|l\|} \hline 12.50 \\ (317.5) \end{array}$	$\begin{array}{\|l\|} \hline 7.25 \\ (184.2) \end{array}$	$\begin{array}{\|l\|} \hline 185 \\ (83.99) \end{array}$
600	$\begin{array}{\|l\|} \hline 24.13 \\ (612.9) \end{array}$	$\begin{array}{\|l\|} \hline 63.31 \\ (1608.1) \end{array}$	$\begin{array}{\|l\|} \hline 14.13 \\ (358.9) \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{aligned} & \hline 175 \\ & (79.45) \end{aligned}$	-	-	-	-	-
800	$\begin{array}{\|l\|} \hline 24.13 \\ (612.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 63.31 \\ (1608.1) \end{array}$	$\begin{array}{\|l\|} \hline 14.13 \\ (358.9) \\ \hline \end{array}$	$\begin{array}{\|l} \hline 8.88 \\ (225.6) \end{array}$	$\begin{array}{\|l\|} \hline 175 \\ (79.45) \\ \hline \end{array}$	-	-	-	-	-
1200	$\begin{array}{\|l\|} \hline 42.15 \\ (1070.6) \end{array}$	$\begin{array}{\|l\|} \hline 78.11 \\ (1984.0) \end{array}$	$\begin{array}{\|l\|} \hline 25.62 \\ (650.7) \end{array}$	$\begin{array}{\|l\|} \hline 20.47 \\ (519.9) \end{array}$	$\begin{array}{\|l\|} \hline 509 \\ (231.09) \\ \hline \end{array}$	-	-	-	-	-

Table 28.0-20. Heavy-Duty, Fusible, 240 and 600V, Three-Pole, Double-Throw

Ampere Rating	NEMA 1, 3R					NEMA 12, 4X Stainless Steel				
	Dimensions in Inches (mm)				Weight Lbs (kg)	Dimensions in Inches (mm)				Weight Lbs (kg)
	Width (W)	Height (H)	Depth (D)	Depth (D2)		Width (W)	Height (H)	Depth (D)	Depth (D2)	
30	$\begin{array}{\|l\|} \hline 11.94 \\ (303.3) \end{array}$	$\begin{aligned} & \hline 36.63 \\ & (930.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.88 \\ (251.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.38 \\ (136.7) \end{array}$	$\begin{array}{\|l\|} \hline 44 \\ (19.976) \\ \hline \end{array}$	$\begin{aligned} & 12.00 \\ & (304.8) \end{aligned}$	$\begin{array}{\|l\|} \hline 39.81 \\ (1011.2) \end{array}$	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{array}{\|l} \hline 5.50 \\ (139.7) \end{array}$	$\begin{aligned} & \hline 45 \\ & (20.43) \end{aligned}$
60	$\begin{array}{\|l\|} \hline 11.94 \\ (303.3) \end{array}$	$\begin{aligned} & \hline 36.63 \\ & (930.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.88 \\ (251.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.38 \\ (136.7) \end{array}$	$\begin{array}{\|l\|} \hline 44 \\ (19.976) \end{array}$	$\begin{aligned} & 12.00 \\ & (304.8) \end{aligned}$	$\begin{aligned} & \hline 39.81 \\ & (1011.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{aligned} & \hline 5.50 \\ & (139.7) \end{aligned}$	$\begin{aligned} & \hline 45 \\ & (20.43) \end{aligned}$
100	$\begin{array}{\|l\|} \hline 11.94 \\ (303.3) \end{array}$	$\begin{aligned} & \hline 36.63 \\ & (930.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 9.88 \\ (251.0) \end{array}$	$\begin{array}{\|l\|} \hline 5.38 \\ (136.7) \end{array}$	$\begin{array}{\|l\|} \hline 44 \\ (19.976) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.00 \\ (304.8) \end{array}$	$\begin{aligned} & 39.81 \\ & (1011.2) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{array}{\|l} \hline 5.50 \\ (139.7) \end{array}$	$\begin{aligned} & \hline 45 \\ & (20.43) \end{aligned}$
200	$\begin{array}{\|l\|} \hline 19.56 \\ (496.8) \end{array}$	$\begin{aligned} & 50.88 \\ & (1292.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.25 \\ (285.8) \end{array}$	$\begin{array}{\|l\|} \hline 6.10 \\ (154.9) \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 95 \\ (43.13) \end{array}$	$\begin{aligned} & 19.56 \\ & (496.8) \end{aligned}$	$\begin{aligned} & 55.63 \\ & (1413.0) \end{aligned}$	$\begin{aligned} & 11.63 \\ & (295.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.46 \\ (164.1) \end{array}$	$\begin{aligned} & 100 \\ & (45.4) \end{aligned}$
400	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{aligned} & \hline 74.75 \\ & (1898.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.13 \\ (358.9) \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{array}{\|l\|} \hline 230 \\ (104.42) \end{array}$	$\begin{array}{\|l\|} \hline 25.38 \\ (644.7) \end{array}$	$\begin{aligned} & \hline 74.75 \\ & (1898.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.13 \\ (358.9) \end{array}$	$\begin{aligned} & \hline 8.92 \\ & (226.6) \end{aligned}$	$\begin{aligned} & \hline 260 \\ & (118.04) \end{aligned}$
600	$\begin{array}{\|l\|} \hline 27.44 \\ (697.0) \end{array}$	$\begin{aligned} & \hline 86.13 \\ & (2187.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 14.13 \\ (358.9) \end{array}$	$\begin{array}{\|l\|} \hline 8.88 \\ (225.6) \end{array}$	$\begin{array}{\|l\|} \hline 320 \\ (145.28) \end{array}$	-	-	-	-	-
800	$\begin{array}{\|l\|} \hline 28.12 \\ (714.2) \end{array}$	$\begin{aligned} & 58.86 \\ & (1495.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 25.62 \\ (650.7) \end{array}$	$\begin{array}{\|l\|} \hline 20.47 \\ (519.9) \end{array}$	$\begin{array}{\|l\|} \hline 282 \\ (128.03) \end{array}$	-	-	-	-	-
1200	$\begin{aligned} & \hline 42.15 \\ & (1070.6) \end{aligned}$	$\begin{aligned} & \hline 78.11 \\ & (1984.0) \end{aligned}$	$\begin{array}{\|l\|} \hline 25.62 \\ (650.7) \end{array}$	$\begin{array}{\|l\|} \hline 20.47 \\ (519.9) \end{array}$	$\begin{array}{\|l\|} \hline 509 \\ (231.09) \end{array}$	-	-	-	-	-

Figure 28.0-10. NEMA 1, 3R 30-1200A

Figure 28.0-11. NEMA 4/4X and 12 30-800A

Figure 28.0-12. NEMA 1, 3R 30-800A

Figure 28.0-13. NEMA 12, 4X 30-400A

Dimensions (Continued)

Figure 28.0-14. Quick-Connect Double-Throw 30/200A—Dimensions in Inches (mm)

Figure 28.0-15. Quick-Connect Double-Throw 400A—Dimensions in Inches (mm)

Figure 28.0-16. Quick-Connect Double-Throw 600-800A—Dimensions in Inches (mm)

September 2011

Dimensions (Continued)

Figure 28.0-17. Quick-Connect Single-Throw 100A—Dimensions in Inches (mm)

Figure 28.0-18. Quick-Connect Single-Throw 200A—Dimensions in Inches (mm)

Switching Devices-Low Voltage Safety Switches

Layout-Dimensions

Dimensions (Continued)

Figure 28.0-19. Quick-Connect Single-Throw 400-600A—Dimensions in Inches (mm)

Figure 28.0-20. Ouick-Connect Single-Throw 800A—Dimensions in Inches (mm)

September 2011

Layout-Dimensions

Dimensions (Continued)

Table 28.0-21. Auxiliary Power Heavy-Duty Safety Switch

Ampere Rating	NEMA 3R				Weight Lbs (kg)
	Dimensions in Inches (mm)				
	Width (W)	Height (H)	Depth (D)	Depth (D2)	
30	26.58	24.93	16.00	11.29	${ }^{(1)}$
	(675.1)	(633.2)	(406.4)	(286.8)	
60	26.58	24.93	16.00	11.29	${ }^{(1)}$
	(675.1)	(633.2)	(406.4)	(286.8)	
100	26.58	24.93	16.00	11.29	${ }^{(1)}$
	(675.1)	(633.2)	(406.4)	(286.8)	

(1) $108 \mathrm{lbs}(49 \mathrm{~kg})$ with a 15 A GFI receptacle; $130 \mathrm{lbs}(59 \mathrm{~kg})$ with a 20 A GFI receptacle.

Table 28.0-22. Elevator Control Switch

Ampere Rating			
	Dimensions in Inches (mm)		
NEMA 1	Width (W)	Height (H)	Depth (D)
30	16.00	20.00	8.63
	(406.4)	(508.0)	(219.2)
60	16.00	20.00	8.63
	(406.4)	(508.0)	(219.2)
100	16.00	20.00	8.63
	(406.4)	(508.0)	(219.2)
200	20.00	30.00	8.63
	(508.0)	(762.0)	$1219.2)$
400	25.21	53.25	12.69
	(640.3)	(1352.6)	(322.3)

NEMA 3R or 12

30	20.00	20.00	8.00
	(508.0)	(508.0)	(203.2)
60	20.00	20.00	8.00
	(508.0)	(508.0)	(203.2)
100	20.00	20.00	$8.00($
	(508.0)	(508.0)	$203.2)$
200	24.00	30.00	8.00
	(609.6)	(762.0)	(203.2)
400	25.21	53.25	12.69
	(640.3)	(1352.6)	(322.3)

Figure 28.0-21. Auxiliary Power Heavy-Duty Switch Diagram

Figure 28.0-22. Elevator Control Switch Diagram

Dimensions (Continued)

Table 28.0-23. NEMA 7/9 Enclosure Sizes

Ampere Rating	Catalog Number	Type	Poles	Voltage	Standard Conduit Size in Inches (mm)	Enclosure Number
30	DS361FX	Fusible (Class J fuse provisions)	3	$\begin{aligned} & 600 \mathrm{Vac} \\ & 125 / 250 \mathrm{Vdc} \end{aligned}$	1.50 (38.1)	1
60	DS362FX				2.00 (50.8)	2
100	DS363FX				2.50 (63.5)	3
30	DS361UX	Non-fusible	3	$\begin{aligned} & 600 \mathrm{Vac} \\ & 125 / 250 \mathrm{Vdc} \end{aligned}$	1.50 (38.1)	1
60	DS362UX				1.50 (38.1)	1
100	DS363UX				2.00 (50.8)	2

Figure 28.0-23. NEMA 7/9-30-100A—Dual 3 and 4 Point Mounting Available as Standard on Enclosures 1 and 2
Table 28.0-24. NEMA 7/9—Dimensions in Inches (mm)

Enclosure Number	Mounting Dimensions			Inside Dimensions		Outside Dimensions			Number of Conduits	K Dimensions	Approximate Weight Lbs (kg)
	A	B	J	C	D	F	G	H			
1	$\begin{array}{\|l\|} \hline 5.50 \\ (139.7) \end{array}$	$\begin{aligned} & \hline 13.13 \\ & (333.5) \end{aligned}$	$\begin{aligned} & 14.13 \\ & (358.9) \end{aligned}$	$\begin{array}{\|l\|} \hline 5.94 \\ (150.9) \end{array}$	$\begin{aligned} & 10.75 \\ & (273.1) \end{aligned}$	$\begin{array}{\|l\|} \hline 10.63 \\ (270.0) \end{array}$	$\begin{aligned} & 15.25 \\ & (387.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.84 \\ (224.5) \end{array}$	$2{ }^{1}$	$\begin{array}{\|l\|} \hline 2.00 \\ (50.8) \end{array}$	$\begin{aligned} & \hline 38 \\ & (17) \end{aligned}$
2	$\begin{array}{\|l\|} \hline 6.00 \\ (152.4) \end{array}$	$\begin{array}{\|l\|} \hline 18.00 \\ (457.2) \end{array}$	$\begin{aligned} & \hline 19.00 \\ & (482.6) \end{aligned}$	$\begin{array}{\|l\|} \hline 6.50 \\ (165.1) \end{array}$	$\begin{aligned} & \hline 16.00 \\ & (406.4) \end{aligned}$	$\begin{array}{\|l\|} \hline 11.00 \\ \text { (279.4) } \end{array}$	$\begin{aligned} & \hline 20.50 \\ & (520.7) \end{aligned}$	$\begin{array}{\|l\|} \hline 8.97 \\ (227.8) \end{array}$	$2{ }^{1}$	$\begin{aligned} & \hline 2.31 \\ & (58.6) \end{aligned}$	$\begin{aligned} & \hline 57 \\ & \text { (26) } \\ & \hline \end{aligned}$
3	$\begin{array}{\|l\|} \hline 10.25 \\ (260.4) \end{array}$	$\begin{array}{\|l\|} \hline 22.63 \\ (574.8) \end{array}$	-	$\begin{array}{\|l\|} \hline 11.75 \\ (298.4) \end{array}$	$\begin{array}{\|l\|} \hline 20.00 \\ (508.0) \end{array}$	$\begin{array}{\|l\|} \hline 16.38 \\ (416.1) \end{array}$	$\begin{array}{\|l\|} \hline 25.13 \\ (638.3) \end{array}$	$\begin{array}{\|l\|} \hline 9.59 \\ (243.6) \end{array}$	$2{ }^{(1)}$	$\begin{aligned} & \hline 3.50 \\ & \text { (88.9) } \end{aligned}$	$\begin{aligned} & \hline 104 \\ & (47) \end{aligned}$

(1) See Table 28.0-23 for threaded conduit sizes, one at top and one at bottom.

Note: Accessories and modifications shown on Pages 28.0-14,
$\mathbf{2 8 . 0} \mathbf{- 1 5}, \mathbf{2 8 . 0 - 3 0}$ and 28.0-31 are not applicable to NEMA 7/9
disconnect switches.

September 2011

Maximum Horsepower Ratings

Table 28.0-25. General-Duty, Fusible and Non-Fusible, 120V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	2	3
60	3	$7-1 / 2$

Table 28.0-26. General-Duty, Fusible and Non-Fusible, 240V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	3	$7-1 / 2$
60	10	15
100	15	30
200	15	60
400	-	125
600	-	200

Table 28.0-27. Heavy-Duty, Non-Fusible, 120V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	2	5
60	3	10

Table 28.0-28. Heavy-Duty, Fusible, 240V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	3	$7-1 / 2$
60	10	15
100	15	30
200	15	60
400	-	125
600	-	200
800	-	250

Table 28.0-29. Heavy-Duty, Fusible, 480V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	$7-1 / 2$	15
60	20	30
100	30	60
200	50	125
400	-	250
600	-	400
800	-	500

Table 28.0-30. Heavy-Duty, Fusible, 600V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	10	20
60	25	50
100	40	75
200	50	150
400	-	350
600	-	500
800	-	500

Table 28.0-31. Heavy-Duty, Non-Fusible, 240V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	3	10
60	10	20
100	20	40
200	15	60
400	-	125
600	-	200
800	-	-

Table 28.0-32. Heavy-Duty, Non-Fusible, 480V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	$7-1 / 2$	20
60	20	50
100	40	75
200	50	125
400	-	250
600	-	400
800	-	500

Table 28.0-33. Heavy-Duty, Non-Fusible, 600V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	10	30
60	25	60
100	50	100
200	50	150
400	-	350
600	-	500
800	-	500

Table 28.0-34. Double Throw, Fusible, 240V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	3	$7-1 / 2$
60	10	15
100	15	30
200	15	60
400	-	125
600 (1)	-	50

(1) Only available for use with fast acting fuses. Standard hp rating is shown.

Table 28.0-35. Double Throw, Fusible, 480V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	$7-1 / 2$	15
60	20	30
100	30	60
200	50	125
400	-	250

Note: Ratings are based on three-pole designs.

Maximum Horsepower Ratings

Table 28.0-36. Double-Throw, Fusible, 600V with Time Delay Fuses

Ampere Rating	Single-Phase AC	Three-Phase AC
30	10	20
60	25	50
100	40	75
200	50	150
400	-	350

Table 28.0-37. Double-Throw, Non-Fusible, 120V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	2	5
60	3	10

Table 28.0-38. Double-Throw, Non-Fusible, 240V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	3	10
60	10	20
100	20	40
200	15	60
400	-	125
600	-	125
800	-	125

Table 28.0-39. Double-Throw, Non-Fusible, 480V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	$7-1 / 2$	20
60	20	50
100	40	75
200	50	125
400	-	250
600	-	250
800	-	250

Table 28.0-40. Double-Throw, Non-Fusible, 600V

Ampere Rating	Single-Phase AC	Three-Phase AC
30	10	30
60	25	60
100	50	100
200	50	150
400	-	350
600	-	350
800	-	350

Table 28.0-41. Heavy-Duty, Non-Fusible, 480V, 600V Types 7 and 9

Ampere Rating	Three-Phase, 480V AC	Three-Phase, 600V AC
30	20	20
60	40	50
100	75	75
200	125	150

Table 28.0-42. Heavy-Duty, Fusible, 480V, 600V Types 7 and 9 with Time Delay Fuses

Ampere Rating	Three-Phase, 480V AC	Three-Phase, 600V AC
30	15	20
60	30	50
100	60	75
200	125	150

Note: Ratings are based on three-pole designs.

September 2011

Technical Data-Short-Circuit Ratings

General-Duty

Table 28.0-43. Short-Circuit Ratings Using Class "R," "J" or "T" Fusing where Applicable

Ampere Rating	Short-Circuit Ratings (Amperes)	
	Type 1	Type 3R
30	100 k at 240V	100 k at 240 V
60	100 k at 240 V	100 k at 240 V
100	100 k at 240 V	100 k at 240 V
200	100 k at 240 V	10 k at 240 V
400	100 k a 2 250V	10 k at 250 V
600	100 k at 250 V	100 k at 250 V

Note: Class "H" fuse clips supplied as standard for 30-600A. Rated at $10,000 \mathrm{rms}$ symmetrical when using class " H " fuses.

Heavy-Duty

Table 28.0-44. Short-Circuit Ratings Using Class "R," " J" or "T" Fusing where Applicable

Ampere Rating	Short-Circuit Ratings (Amperes)			
	Type 1	Type 3R	Type 12	Type 4 and 4X
30	200k at 600V	200 k at 600V	200k at 600V	200k at 600V
60	200 k at 600 V	200 k at 600V	200k at 600V	200 k at 600V
100	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	200k at 600V	200k at 600V
200	200k at 600V	200 k at 600V	200k at 600V	200k at 600V
400	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$
600	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \text { 200k at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$
$800{ }^{1}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 200 \mathrm{k} \text { at } 480 \mathrm{~V} \\ & 100 \mathrm{k} \text { at } 600 \mathrm{~V} \end{aligned}$
$1200{ }^{(1)}$	200 k at 600V	200k at 600V	200k at 600V	200k at 600V

(1) Class "L" fuse connectors supplied as standard for 800A and 1200A.

Note: Class " H " fuse clips supplied as standard for 30-600A. Rated at 10,000A rms symmetrical when using Class " H " fuses.

Short-Circuit Ratings of Non-Fusible Switches

The UL listed short-circuit ratings for Eaton's non-fusible switches are based on the switches being properly protected by overcurrent protective devices. For applications that require a UL listed short-circuit rating of $10,000 \mathrm{rms}$ symmetrical amperes or less, an Eaton non-fusible switch must be properly protected by any overcurrent protective device rated no greater than the ampere rating of the switch. For applications that require a UL listed short-circuit rating of greater than $10,000 \mathrm{rms}$ symmetrical amperes, an Eaton non-fusible switch must be properly protected by the appropriate class and size fusing noted. Otherwise, this non-fusible switch must be replaced with an Eaton fusible switch that uses the appropriate fusing required. Moldedcase circuit breaker protection of non-fusible Eaton switches for applications that require a short-circuit rating of greater than $10,000 \mathrm{rms}$ symmetrical amperes has been evaluated and is summarized below. Refer to the reference tables for typical Eaton fusible switch UL listed short-circuit ratings.
Table 28.0-46. UL Recognized Safety Switch/Circuit Breaker Series-Connected Ratings

Safety Switch Ampere Rating	Maximum System Voltage AC	Circuit Breaker Maximum Short Circuit Rating (rms Symmetrical)	Circuit Breaker Frame(s)
$\begin{aligned} & 30 \text { and } \\ & 60 \end{aligned}$	600	$\begin{aligned} & \hline 25,000 \\ & 18,000 \\ & 14,000 \end{aligned}$	$\begin{aligned} & \text { FDC, HFD, HFDE, EGH } \\ & \text { FD, EGE } \\ & \text { FDB } \end{aligned}$
100	600	$\begin{array}{\|l\|} \hline 25,000 \\ 18,000 \\ 14,000 \\ \hline \end{array}$	$\begin{aligned} & \text { FDC, HFD, HFDE, EGH } \\ & \text { FD, EGE } \\ & \text { FDB } \end{aligned}$
	480	35,000	EGH, EGS
200	600	$\begin{array}{\|l\|} \hline 25,000 \\ 18,000 \\ 14,000 \\ \hline \end{array}$	$\begin{aligned} & \text { FDC, HFD, HFDE, HJD, JGH } \\ & \text { FD, JD, JGE } \\ & \text { FDB } \end{aligned}$
	480	65,000	HFD, HFDE, HJD, JGH

Double Throw

Table 28.0-45. Short-Circuit Ratings Using Class "R," " J " or "T" Fusing where Applicable

Ampere Rating	Short-Circuit Ratings (Amperes) (600V)			
	Type 1	Type 3R	Type 12	Type 4 and 4X
30	100k	100k	100k	100k
60	100k	100k	100k	100k
100	100k	100k	100k	100k
200	100k	100k	100k	100k
400	100k	100k	100k	100k
600	100k	100k	100k	100k
800	100k	100k	-	-
1200	100k	100k	-	-

Note: Class "H" fuse clips supplied as standard for 30-600A, except Class "T" for 400A at 600V and 600A at 240V. Rated at 10,000A rms symmetrical when using class " H " fuses.
Note: Class "L" fuse connectors supplied as standard for 800A and 1200A.
Note: Safety switch short-circuit ratings are applicable to AC only. Note: Safety switch $I^{2} t$ and $I p$ values are identical to UL maximum acceptable $\mathrm{I}^{2} \mathrm{t}$ and Ip values for the corresponding class fuse.
Note: Table 28.0-45 is not applicable to the compact design shown in Eaton's Volume 2-Commercial Distribution, CA08100003E, Tab 8, Section 8.1. The compact design is suitable for use on a circuit capable of delivering not more than $10,000 \mathrm{rms}$ symmetrical amperes.

Typical Fuse Dimensions

Low-Peak and Limitron Fuses
KRP-C, KTU \& KLU (601-4000A) (600V)

Figure 28.0-24. Typical Fuse Dimensions in Inches
Note: For typical fuse dimensions in millimeters, see Figure 28.0-25 on Page 28.0-29.

September 2011
Sheet 28029

Typical Fuse Dimensions (Continued)

Figure 28.0-25. Typical Fuse Dimensions in Millimeters
Note: For typical fuse dimensions in inches, see Figure 28.0-24 on Page 28.0-28.

Flex Center

Introduction

The Safety Switch Flex Center is a special facility at the site of Eaton's Cleveland, Tennessee, plant that is dedicated to providing customized safety switches that meet customer's challenging applications.

Eaton's Safety Switch Flex Center is a solutions center that provides real value:

- A dedicated and knowledgeable engineering/manufacturing/customer service team to meet your needs
- A production facility stocked with a full array of equipment to get the job done
- The industry's shortest lead time
- Easy ordering through our distributors

Description (Suffix) Item
Phenolic Nameplates (NP) 1
Fungus Proofing (FP) 2
Special Paint 3
Lock-On Provisions on
Heavy-Duty Safety Switches for Most Enclosure Types (LO) 4
Trapped Key Interlock
Systems (TK)....................... . . . 5
Upper Cover Viewing Window (W) . . 6
Lower Cover Viewing Window (LW). . 7
Neutral Assemblies Factory
Installed for Double-Throw
Safety Switches (N)8

Class "R" Fuse Clips Factory
Installed for Heavy-Duty
Switches (5 or 6) 9
Class "T" Fuse Clips Factory
Installed for Heavy-Duty
Switches (T)10

Class "J" Fuse Clips Factory
Installed for Heavy-Duty and
Double-Throw Safety Switches (J) . 11
Fuse Pullers Factory Installed (FE) . . 12
Special Crimp Lug Pads Factory
Installed for General-Duty and
Heavy-Duty Switches (CK) 13
Copper Lugs Factory
Installed (CL) 14

Equipment Ground Lugs
Factory Installed (G) 15
Custom Lug Configurations (L) . . . 16
Auxiliary Contacts Factory
Installed (2 or 3) 17

Control Pole Factory Installed (CP). . 18

Switching Neutral
Double-Throw (SN)19

Neutral Assemblies Factory Installed for Single-Throw Non-Fusible Safety Switches (N) . . . 20

1. Nameplates

Price covers up to three lines of text with a maximum of 25 characters per line. Standard nameplates are laserengraved plastic and have black letters on a white background. Rotary-engraved phenolic nameplates are also available at a premium. Additional color combinations and larger nameplates are available. Customer must specify the text when placing an order.

2. Fungus Proofing

All non-metallic components of the switch are coated with a moisture and fungus-resistant varnish. The inhibitor used meets military specification: MIL-V-173C for MOISTURE AND FUNGUS-RESISTANT TREATMENT. The treated switch meets military specification: MIL-T-152E for MOISTURE AND FUNGUS-RESISTANT TREATMENT OF COMMUNICATIONS, ELECTRONICS AND ASSOCIATED EQUIPMENT. Not UL listed.
To specify, add Suffix FP to standard safety switch catalog number. Example: DH363FGKFP.

3. Special Paint

Special paint colors are available for order quantities of five or more switches. Colors available are red, orange, yellow, green, black and white. Custom color is applied over the standard ANSI-61 gray finish.
Minimum quantity of five of the same color is required. To specify, add Suffix LO to the standard catalog number.

For quantities less than five, higher ampere ratings, or other color request, contact the Safety Switch Flex Center.

4. Lock-on Provisions on Heavy-Duty

 Safety Switches for Most Enclosure Types Available on 30-800A Heavy-Duty and Double-Throw Safety Switches. Provision will accept a single lock. To specify, add Suffix LO to the standard catalog number.
5. Trapped Key Interlock Systems

Available only on Heavy-Duty and Double-Throw Safety Switches. Trapped Key Systems are used on safety switches to prevent unauthorized operations or to predetermine a series of power transfers by an authorized operator.

Before system construction can begin, the following information must be provided to the Flex Center:

1. User-name, address and telephone number.
2. Complete coordination (lock scheme) required with order.
To specify, add Suffix TK to the standard catalog number.

6. Upper Cover Viewing Window

Upper Viewing Window is Centered over the switching contacts to provide visual verification of ON/OFF status. Available on most Heavy-Duty NEMA 4X Stainless Steel and NEMA 12 DoubleThrow enclosures. Not available on nonmetallic enclosures. To specify, add Suffix W to the standard catalog number.

Note: $30-100 \mathrm{~A}$ switches are now provided with a full view cover window for blade verification and blown fuse indication.

7. Lower Cover Viewing Window

Lower Viewing Window is positioned over fuses and provides visual verification of Blown Fuse Indicators. Available in 30-600A, two- and threepole Heavy-Duty NEMA 12, NEMA 3R and NEMA 4X Stainless Steel Safety Switches. Not available on nonmetallic enclosures. To specify, add Suffix LW to standard catalog number.

Note: 30-100A switches are now provided with a full view cover window for blade verification and blown fuse indication.

8. Neutral Assemblies Factory Installed for Double-Throw Safety Switches

To specify, add Suffix \mathbf{N} to the standard safety switch catalog number.

Example: DT361URKN

9. Class "R" Fuse Clips Factory Installed for

 Heavy-Duty SwitchesTo specify, add Suffix 5 to the standard catalog number for 240 V application.
Add Suffix 6 to standard catalog number for 600 V application.

Example: DH324FRK5

10. Class " T " Fuse Clips Factory Installed

 for Heavy-Duty SwitchesTo specify, add Suffix T to the standard catalog number (catalog number identifies voltage).

Example: DH364FGKT

September 2011
Sheet 28031
11. Class "J" Fuse Clips Factory Installed for Heavy-Duty and Double-Throw Safety Switches
To specify by description. A table of common 30A heavy-duty switches with " J " fuse clips factory installed is shown below (field modification kits are not available for 30A Heavy-Duty Switches).

Table 28.0-47. Common 30A Heavy-Duty Switches with "J" Fuse Clips Factory Installed

Voltage	Switch Type Three-Pole	Catalog Number
240	NEMA 1 NEMA 3R NEMA 12 NEMA 4X	DH321FGKJ DH321FRKJ DH321FDKJ DH321FWKJ
600	NEMA 1 NEMA 3R	DH361FGKJ DH361FRKJ NEMA 12
	NEMA 4X	DH361FDKJ
DH361FWKJ		

To specify, add Suffix J to the standard catalog number (catalog number identifies voltage).

Example: DH363FGKJ

12. Fuse Pullers Factory Installed

To specify, add Suffix FE to the standard catalog number.

Example: DH361FRKFE.

Note: Standard NEMA 12/3R, 4 and 4X switches through 200A are supplied with fuse pullers from the factory.
13. Special Crimp Lug Pads Factory Installed for General-Duty and Heavy-Duty Switches (Crimp Lugs are Not Included)
To specify add Suffix CK to the standard safety switch catalog number.

Heavy-Duty Type DH Switches, 30-200A, are adaptable to crimp lugs; simply remove the box lugs.

14. Copper Lugs Factory Installed

To specify, add Suffix CL to the standard safety switch catalog number.

Example: DH221FGKCL

15. Equipment Ground Lugs Factory Installed for General-Duty and Heavy-Duty Switches
To specify, add Suffix G to the standard safety switch catalog number.

16. Custom Lug Configurations

Customer-specified lug arrangements are available on heavy-duty and doublethrow safety switches. Contact the Safety Switch Flex Center for price and lead time.

17. Auxiliary Contacts Factory Installed

 Provide Early-Make/Early-Break Operation To specify 1NO/1NC contacts, add Suffix 2 to the standard safety switch catalog number.To specify 2NO/2NC contacts, add Suffix 3 to the standard safety switch catalog number.

Example: DH423FGK2

Example: DT324FGK22

18. Control Pole Factory Installed Provides Late-Make/Early-Break Operation

The K-Series Control Pole provides one Normally Open contact, latemake, early-break operation. It mounts in the exact location as the neutral block using the same pre-drilled holes. This is directly connected to the power pole operating shaft. Direct connection and visible blades provide more secure electrical interlocking than handle linkage operation of a snap/ switch type interlock. This reliability meets the requirements of many specifications for four-pole switches when the fourth pole is required for secure electrical interlocking.
To specify, add Suffix CP to the standard Safety Switch catalog number.

Example: DH267FGKCP

19. Switching Neutral Double-Throw

UL listed for three-pole and four-pole non-fusible double-throw safety switches. Switching neutrals are required for separately derived systems when bonding the neutral of the generator to a grounding system at the generator.
To specify, add Suffix SN to the standard safety switch catalog number.

Example: DT324URKSN

20. Neutral Assemblies Factory Installed for Single-Throw Non-Fusible Safety Switches
Available on 200-600A General-Duty Safety Switches and 30-1200A HeavyDuty Safety Switches.

To specify, add Suffix \mathbf{N} to the standard Safety Switch Catalog Number.

Example: DH364UWKN

For application, availability or pricing questions, contact Eaton.

Additional Safety Switch Flex Center Design Offerings

- Left-hand design (30-200A)
- Cover-mounted status lights and selector switches
- Integrated:
- Surge protection devices (SPDs)
- Current transformers

■ Double-throw receptacle switches

- 200\% neutrals

■ 1200A NEMA 4X stainless steel
■ Seam-welded stainless steel
■ Gang-operated kits:

- Mechanically interlocks two or three separate switches
- Cam-Lok receptacles

■ Reverse feed
■ Integrated wattmeter

- Custom enclosures
- Double-throw switches with windows
- 316 Grade stainless steel

Mill duty

Literature

The Safety Switch Flex Center's innovative approach to flexible engineering, manufacturing and customer service provides the shortest production, design and delivery cycle in the industry. Find out more about how the Safety Switch Flex Center can give you the safety switch solutions you need...when you need them.

September 2011 Sheet 28032

This page intentionally left blank.

[^0]: (3) 800A upper window switches are not UL listed.
 (4) Lower window switches are available through 600 A .
 (5) NEMA Type 12 enclosures (30-800A) can be field modified to meet NEMA 3R rainproof requirements when a factory provided drain screw is removed.

[^1]: Note: Accessories are not applicable to NEMA 7/9 switches.

