

Description:

High power NPN silicon power transistors.

These devices are designed for linear amplifiers, series pass regulators, and inductive switching applications.

Features:

- Forward biased second breakdown current capability $I_{S/b}$ = 2.5A DC at V_{CE} = 60V DC
- · Pb-free packages

Maximum Ratings

Rating	Symbol	2N3772	Unit	
Collector-Emitter Voltage	V _{CEO}	60	V DC	
Collector-Emitter Voltage	V _{CEX}	80		
Collector-Base Voltage	V _{CB}	100		
Emitter-Base Voltage	V _{EB}	7		
Collector Current - Continuous - Peak	I _C	20 30	A DC	
Base Current - Continuous - Peak	I _B	5 15		
Total Device Dissipation at T _C = 25°C Derate above 25°C	P _D	150 0.855	W W/°C	
Operating and Storage Junction Temperature Range	T _{J,} T _{stg}	-65 to +200	°C	

Thermal Characteristics

Characteristic	Symbol	Max.	Unit
Thermal Resistance Junction to Case	R _{jc}	1.17	°C/W

Stresses exceeding maximum ratings may damage the device. Maximum ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to stresses above the recommended operating conditions may affect device reliability.

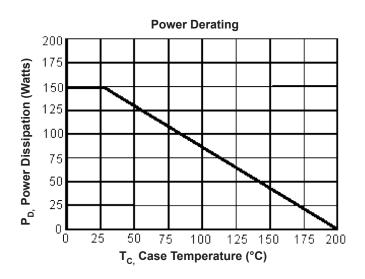
1. Indicates JEDEC registered data.

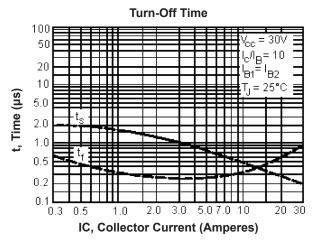
multicomp

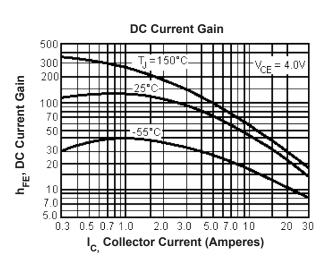
Electrical Characteristics (TC = 25°C unless otherwise noted)

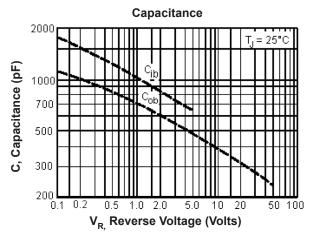
Characteristic	Symbol	Min.	Max.	Unit
Off Characteristics			· 	
Collector-Emitter Sustaining Voltage (Note 2 and 3) $(I_C = 0.2 \text{ A DC}, I_B = 0)$	V _{EO (sus)}	60	-	V DC
Collector-Emitter Sustaining Voltage (I_C = 0.2A DC, $V_{EB (off)}$ = 1.5 V DC, R_{BE} = 100 Ω)	V _{CEX (sus)}	80	-	
Collector-Emitter Sustaining Voltage (I_C = 0.2A DC, R_{BE} = 100 Ω)	V _{CER (sus)}	70	-	
Collector Cut off Current (Note 2) $(V_{CE} = 50V DC, I_B = 0)$ $(V_{CE} = 25VDC, I_B = 0)$	I _{CEO}	-	10	
Collector Cut off Current (Note 2) $(V_{CE} = 100V DC V_{EB (off)} = 1.5V DC)$ $(V_{CE} = 45V DC, V_{EB (off)} = 1.5V DC, T_{C} = 150^{\circ}C$	I _{CEV}	-	5 10	mA DC mA DC
Collector Cut off Current (Note 2) (VCB = 100V DC, IE = 0)	I _{CBO}	-	5	
Emitter Cut off Current (Note 2) (VBE = 7V DC, IC = 0)	I _{EBO}	-	5	
On Characteristics (Note 2)				•
DC Current Gain (Note 3) (I _C = 10A DC, V _{CE} = 4V DC) (I _C = 20A DC, V _{CE} = 4V DC)	h _{FE}	15 5	60 -	-
Collector-Emitter Saturation Voltage ($I_C = 10A DC$, $I_B = 1A DC$) ($I_C = 20A DC$, $I_B = 4A DC$)	V _{CE (sat)}	-	1.4 4	V DC
Base-Emitter on Voltage (I _C = 10A DC, V _{CE} = 4V DC) (I _C = 8A DC, V _{CE} = 4V DC)	V _{BE (on)}	-	2.2	
ynamic Characteristics (Note 2)				•
Current-Gain - Bandwidth Product $(I_C = 1A DC, V_{CE} = 4V DC, f_{test} = 50kHz)$	f _T	0.2	-	MHz
Small-Signal Current Gain (I _C = 1A DC, V _{CE} = 4V DC, f = 1kHz)	h _{fe}	40	-	-
econd Breakdown				
Second Breakdown Energy with Base Forward Biased, t = 1s (non-repetitive)	I _{S/b}	2.5	-	A DC

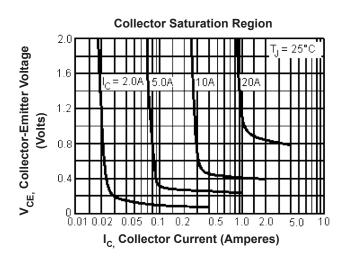
Second Breakdown Energy with Base Forward Biased, $t = 1s$ (non-repetitive) ($V_{CE} = 60V DC$)	I _{S/b}	2.5	-	A DC
---	------------------	-----	---	------

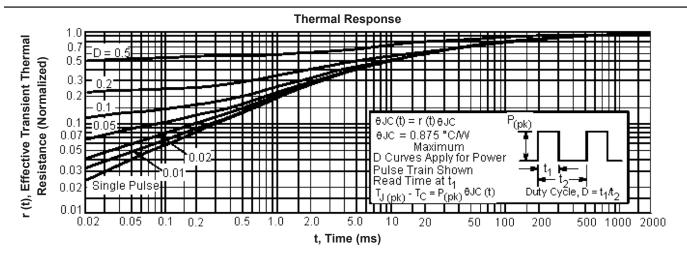

^{2.} Indicates JEDEC registered data


^{3.} Pulse Test: 300µs, Rep. Rate 60cps



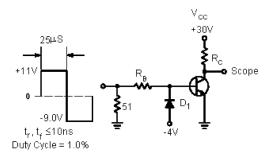






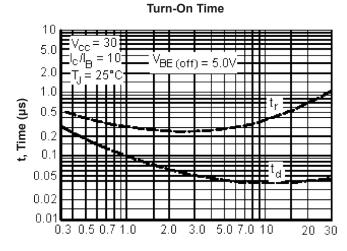


Active-Region Safe Operating Area


V_{CE}, Collector-Emitter Voltage (Volts)

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{\rm c} - V_{\rm CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

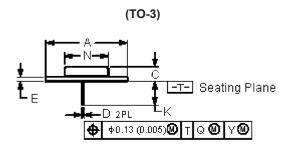
Is based on JEDEC registered data. Second breakdown pulse limits are valid for duty cycles to 10% provided $\rm T_{J\,(pk)}$ < 200°C.

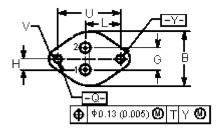

 $T_{J\,(pk)}$ may be calculated from the data of using data of and the pulse power limits of Figure 3, $T_{J}\,(pk)$ will be found to be less than $T_{J\,(max)}$ for pulse widths of 1ms and less. When using ON Semiconductor transistors, it is permissible to increase the

pulse power limits until limited by $T_{J\,(max.)}$

RB and RC are varied to obtain desired current levels
D1 must be fast recovery type, e.g.:
1N5825 used above IB to 100mA
MSD6100 used below IB to 100mA

Switching Time Test Circuit


IC, Collector Current (Amperes)


www.element14.com www.farnell.com www.newark.com

Dimensions

Pin Configuration

Pin 1. Base

2. Emitter Collector (Case)

Dimensions	Min.	Max.	
Α	1.55 (39.37) Reference		
В	-	1.05 (26.67)	
С	0.25 (6.35)	0.335 (8.51)	
D	0.038 (0.97)	0.043 (1.09)	
E	0.055 (1.4)	0.07 (1.77)	
G	0.43 (10.92) BSC		
Н	0.215 (5.46) BSC		
K	0.44 (11.18)	0.48 (12.19)	
L	0.665 (16.89) BSC		
N	-	0.83 (21.08)	
Q	0.151 (3.84)	0.165 (4.19)	
U	1.187 (30.15) BSC		
V	0.131 (3.33)	0.188 (4.77)	

Dimensions: Inches (Millimetres)

Part Number Table

Description	Part Number		
Transistor, NPN, TO-3	2N3772		

Important Notice: This data sheet and its contents (the "Information") belong to the members of the Premier Farnell group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp is the registered trademark of the Group. © Premier Farnell plc 2012.

www.element14.com www.farnell.com www.newark.com

