

FGA60N60UFD 600 V, 60 A Field Stop IGBT

Features

- · High Current Capability
- Low Saturation Voltage: V_{CE(sat)} = 1.9 V @ I_C = 60 A
- High Input Impedance
- · Fast Switching
- RoHS Compliant

Applications

• Solar Inverter, UPS, Welder, PFC

General Description

Using novel field stop IGBT technology, Fairchild®'s field stop IGBTs offer the optimum performance for solar inverter, UPS, welder and PFC applications where low conduction and switching losses are essential.

Absolute Maximum Ratings

Symbol	Description	Ratings	Unit	
V _{CES}	Collector to Emitter Voltage		600	V
V _{GES}	Gate to Emitter Voltage		± 20	V
I _C	Collector Current	@ T _C = 25 ^o C	120	А
ις.	Collector Current	@ T _C = 100°C	60	А
I _{CM (1)}	Pulsed Collector Current	@ T _C = 25 ^o C	180	А
P _D	Maximum Power Dissipation	@ T _C = 25°C	298	W
' D	Maximum Power Dissipation	@ T _C = 100°C	119	W
TJ	Operating Junction Temperature		-55 to +150	°C
T _{stg}	Storage Temperature Range		-55 to +150	°C
TL	Maximum Lead Temp. for soldering Purposes, 1/8" from case for 5 seconds		300	°C

Notes: 1: Repetitive test , Pulse width limited by max. junction temperature

Thermal Characteristics

Symbol	Parameter	Тур.	Max.	Unit
$R_{\theta JC}(IGBT)$	Thermal Resistance, Junction to Case	-	0.33	°C/W
$R_{\theta JC}$ (Diode)	Thermal Resistance, Junction to Case	-	1.1	°C/W
R _{0JA}	Thermal Resistance, Junction to Ambient	-	40	°C/W

April 2013

					Packaging			Мах	c Qty
Device N	-		Ackage Packaging Type Type Tube		Qtv pe	er Tube	per Box		
					30ea		-		
Electric	al Cha	racteristics of t	he IQ	GBT T _C = 25	5°C unless otherwise noted				
Symbol		Parameter		Test Conditions		Min.	Тур.	Max.	Unit
Off Charac	teristics								
BV _{CES}	Collector to Emitter Breakdown Voltage		V _{GE} = 0V, I _C = 250μA		600	-	-	V	
$\frac{\Delta BV_{CES}}{\Delta T_{J}}$	Temperat Voltage	emperature Coefficient of Breakdown		V _{GE} = 0V, I _C	V _{GE} = 0V, I _C = 250μA		0.67	-	V/ºC
I _{CES}	Collector	Cut-Off Current		V _{CE} = V _{CES} ,	V _{CE} = V _{CES} , V _{GE} = 0V		-	250	μA
I _{GES}	G-E Leak	age Current		V _{GE} = V _{GES}	-	-	-	±400	nA
On Charac	teristics								1
V _{GE(th)}		E Threshold Voltage		I _C = 250μA,	V _{CE} = V _{GE}	4.0	5.0	6.5	V
				I _C = 60A, V _{GE} = 15V		-	1.9	2.4	V
V _{CE(sat)}	Collector to Emitter Saturation Voltage		$I_{C} = 60A, V_{GE} = 15V,$ $T_{C} = 125^{\circ}C$		-	2.1	-	V	
Dynamic C	haracteris	atics							
C _{ies}	Input Capacitance			V _{CE} = 30V, V _{GE} = 0V, f = 1MHz		-	2855	-	pF
C _{oes}	Output Ca	out Capacitance erse Transfer Capacitance				-	325	-	pF
C _{res}	Reverse ⁻					-	110	-	pF
Switching (Istics Delay Time					23		ns
t _{d(on)} t _r	Rise Time		-		-	58		ns	
t _{d(off)}		Delay Time		- 	1 - 604	-	130		ns
t _f	Fall Time			$\label{eq:V_CC} \begin{array}{l} V_{CC} = 400 V, \ I_C = 60 A, \\ R_G = 5 \Omega, \ V_{GE} = 15 V, \\ Inductive \ Load, \ T_C = 25^o C \end{array}$		-	40	80	ns
E _{on}		Switching Loss				-	1.81	-	mJ
E _{off}		Switching Loss			_	0.81	_	mJ	
E _{ts}		tching Loss		-		-	2.62	-	mJ
t _{d(on)}		Delay Time				-	22	-	ns
t _r	Rise Time	 e		-		-	61	-	ns
t _{d(off)}	Turn-Off	Delay Time		V _{CC} = 400V	I _C = 60A.	-	141	-	ns
t _f	Fall Time			$R_G = 5\Omega$, $V_{GE} = 15V$, Inductive Load, $T_C = 125^{\circ}C$	-	63	-	ns	
E _{on}	Turn-On	Switching Loss			-	1.92	-	mJ	
E _{off}	Turn-Off	Switching Loss		1		-	1.23	-	mJ
E _{ts}	Total Swi	tching Loss		1		-	3.15	-	mJ
Qg	Total Gat	e Charge				-	188	-	nC
Q _{ge}	Gate to E	mitter Charge		$V_{CE} = 400V_{CE}$	I _C = 60A,	-	21	-	nC
Q _{gc}	Gate to Collector Charge			V _{GE} = 15V		-	97	-	nC

Symbol	Parameter Test Conditions			Min.	Тур.	Мах	Unit
V _{FM} Diode Forward Voltage	Diode Forward Voltage	I _F = 30A	T _C = 25°C	-	2.0	2.6	v
		T _C = 125 ^o C	-	1.8	-	1	
t _{rr}	Diode Reverse Recovery Time	I _{ES} = 30A, dI _{ES} /dt = 200A/μs	T _C = 25°C	-	47	-	ns
fr.			T _C = 125°C	-	179	-	
Q _{rr}	rr Diode Reverse Recovery Charge		T _C = 25°C	-	83	-	nC
			T _C = 125 ^o C	-	567	-	

E

Typical Performance Characteristics

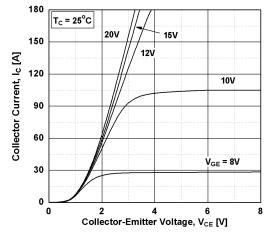


Figure 3. Typical Saturation Voltage Characteristics

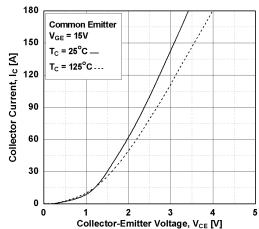


Figure 5. Saturation Voltage vs. Case Temperature at Variant Current Level

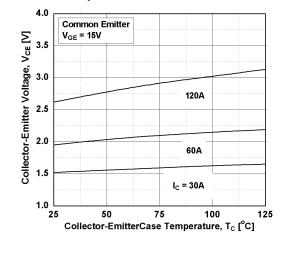
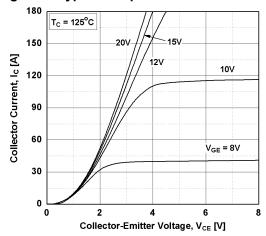



Figure 2. Typical Output Characteristics

Figure 4. Transfer Characteristics

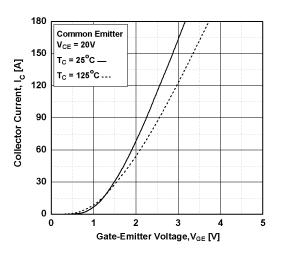
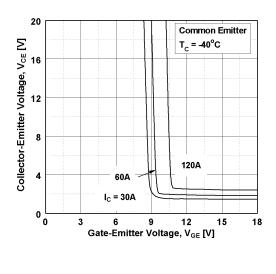
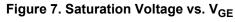




Figure 6. Saturation Voltage vs. V_{GE}

©2009 Fairchild Semiconductor Corporation FGA60N60UFD Rev. C0

Typical Performance Characteristics

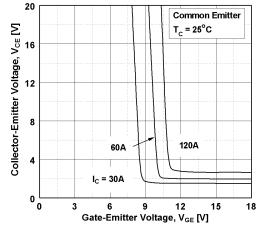
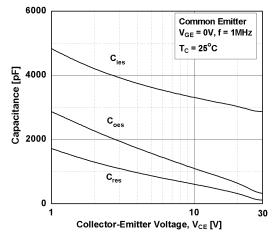



Figure 9. Capacitance Characteristics

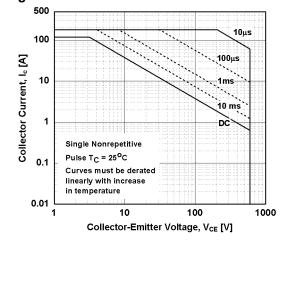


Figure 8. Saturation Voltage vs. V_{GE}

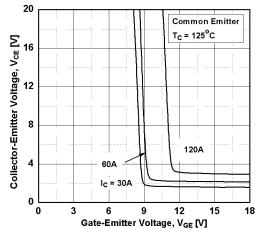


Figure 10. Gate charge Characteristics

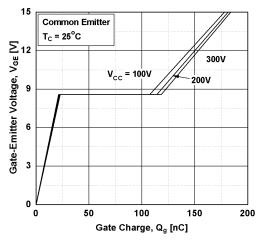
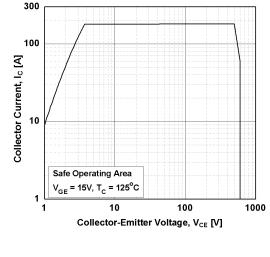



Figure 12. Turn off Switching SOA Characteristics

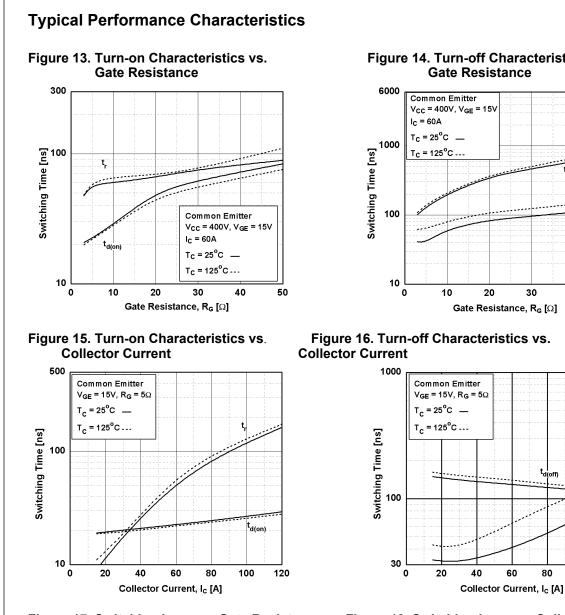


Figure 17. Switching Loss vs. Gate Resistance

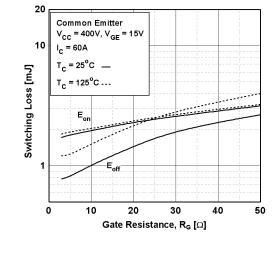


Figure 18. Switching Loss vs. Collector Current

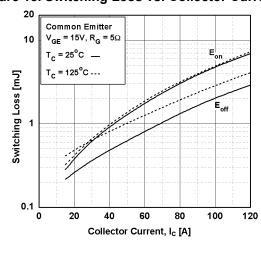
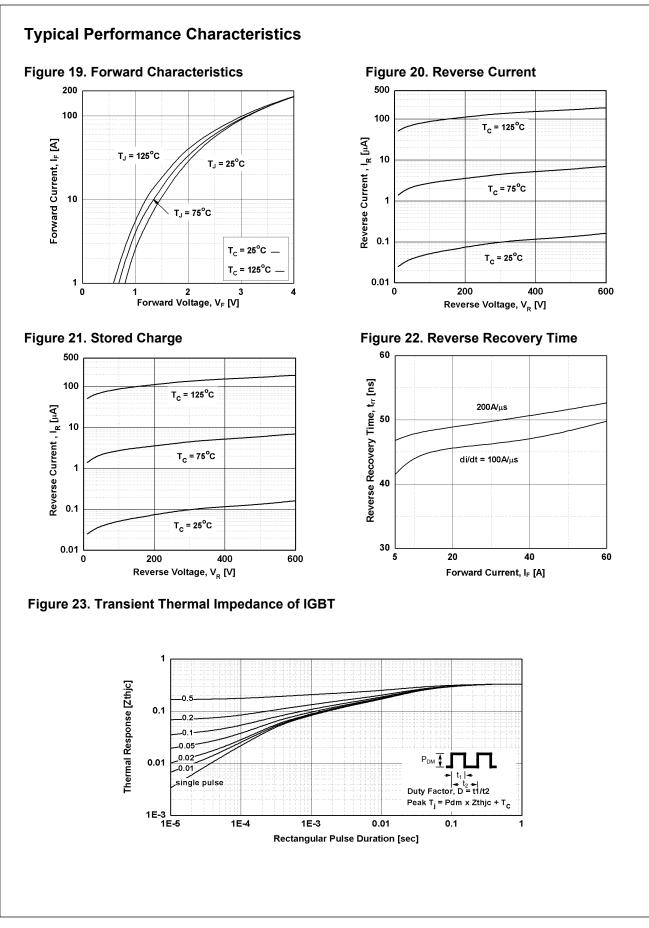
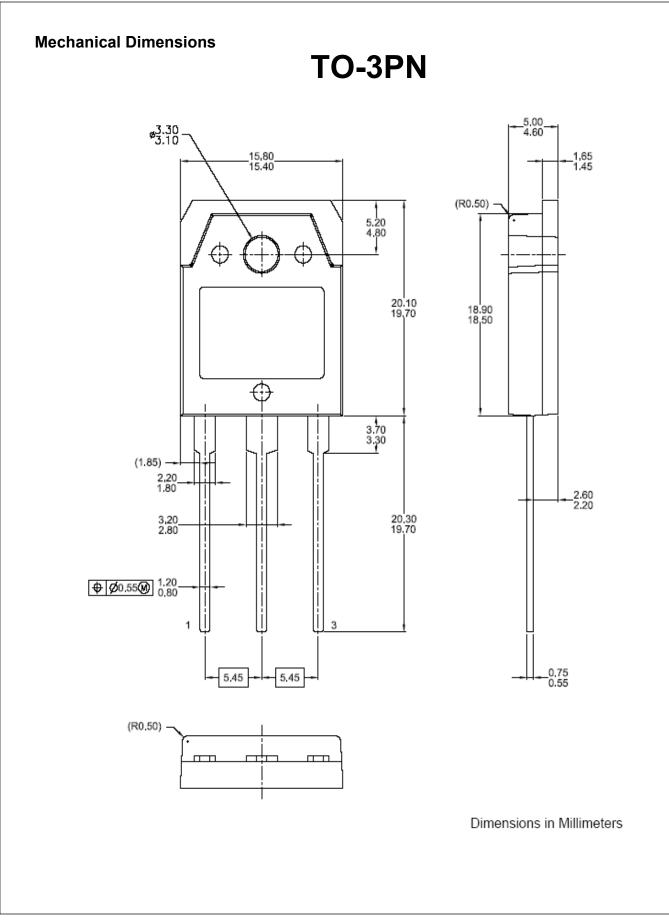


Figure 14. Turn-off Characteristics vs.


40


t,

100

120

50

FAIRCHIL

SEMICONDUCTOR

TRADEMARKS

The following includes registered and unregistered trademarks and service marks, owned by Fairchild Semiconductor and/or its global subsidiaries, and is not intended to be an exhaustive list of all such trademarks.

®

2Cool™ AccuPower™ AX-CAP[®]* BitSiC™ Build it Now™ CorePLUS™ CorePOWER™ CROSSVOLT™ CTL™ Current Transfer Logic™ DEUXPEED[®] Dual Cool™ **EcoSPARK**[®] EfficentMax™ ESBC™

Fairchild®

Fairchild Semiconductor® FACT Quiet Series™ FACT® FAST® FastvCore™ **FETBench™**

FPS™ F-PFS™ FRFET® Global Power ResourceSM Green Bridge™ Green FPS™ Green FPS™ e-Series™ Gmax™ GTO™ IntelliMAX™ **ISOPLANAR™** Marking Small Speakers Sound Louder and Better™ MegaBuck™ MICROCOUPLER™ MicroFET™ MicroPak™ MicroPak2™ MillerDrive™ MotionMax™ mWSaver™ OptoHiT™ **OPTOLOGIC[®] OPTOPLANAR[®]**

PowerTrench® PowerXS[™] Programmable Active Droop™ QFE1 QS™ Quiet Series™ RapidConfigure[™] тм Saving our world, 1mW/W/kW at a time™ SignalWise™ SmartMax™ SMART START™ Solutions for Your Success™ SPM® STEALTH™ SuperFET[®] SuperSOT™-3 SuperSOT™-6 SuperSOT™-8 SupreMOS[®]

Sync-Lock™ SYSTEM^{®*} GENERAL TinyBoost^{*} TinyBuck™ TinyCalc™ TinyLogic® TINYOPTO™ TinyPower™ TinyPWM™ TinyWire™ TranSiC[®] TriFault Detect™ TRUECURRENT®* µSerDes™ UHC Ultra FRFET™ UniFET™ VCX™

VisualMax™

XS™

VoltagePlus™

*Trademarks of System General Corporation, used under license by Fairchild Semiconductor

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

SyncFET™

LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used here in:

- Life support devices or systems are devices or systems which, (a) are 1. intended for surgical implant into the body or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support, device, or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.Fairchildsemi.com, under Sales Support.

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufactures of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed application, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers by either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handing and storage and provide access to Fairchild's full range of up to descent technical and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address and warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Datasheet Identification	Product Status	Definition
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.