CCS C Compiler Manual
PCB, PCM & PCH

' of o
@y

inc

September 2013

ALL RIGHTS RESERVED.
Copyright Custom Computer Services,Inc. 2013

Table of Contents

L@ N =T A T 1
PCB, PCM GNU PCH OVEIVIEW ... ettt ettt e e e et e et s eaa e et et s et s eaeeaarerareaarerees 1
1] 2= 11 = U o] o P 1
TECNNICAI SUPPOIT ...ttt nnnnnes 2
1= Toa (0] = SR 2
1L o 1= SR 3
Invoking the Command Lin€ COMPIIETuuuiiiiiiiiiiiiiieiii e 4
OV @ YT QT SR 6
7= o PP RPPI 7
o1 (] N = oL 7
S o TSI @ U o VYA To (011 £ 7
T[] (o) SR 7
DEDUQGGING WINUOWS.. ...ttt 7
] = L1 LS = = T P 7
OULPUL MBS SATES ... eteuiitiieieete ettt et e et e et e e et e et e e et e e ea e e et e e e e e e et e e et e e et eeesaeeanneeetnaaeennaaes 7

e LoT0 = 1 TS 1 = VPP 9
L@ V7T = 1L IS (B od (1 = RSP 9
Lo 01 0 0T o P 9
TrIQrapPN SEQUENCESuuiiieieieeeeee e e e e e e e e e e e e e e e e e e et e e e eaeeeessttaaaeeeeeeserrnaannnns 10
MUIEIPIE PrOJECE FIIES ... e 11
Multiple COmMPIlAtION UNIES ...t nnnenennes 11
=11 0]][R 12

IS == 1T 0 S PUPN 13
) TSRS 13
WL e ettt et e — e aaeaaarrr 14
(o (o Y 1= O UURPPPPRPRPN 14
{0 PP UUPSTRPPPIRt 14
o111 (od o TP 15
=3 L] P 15
[0 o) o L PSPPSR 16
=T o1 U STRUPRT 16
o] 1T | PSPPSR 16
(o0] 0111 LU= URPPPPIPRPN 17
L {0 PP 17
5 R8s RRnnnnnnnnnnnnnnnn 17
LS N 17

o] (=211 o] o PP PPPPPPPPPPPPN 18
(O 01T = (0] £ T PP PP PT TR PPPUPPPPPPPPPN 18
(@ 01T = 1o gl o =T ot 1= o ol S EPRPRRPR 19
REfEIENCE PArAQMEBLEIS ...uun ittt et e e et e e et e e e e e et e e e e et e e e e eat e eeerrans 20
VariabIe ATrQUIMENT LISESeuuuuiiiititiiiiitiitiieesttteaeeeeeeaeseeeessessssseessseee ettt s s estsesbsssseneneeneee 20
Default Parameters...........ii i i e e e e et e e e et e e et eea e e earaas 21
@)V/=T5 (o= To =0 I U o od 1o 1 21

(D= 1= W B L= 11 011110 1 TSP PPN PPPPP 23
BaSIC N0 SPECIAI LYPES ...ttt 23
[Tl = 0] 1 26
NON-RAM Data DEfinItiONS........coiiiiiii e e e et e e e rb e e e eaaans 26
Using Program MemOry fOF DALuuuuuuuuuuiiiiiiiiiiiiiiiiiii b eeeebebeeeeenneees 28

waw®
FUNCLION DEFINMITION. ...ttt 30
FUNCLIONAI OVEIVIEW......cciiiiiiiiiiiiiiiiiiieieeeeee ettt ettt ettt ettt ettt e e e e e e e e e e e e e e e e aeeeeeaees 31
2 31
I3 32
P gt o To T L0l 4] o =1 = Lo (PP 33
(O 2 NN 1 PP 34
P L 36
CCP2, CCP3, CCP4, CCP5, CCPB ...coeetiieiiiieeeeeeeeee e 37
COdE Profile....cc i 37
ConfIgUration MEMOTYcooiiiiiiiiiie e 38
DA et 39
= = =T o] 0] o [P 40
Data SigNal MOAUIATONuiiiiiiiiii e eenenennes 41
EXIEINAI IMEIMOIY ... 42
GENEIAl PUIPOSE 1Ottt e e e e e e ettt e e e e e e e e e eeattaa e e e eaeeeannees 42
1 (T = L G 0 43
L1 (T g F= U @ 2o]| = (o] 44
(=T 0] PP 45
01V Y o] 1 = Yo [LY (= of APPSR 46
PIMP/IEPIMP ... n s nnnnnnnnnnnnnnnn 47
POWET PWIM et e e et e e et et e e e e et e e e e et e e e ern e eeeenans 48
g C0Te = T T =T o] 0] o o PP 50
] 52
QE e 53
RS23B2 10 it nnnen 54
Q1 R 56
S 58
1T 0= (O 59
1T 0= o 60
LI 1= PP 61
T 0TS 0 61
1T 0= 61
LI 1= PP 62
LI 1= PP 63
I 01=] = PP PP UPPPPTRPUPPPIN 64
0 65
VOIAGE RETEIEICE. ... ettt 68
WDT Or WaAtCh DOQG TIMEN ..ottt e e e e e e e e et e e e e e e e e e e et e e e e e e e e eearanaanans 69
) (=T (0 o A =T 4= o] L= o [PO SRRPP 70
Y =T T 1 S SRPPPPR 70
PP OCESSON ...ttt ettt e e e e et e e r e na e rean s 73
o S O L O 1] 73
AETIDULE X e 75
HASM HENDASM ..ot aaan 76
2 O 86
2= 1 87
221 A I PP 88
O N 89
D AT E s 89
D E R INE ..o e 90

"’

FEDEFINEDINC ... utitititttiiiititiitiiiee s 91
FEDEVICE ...ttt e 92
DBV CE .o 94
(O L 95
o oy e @] g I (0] o 10 £ 1<) SRR 95
R LENAME e 97
2 | I =] 97
U] 98
FHEXCOMMENT .ottt 99
. | 99
H#IF exp #ELSE #ELIF #ENDIF ... it abebessssbbsbaebsannennenes 100
#IFDEF #IFNDEF #ELSE #ELIF HENDIFouuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieieeneeneeneeseeseennnnnennennene 101
HIGNORE_WARNINGS......uuuuuutitiiiiiiutieuueiaeeeeeeeeeeeaeaeaeeaaesaeeseeseassssssssssnssssssssssssnsssssnssnnnns 102
FIMPORT (OPTIONS). ..ttt 103
| 1 104
2 I 105
o | I Do PSP UPPPRTROPPIN 105
o | I 0y] 109
2 | I I 2 7 109

L N E oo 110
I 10 110
I 111
2 O 1 AN I 111
2|V @ 1 0 112
2 1 113
2 13 113
2 | 114
1 | 114
e ST = I 116
P B 118
P M 119
P CH 119
2 A 1Y 120
2 = @ 1 4 1 120
| 121
FRESERVE ...ttt s nnnnnnnnen 122
2]|V 123
S Y AN I 124
FESERIALIZE ... e ittt nnnnnnnen 125
2 12N 127

I PR 128
0 128
FEUNDERoeeeiieeeeett sttt n s nnnnnnnnnnnnnnn 130
WY 0 2 i 1 1 R 131
0T I | 132
H#USE DYNAMIC_MEMORYuiiiiiiiiiinitiiiiiiiieninnniieneaeannnneeasnsassnsssssssssssssssnsssssssssssssnsssssssnnnns 133
WY = e I [PR 134
£ ST 1 5 134
0T 1 135
WY o o (@ L = PR 136

"’
FEUSE PWIM L.ttt 137
FEUSE RS232 ...ttt 138
0 SY 1 142
FEUSE SP ..ttt n e 143
FHUSE STANDARD 1O ... ttutttitiiitiiiiiiiiiiiiesiiiiebe bbb nnenee 145
0T I Y 145
US| Y 5 147
FEVWARINING ...ttt 148
FEVWOIRD ...ttt 149
7 L (@ T N Y 150
BUIIt-IN FUNCHIONS ..eiiiiiiiiiiiiieieieeeeeeeeee ettt ettt ettt et e e e e e e e e eeees 151
BUILT-IN FUNCTIONS. ...ttt 151
ADS() e 157
sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()cccccvvvviviiiiiiiiiinnnnnnn. 157
= o (oo (o] aT=T () IS USSP 158
BSSEIT() e eeeeeee ettt ettt 159
2 10T 160
=0 { () T PSSP 161
01 A TEST=] [=Tod () PSSR 161
At0I() ALOI() ALOISZ() ceeeeeeeieieiiiei it 162
o] Ao (=T T () PSS 163
o1 AT { () PSS 164
DT EEST() oo 164
PrownOUt_ENaBIE().....ccoeeeeeeee e 165
0 FT=T= 1 (] o () I PSSP 165
CAIIOC()i 166
LRI) weeee e 167
clcl _setup_gate() clc2_setup_gate() clc3_setup_gate() clc4_setup_gate().....ccceeevveeerrrnnnns 168
clcl_setup_input() clc2_setup_input() clc3_setup_input() clc4_setup_input()............ccceeeeee 169
ClEAT_INTEITUPT() 1o eeeeeeeeee e 170
(oYY o JES) = 1 (VY () P USSUPPPPRPON 170
(oYY o [(=1 c= L { () P SSRUPPPRRPPN 171
AC WIEE() 1o 171
delay _CYCIES() «oiieiiiiiiiii e 172
(o (=T F= AV 1 1 1T () P USSUPPPRRPPN 173
(o (=T F= N V£ () I P USSUPPPRRPIN 173
diSADIE_INTEITUPTS() .o eeieeeiiiieie e 175
IV) IV) oo 176
ENADIE INTEITUPLS() coieeiiiiiiii it e e e e e e e et e e e e e e e e e aat e e e eeeeeseasaanaaseeaaeeennnes 177
BIASE_CEPIOIM() eiiiiieiiiiei ittt 178
Erase_Program_EEPIOMI() ...u . e et ieeeeeeeett ettt ettt ettt ettt ettt ettt ettt e et et ettt et 178
23 o () I PP 179
EXE TN BAGE() «oiiiiieiiei e 179
L2210 () PPN 180
(o<1 (ol @ Mo T] (od o T I e =] (e o TV () I o = o () LSRR 181
o= KT TN {0 1<) £ PP 182
L1010] £ (0 PPN 183
1410 o () PP 183
LT Tt (7 11 11 T 184
PUEC() PUEChAr() FPULC() oo 186

@
A\ -\

O TU L (I 010 1€ (PP 186
LLC=T= () TSRS 187
1LY (o1 (O FE TP T T PP P P TP PP TP T TP TPPPTTRPPRTPRTRRN 187
(oL o= Vo1 (0TI =1 = T L) USSP 188
(oL A o= VoL (T =¥ 4 1= PSSP 189
0et_NCO_ACCUMUIBLON() .eeiiiiiiiiiie e 189
0EL_NCO_INC_VAIUE() coieiiiiiiiiiie e 190
(o 1= A [=] () PSSP 190
(o L= A [41T AN () TSRS 191
L TIMEIB()i 191
(o L= A [0 1=T () TSRS 192
(o L= A (ST (TSSO 192
getc() getch(') getchar() FOeIC() ..ovvieiiiiiiiiiiiiiie e 193
GEEIEINV() eiieeeiei ettt 194
(oL R IR L1 £ (0 I USSP 198
OTO_AAAIESS() 1o eiiiiiiiiiiii et 199
high_speed_adC_dONE()cooii e 199
Do 111 () PSSP 200
Do T (1 €= L= () PSS 201
12 PONI() e 202
Do (=T Lo () [PPSR 202
Do F= 1YY= To (o [() TSR 203
T2 _SPEEU()ttt et ettt 204
T2 STAIT() 1o oot e oot 204
Do (o] o () PSSP 205
T2 WWITEE() oo e e et 206
9] o101 { () I PP P TP PP PP 207
g] o]0 e g T=TaTo LT () TSP 207
] o0 AE) = L (=1 () TR PSSPP 208
INPUL_X() oot oottt 209
) (=T (0] o H= (e 1)Y= () PSSP 209
isalnum(char) isalpha(char) isdigit(char) islower(char) isspace(char) isupper(char)

isxdigit(char) iscntrl(x) isgraph(x) iSprint(x) iISPUNCE(X)cceeeeeeeeeeeeeeeeeee e 210
(572 1 o] Lo [() TP 211
100 = 1) PSSP 211
1] o I (o T £ (P OTRSR 213
KDL) oo 213
=T o = To [0 [(=11 (O TSP 214
=1 o1 () PSSP 215
(oo i oo] 0175 { () TP 215
ICA_IOBA() oo 216
oo =Y/ 0 410 To [() 217
LAEXP() oottt 217
LOG() ettt 218
o T 1 0) 219
To) o 1101 o () 219
NIAKEE() 1ottt e ettt 220
L= L= 20 T () I 220
L= SIS P 221
MAIOC() oo 222

vi

-’

MEMCPY() MEMMIOVE() 1evrruuiiieeeeeeeeeti e e s e e e e e ettt s e e e e e e e e aat e e e e e aaeeeasstaa e e eeaeeeessnraaaaeeaees 222
L= 00T () IS 223
NIODT() e 224

T 1T P 224
L= o 1S () P 225
OffSetof() OFfFSELOTDIT() .ooveeeeeeeieeee e 226
OffSetof() OfFSELOTDIT() ..oeeeeeieeieeee e 227
Lo 014 o 11 | A () PSSR 228
Lo 0y 4 o 11 | A o1 () TSP 228
(o101 o]0 e | 11Y/=T () IR PP P PP PP PPPPPPPPPP 229
o0y 4 o 10| A 1 (0= L () I PSSP 230
o0y 4 10| A 1o | o TG I PSSP 231
OUEPUE_TOW()it 231
OULPUE_tOGGIE() 1 232
[0 L=T 1 (o] () PSSP 233
PO X _PUIUPS () eeeeeeeee oo 233
POW() PWE() e 234
LT a1 a1 1101t TSP 235
010 111=To 11) [PPSR 237
psp_output_full(') psp_input_full() pSP_OVErflowW()cooeeeeeeeeeeeeeeeeee e 238
PULC() PULCNAI() FPULC() vevrrreeeie e e et e e e e e e e e e e e e e e e e 238
01U (=TT o Vo [() PSSP 239
L1 S0 L (o] o To [AT PP PP TP PP P PP TP TPRPTPRPPRRPRTRRN 239
PUEC() PULChAr() FPULC() oo 240
[TV (I 01V 1€ (PSSP 241
PWIMNL_OTF() oo 241
PWITI_ONI() oot e ettt e e e e e 242
PWIM LSBT AULY() euuniee et e e e e e e e e e ettt e e e e e e e e e e e st eeeeaeeeeensbaaaaaeaaas 242
[TEST = Ao (V) YA 01T (o= o | PSSR 243
PWIM_SEL_FTEQUEINCY ... 243
(o L= (=] A o0 1V 121 { () TP USSUPPPRTPPN 244
(o LT IRST=Y A oo 10 () P SSRUPPPRRPPN 244
O I_STALUS().t eeeeeeieee ettt 245
[0 K014 { () P PP PPPPPPPPPPPPPPPPP 245
7= 10 To [TSP 246
(VA o101 1 1= g o)V (=1 () PRSP 246
FCV_DUTTEI_TUII() e 247
=T (o K= To (o1 (0 TSR 247
(=T (o I o= 1o | (0 PSSP 249
read_CaliBration(() ...oooooeeeeeee e 249
read_configuration_MEMOIY()cceeeeeeeeeeee oo 250
(Y= To I =TT o (o0 0T () TS 251
read_eXtenNded_TaMI() ...ccoo oo 251
read_program_MEMOIY()ooo oo 252
(== To ISyt g = I 0 U= 0 Lo o/ (O 252
(== To I a1 | d] o T=T=To [E= Uo [ox () 252
read_Program_EEPIOM(1) ..o 254
(=t To I oTgoTo =T TN 4 1T 4 T] oY/ () S 255
read_exterNal _MEMOIY(() .o e e e e e e e e et e e e e e e raaans 255
TRAIIOC() oo 255

Vii

"’
FEIEASE T0() 1eeevririii i e e e ettt e e e e e et e e e e e e e et ettt e e e e e e e e e e e e e e aaeeeaaar e aaas 256
[(=1ST= o3 01U () TP 257
TESTAIM_CAUSE() 1o oeeeee e e e e e ettt e 257
(1S =T Ao 1 () IS 258
(o] ez LC= T C=1 (PSS 259
FOLALE TTGNT() e 259
TEC_@IAMMN_TEAU() .o oo oot 260
O = U T €1 C=T () TP 261
(o == Lo [TP 261
TEC _WITEE() oo e oot 262
OO TSI = 11T UL () TP 262
LLCO TSI o [1ST= o] = TP 263
FEOS_ENADIE() oo 263
TEOS_IMSG_PON() e 264
OO TSI 1 To T (=TT [(PSS 264
FEOS_IMSG_SENU() 1o oiee e 265
TEOS_OVEITUN() e eee oot e e e e e e e e e 265
10O TS (0 T PSSP 266
LCO TSI To [T 1 T PSSP 266
TEOS_STALS() 1o eeee e e e et e ettt 267
OO TSI G g 1T Eo =Y (PSSR 268
OO TSIV 11 PSSP 268
TEOS_YIEIU() coeeeeeee oo 269
Set_adC_ChanNel()coooiiiiiii 269
Lo A g (oo T [T V= LU 1T (U RSRUPPPRRPPN 270
Set_POWEr_PWM_OVEITIAE() 1oiiiiiiiiieiiiiiieee ettt 271
Set_POWET_PWMX_AULY() torieeiiiiiiiiiiiieei et 271
set_pwml_ duty() set_ pwm2_duty() set_ pwm3_duty() set_pwm4_duty()
LY=L o111 4 ST [V 14 (3 P RSRUPPPRRPPN 272
set_rtcc() set_timerO() set_timerl() set_timer2() set_timer3() set_timer4()
L 0 0=T 6] (PP USRUPPPRRRON 273
L1 (o3 T () P USRUPPPRRPPN 274
SEE IMEIA() e 274
SEL_HIMEIB()i 275
LT U0 0=T 0 T USRUPPPRRPPN 275
set_rtcc() set_timerO() set timerl() set timer2() set timer3() set_timer4()
SEE IMEIS() oo 276
L ST () TSP SSRUPPPRRPON 277
LY U T A=Y o L=T=T o [P SSSUPPPRRPPN 278
S MIP() et 278
SELUP_AAC(IMOUE) ... 279
1= (0 o J= Vo (o oo ¢ €= () PP 279
setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5()
SEEUP_CCPOB() eeeeeieeeeee ettt 281
setup_clcl() setup_clc2() setup_clc3() Setup_CICA() «ooveeeermmiiiie e 283
1100 | o J o0 g q] o= = 1o] () ISP 283
SEEUP_COUNTEIS() 1ieeiiiiiiiiii ettt 284
1= (0 o JH 0211 (SRR 285
7= (1 o J o = T (O PP 286
Setup_exterNal_MEMOIY().uuu i 287

viii

@
A\ -\

=100 o I g 1To LA S 0 1= T=To K= Lo (o () ISP 287
setup_high_speed_adC _Paif()eeuuuiiiiieeeii e e e e e e e e aaaaaane 288
SEEUP_ICA() 1o 289
=10 | o J (oL AV o] | Ao (= (= Tox { (SRS 290
(=100 | o TR (o1 () PSSP 290
setup_opampl() SELUP_OPAMPZ().eeeeeiiiieiiiiiiiiiiiie ettt 291
setup_opampl() SEtUP_OPAMPZ().eeeeeiiiiiiieiiiiiiieie ettt 291
=100 | J o LSTod 11 F= Lo () ISP 292
setup_pmp(option,addreSS MASK).........cceiiiiiiiiiiiii e eee e e e e e e e e e aaane 293
SELUP_POWET _PWIMI() 1 eeeeeeieeee ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt ettt e e et e et e e e et e et e e e et e e e e eeeaeeeeeeees 293
SEtUP_POWET _PWIML_PINS()euuieeiiiiiiiiiiies e e e e e e eettie e s e e e e e e e ettt e s s e e e e e s eaasaa s e aeaaeseessaanaaaeeeaaeennnes 295
setup_psp(option,addreSS MASK)cciiieiiieeeiiiee e e e e e e e e e e e e e e e e e e eaeeeaene 295
setup_pwm1() setup_pwm2() setup_pwm3() SEtUP_PWMA() .ccevrrrriiiiiiiiiiiiiieiieieeeeeeeeeeeeeee 296
SEEUP_GI() +eeeeeeeeeeeeee e ettt ettt 297
LTS (0o T (o () P SSRPPRPPN 297
SELUP_TTC_BIAMMN() coeeeeeieieiie e 298
SELUP_SPI() SEIUP_SPI2() 1eeeeiiiiiiiiiii it 299
LS (0T T (T 0= Y (USSP 299
LS (0T T (T 0 L=T S =T S SSSPPRPPN 300
SEEUP_TIMET_0() 1oeeiiiieieeie e 300
LY (0T T 1T 0= N X () SRS 301
LS (0T T (T 0= 2 () PSSR 302
SEEUP_TIMET_ (1) 1 eieeiiieiiii e 302
SEEUP_TIMET_4() o eieiiieiee e 303
LS (0T T (T =T ST () PSSR 304
SEEUP_UANT() 1o eeeeeeeee e ettt 304
SEEUP _VIET()t 305
LT (0] T o L TR USRUPPPRRPPN 306
L] 1 S =T () 306
SHIFE_TIGNT() 1o 307
L1 (=T=T o () TP USRUPPPRRPPN 307
SIEEP. UIPWU() et e et e e e e e e e e ettt e e e e e e e e e e et e eaaaaaeannes 308
spi_data_is_in() SPi_data_iS_IN2(1) ..ccuuiiiiiiiiiiiiiieiieeee e 309
SPI_INIT() ettt 309
LS LI O oA (=T (o £ =) P RSSUPPPRRPPN 310
SPI_read() SPI_TEAZ() iieeiiieeiii i ettt e e e e e e e e e e e e e e aaaaarrne 310
SPI_TEAA_L6() «eeeeiiiiieieie e 311
LS I (= Lo P2 T P SSRUPPPRRPPN 311
LS LI (= Lo KT T P SSRUPPPRRPPN 311
SPI_TEAAA_16() «eeeeieeeieiee i 311
SPI_SPEEA ... 312
SPI_WIEE() SPI_WIIEE2() +.uuieeeeee ettt e e et e e e e e e e e e et e e e e e e e e eeneaanaaeeeeaaeennees 312
SPI_XIEI() e 313
LTI = = 1N OO 314
L] 0] 11 SRR 314
S0 | TSP 315
STANA() et ee ettt 315
STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr()

stremp() streoll() strespn() strerror() stricmp() strlen() striwr() strncat()

strnemp() strncpy() strpbrk() strrchr() strspn() strstr() StrXfrm() ..o, 316

"’
£5] 1 o o | () TSRS 317
5] 1 (0 () I PSSP 318
SETOI() ettt 319
£5] 1 (o 11][T PSSP 320
£V = o () SRS 321
TOIOWET () TOUPPEI() +eettteteeeteeeeeee ettt 321
(18 {o] g o =T [[(o () I T T TP T PP TP PO P T TP PPRPTPRPPRRPRPRRN 322
10018 [od o1 o =T I 211 () I USSP 323
10010 ol g o =T IS r= L (= () RSP 323
DX DUTTEI _DYEES() +eeeeeeeeeeetete ettt 324
Lo o1 1= g 1V 11 PSSP 325
(2= (o () ISP 325
VA EINIO() ettt 326
A7z TS €= L R PP UPT 327
1 (= o = 1] (PSSR 328
WIit€_CONFIGUIALtION_IMEMIOIY() ..uuuutiiiiiiiiiiiiiiiiiiitii e 328
WWITEE _EEPIOMI() -ttt 329
WItE_eXIErNAl MEMIOIY() coiieeiiiiii i e e e e e e e e e e et e e e e e e e e e ettt e e e eeaeeeeannaaannns 330
] =D 1o (Yo I = L2 1 () SRR 331
WILE_PrOQGIEAIM_EEPIOM([) ..ttt 332
WItE_Program_MEMIOIY() coeeeuuiuee i e e ee e et ce e e e e e e e e e et ee e e e e e e e e e e ettt e s e e e e e e eeastaa e e eeeeeeesesnannnnns 333
Standard C INCIUAE FIlES 335
=T 1 10 70 SRR 335
10> o PSSP 335
S N 336
o o= 1 1= o 336
SEUMP. N 337
L] (0 [0 [o 337
L] (0 0T 337
5100|1010 o PO PPRRPRPPP 337
0 =TS ST= T =S 338
COMPIIEN EFTOr MESSAQGES ceiiieeeiiee e e e et e e e e e et e s e e e e e e e e e et e e e e e eeaeseataaaaaaeeeaaeennnes 338
Compiler Warning MESSAGESccoeeeeeeeeeeeee e 347
Compiler Warning MESSAGES.ccuiiiiiiiiiiiiiieeee ettt 347
Common QUESTIONS & ANSWEISciiieiiiiiiiieeee et eeetee e e e e e e e e ettt e e e e e e e e e eas it e e e eeaeeeearttaaaaaaaeas 350
How are type conversions handled?...........coooo i 350
How can a constant data table be placed in ROM? ...t 351
How can | use two or more RS-232 ports on 0Ne PIC®?c.viiiiiiiiiiiceeecie e 351
How can the RB interrupt be used to detect a button press?cceeeveeeeiiiiiiiiiiin e, 352
How do | directly read/write to internal regiSters?uuuuuuummmmmmmiiiiiiiiiiiiiiiiiiieeeeeieeeeeeees 353
HOW do | dO @ Printf t0 @ SNuuiiiiiiiiiiiiii e eeenenee 353
How do | get getc() to timeout after a specified time? ..., 354
How do | make a pointer t0 @ fUNCHION?...........uuuuuiiiiiiiiiiii e 354
How do | put a NOP at location O for the ICD?.........uuuuiuiiiiiiiiiiiiiiiiiiiieeeeeees 354
How do | wait only a specified time for a button press? ..., 355
How do | write variables to EEPROM that are not a byte?ooiiiiiiiiiii e, 355
How does one map a variable to an /O POrt?............uuuuuuuummmmiiiiiiiiiiiiiiiiiiieiieeeieeeeeeeeeenees 356
How does the compiler determine TRUE and FALSE on expressions?cccovvevevveeeeeennnnn. 357
How does the PIC® CONNECET0 8 PC7 ... 357
How does the PIC® connect t0 an 12C dEVICE?uuuuuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieeeeeeeeeeenees 358

V' of o4

"’
How much time do math operations take?.............cuuuiiiiii i e 358
Instead of 800, the compiler calls 0. WHY? ... 359
Instead of AO, the compiler is using register 20. WHhy?cccooiiiimimiiiiiiiiiieeeees 359
What can be done about an OUT OF RAM EITOI?uuuuuuuuuuiiiiiiniiinieiininnnnnnnesnnnnennnnnnnneeneens 359
What is an easy way for two or more PICS® t0 COMMUNICAtE?cceeeeeeieiiiiiiiieeeeeee e 360
What is an easy way for two or more PICS® t0 COMMUNICALE?..........veieeeeriiiiiiiiiieeeeeeeeeeees 361
What is the format of floating POiNt NUMDEIS?...........uiiiiiiiiiiiiiiiiieiiie e 362
Why does the .LST file 100K OUt Of OFAEI?ccoiiiiiicee e 363
Why does the compiler show less RAM than there really iS?cccoovveeiiiiiiiiiiiii e, 363
Why does the compiler use the obsolete TRIS?uiiiiiiiiiiiiiiiiiii e 364
Why is the RS-232 Not WOrking fight?..........ooiii i 364
ez Y] o] (ST d o To =10 S 367
EXAMPLE PROGRAMS ...ttt saasassssssssssssssssssssssssssssssssssnssssssssnnnnnnns 367
SOftware LICENSE AQIEEIMENT ... 391
SOFTWARE LICENSE AGREEMENTcciiiiiiiiiiiieee ettt 391

Xi

;o
L\

OVERVIEW

PCB, PCM and PCH Overview

The PCB, PCM, and PCH are separate compilers. PCB is for 12-bit opcodes, PCM is for 14-bit
opcodes, and PCH is for 16-bit opcode PIC® microcontrollers. Due to many similarities, all three
compilers are covered in this reference manual. Features and limitations that apply to only
specific microcontrollers are indicated within. These compilers are specifically designed to meet
the unique needs of the PIC® microcontroller. This allows developers to quickly design
applications software in a more readable, high-level language.

IDE Compilers (PCW, PCWH and PCWHD) have the exclusive C Aware integrated

development environment for compiling, analyzing and debugging in real-time. Other features
and integrated tools can be viewed here.

When compared to a more traditional C compiler, PCB, PCM, and PCH have some limitations.
As an example of the limitations, function recursion is not allowed. This is due to the fact that
the PIC® has no stack to push variables onto, and also because of the way the compilers
optimize the code. The compilers can efficiently implement normal C constructs, input/output

operations, and bit twiddling operations. All normal C data types are supported along with
pointers to constant arrays, fixed point decimal, and arrays of bits.

Installation

Insert the CD ROM, select each of the programs you wish to install and follow the on-screen
instructions.

If the CD does not auto start run the setup program in the root directory.
For help answering the version guestions see the "Directories" Help topic.
Key Questions that may come up:
Keep Settings- Unless you are having trouble select this
Link Compiler Extensions- If you select this the file extensions like .c will start
the compiler IDE when you double click on files with that extension. .hex files start

the CCSLOAD program. This selection can be change in the IDE.

Install MP LAB Plug In- If you plan to use MPLAB and you don't select this you
will need to download and manually install the Plug-In.

Install ICD2, ICD3...drivers-select if you use these microchip ICD units.
Delete Demo Files- Always a good idea

Install WIN8 APP- Allows you to start the IDE from the WIN8 Start Menu.

http://www.ccsinfo.com/content.php?page=ideoverview

;o
'

Technical Support

Compiler, software, and driver updates are available to download at:
http://www.ccsinfo.com/download

Compilers come with 30 or 60 days of download rights with the initial purchase. One year
maintenance plans may be purchased for access to updates as released.

The intent of new releases is to provide up-to-date support with greater ease of use and
minimal, if any, transition difficulty.

To ensure any problem that may occur is corrected quickly and diligently, it is recommended to
send an email to: support@ccsinfo.com or use the Technical Support Wizard in PCW. Include
the version of the compiler, an outline of the problem and attach any files with the email request.
CCS strives to answer technical support timely and thoroughly.

Technical Support is available by phone during business hours for urgent needs or if email
responses are not adequate. Please call 262-522-6500 x32.

Directories

The compiler will search the following directories for Include files.
. Directories listed on the command line
. Directories specified in the .CCSPJT file
. The same directory as the source.directories in the ccsc.ini file

By default, the compiler files are put in C:\Program Files\PICC and the example
programs are in \PICC\EXAMPLES. The include files are in PICC\drivers. The
device header files are in PICC\devices.

The compiler itself is a DLL file. The DLL files are in a DLL directory by default in \PICC\DLL.

It is sometimes helpful to maintain multiple compiler versions. For example, a project was
tested with a specific version, but newer projects use a newer version. When installing the
compiler you are prompted for what version to keep on the PC. IDE users can change versions
using Help>about and clicking "other versions." Command Line users use start>all
programs>PIC-C>compiler version.

Two directories are used outside the PICC tree. Both can be reached with start>all
programs>PIC-C.

1.) A project directory as a default location for your projects. By default put in "My
Documents." This is a good place for VISTA and up.

2.) User configuration settings and PCWH loaded files are kept in %APPDATA%\PICC

http://www.ccsinfo.com/downloads.php

;o
'

File Formats

.C

.h

pjt

.ccspijt

st

.sym
.sta
tre

.hex

.cof

.cod

rtf

rvf
.dgr

.esym
XSym

This is the source file containing user C source code.

These are standard or custom header files used to define pins, register, register bits,
functions and preprocessor directives.

This is the older pre- Version 5 project file which contains information related to the
project.

This is the project file which contains information related to the project.

This is the listing file which shows each C source line and the associated assembly
code generated for that line.

The elements in the .LST file may be selected in PCW under Options>Project>Output
Files

CCS Basic \ Standard assembly instructions

with Opcodes \ Includes the HEX opcode for each instruction
Old Standard |

Symbolic | Shows variable names instead of addresses

This is the symbol map which shows each register location and what program variables
are stored in each location.

The statistics file shows the RAM, ROM, and STACK usage. It provides information on
the source codes structural and textual complexities using Halstead and McCabe
metrics.

The tree file shows the call tree. It details each function and what functions it calls
along with the ROM and RAM usage for each function.

The compiler generates standard HEX files that are compatible with all programmers.

The compiler can output 8-bet hex, 16-bit hex, and binary files.
This is a binary containing machine code and debugging information.

The debug files may be output as Microchip .COD file for MPLAB 1-5, Advanced
Transdata .MAP file, expanded .COD file for CCS debugging or MPLAB 6 and up .xx
.COF file. All file formats and extensions may be selected via Options File Associations
option in Windows IDE.

This is a binary file containing debug information.

The output of the Documentation Generator is exported in a Rich Text File format
which can be viewed using the RTF editor or Wordpad.

The Rich View Format is used by the RTF Editor within the IDE to view the Rich Text
File.

The .DGR file is the output of the flowchart maker.

These files are generated for the IDE users. The file contains Identifiers and Comment
information. This data can be used for automatic documentation generation and for the
IDE helpers.

l ol-hel
A\

.0 Relocatable object file

This file is generated when the compiler is set to export a relocatable object file. This
.osym | .. - , . :
file is a .sym file for just the one unit.
err Compiler error file
accsloa used to link Windows 8 apps to CCSLoad
\',SCSSIO used to link Windows 8 apps to Serial Port Monitor

Invoking the Command Line Compiler

The command line compiler is invoked with the following command:

CCscC

[options] [cfilename]

Valid options:

+FB Select PCB (12 bit)
+FM Select PCM (14 bit)
+FH Select PCH (PIC18XXX)
+YX Optimization level x (0-9)

||

+FS Select SXC (SX)
+ES Standard error file

+T Create call tree (.TRE)
+A Create stats file (.STA)
+EW Show warning messages

+EA

Show all error messages and all
warnings

|-D | Do not create debug file

|+DS | Standard .COD format debug file

| +DM|.MAP format debug file

| +DC |Expanded .COD format debug file

+DF |Enables the output of an COFF
debug file.

|+EO|0ld error file format

|-T_|Do not generate a tree file

|-A__|Do not create stats file ((STA)

|-EW | Suppress warnings (use with +EA)

|-E__|Only show first error

ﬂ Error/warning message format uses
GCC's "brief format" (compatible with

GCC editor environments)

The xxx in the following are optional. If included it sets the file extension:

8-bit Intel HEX output file
16-bit Intel HEX output file
Binary output file

Do not create object file

+LNXxx | Normal list file | +08xxx
+LSxxX | MPASM format list file | +OWxxx
+LOXXX | Old MPASM list file | +OBxxx
+LYXXX | Symbolic list file | -0
L | Do not create list file |
|
+P | Keep compile status window up after compile
+Pxx | Keep status window up for xx seconds after compile
+PN | Keep status window up only if there are no errors
+PE | Keep status window up only if there are errors

;o
'

+Z | Keep scratch files on disk after compile
+DF | COFF Debug file
[+=".." Same as |="..." Except the path list is appended to the current list

=".." Set include directory search path, for example:
I="c:\picc\examples;c:\picc\myincludes"

If no I= appears on the command line the .PJT file will be used to supply the
include file paths.

-P | Close compile window after compile is complete
+M | Generate a symbol file (.SYM)
-M | Do not create symbol file
+J | Create a project file (.PJT)
-J | Do not create PJT file
+ICD | Compile for use with an ICD
#XXX="YyyyY" ‘ Set a global #define for id xxx with a value of yyy, example:
#debug="true"
+GXxXx="yyy" | Same as #xxx="yyy"
+? | Brings up a help file
-2 | Same as +?
|
+STDOUT | Outputs errors to STDOUT (for use with third party editors)
+SETUP | Install CCSC into MPLAB (no compile is done)

sourceline= Allows a source line to be injected at the start of the source file.
Example: CCSC +FM myfile.c sourceline="“#include <16F887.h>"

+V Show compiler version (no compile is done)

+Q | Show all valid devices in database (no compile is done)

A/ character may be used in place of a + character. The default options are as follows:
+FM +ES +J +DC +Y9 -T -A +M +LNIst +O8hex -P -Z

If @filename appears on the CCSC command line, command line options will be read from the
specified file. Parameters may appear on multiple lines in the file.

If the file CCSC.INI exists in the same directory as CCSC.EXE, then command line parameters
are read from that file before they are processed on the command line.

Examples:
CCSC 4+FM C:\PICSTUFF\TEST.C
CCSC +FM +P +T TEST.C

PCW Overview

The PCW IDE provides the user an easy to use editor and environment for
developing microcontroller applications. The IDE comprises of many components,
which are summarized below. For more information and details, use the Help>PCW
in the compiler..

V' of of

waw®

Many of these windows can be re-arranged and docked into different positions.

5 CCS C Compiler
m Edit | Search Options Compile View Tools Debug Document User toolbar 2 @
B & Cut) Unindent = ® Record
N FI r_’,From File Salec =4 4 \
Copy : E= L
Undo Redo Paste ToFil g, Indent S
[] select All AFRELS " Selection Format Source Playback |l Save
History Edit Indent Macro
|| [Zcex_usb_mouse.c [=pex usb common.h | =};24F1256GB206.n [=} 18F4550.h | x | Debug
a [; //’/‘////;//f////xf//////;///////////////xf//////////,'///////////ff: Vl ’ t ﬂ@
| 3 15] RéM | ROM | DataEE | Breaks | Stack
vl 3 ex_usb_mouse.c = ! :
'di 4 - Watches l Peripherals l Eval l Monitor
%‘, 5 An example of creating a USB mouse. Uses your operating Break Log | RTOS T.asks
e | 3 system's HID drivers, which on most systems should already b SFR I Debug Configure
| 7 '/ installed. E].
i 5 [ICD-USB v
W | 8 - »
g 9 / If everything is working, the mouse cursor will move in a Compile Reload True g
2 10 / circle when connected to a PC. Mouse over eval True L4
b = S 2 iy _ ;s _ Timeout Mouse over True
J 12 / This file is part of CCS's PIC USB driver code. See USB.H -
13 for more documentation and a list of examples. Mouse over radix Default
14 Userstream enabled False
1s "f111T Echo on Monitor True
ot i o 2 i o Monitor Font Size 9
17 / NOTE ABOUT ENDPOINT BUFFER SIZE: 4 —
18 y ICD FAw | CCS 2.96 -
19 //// Although this application sends 4 bytes to the PC, this demc || When TRUE the target wil be reloaded after every
20 //// defines USB_EP1_TX_SI allocate 8 bytes for this _
Aa Sy sogscera T o R AR TR AP (O R g 2yl it I Apply l] Cancel |
< | n | 3
1:1 Insert Pjt: ex_usb_mouse C:\...\examples\ex_usb_mouse.c PC=0001 | W=00 :]
-~ Info 300 "ex_usb_mouse.c' Line 138(1.1): More info: Timer 1 tick time is 682.39 us
>>> Warning 216 "ex_usb_mouse.c" Line 218(1,2]: Interrupts disabled during call to prevent re-entrancy: (usb_toker
>>> Warning 216 "ex_usb_mouse.c" Line 218(1,2): Interrupts disabled during call to prevent re-entrancy: (usb_tbe) RAM:
>>> Warning 216 "ex_usb_mouse.c" Line 218(1,2]: Interrupts disabled during call to prevent re-entrancy: [usb_flush_
Memory usage: ROM=15% RAM=10%-12% E 12%]
0Erors, 3Wamings.)
Build Successful. 5
- ROM:
1 . |
e [T}
S < 1 r 2
£ -
3 i) Compiler | @%Find

V' of o4
A\

Menu

All of the IDE's functions are on the main menu. The main menu
is divided into separate sections, click on a section title ('Edit’,
'‘Search’, etc) to change the section. Double clicking on the
section, or clicking on the chevron on the right, will cause the
menu to minimize and take less space.

Editor Tabs

All of the open files are listed here. The active file, which is the file
currently being edited, is given a different highlight than the other
files. Clicking on the X on the right closes the active file. Right
clicking on a tab gives a menu of useful actions for that file.

Slide Out Windows

'Files’ shows all the active files in the current project. 'Projects’
shows all the recent projects worked on. 'ldentifiers' shows all the
variables, definitions, prototypes and identifiers in your current
project.

Editor

The editor is the main work area of the IDE and the place where
the user enters and edits source code. Right clicking in this area
gives a menu of useful actions for the code being edited.

Debugging Windows

Debugger control is done in the debugging windows. These
windows allow you set breakpoints, single step, watch variables
and more.

Status Bar

The status bar gives the user helpful information like the cursor
position, project open and file being edited.

Output Messages

Output messages are displayed here. This includes messages
from the compiler during a build, messages from the programmer
tool during programming or the results from find and searching.

®

) ol ob
N

;o
L\

PROGRAM SYNTAX

Overall Structure

A program is made up of the following four elements in a file:
Comment

Pre-Processor Directive

Data Definition

Function Definition

Every C program must contain a main function which is the starting point of the program
execution. The program can be split into multiple functions according to the their purpose and
the functions could be called from main or the sub-functions. In a large project functions can
also be placed in different C files or header files that can be included in the main C file to group
the related functions by their category. CCS C also requires to include the appropriate device
file using #include directive to include the device specific functionality. There are also some
preprocessor directives like #fuses to specify the fuses for the chip and #use delay to specify
the clock speed. The functions contain the data declarations,definitions,statements and
expressions. The compiler also provides a large number of standard C libraries as well as other
device drivers that can be included and used in the programs. CCS also provides a large
number of built-in functions to access the various peripherals included in the PIC
microcontroller.

Comment

Comments — Standard Comments
A comment may appear anywhere within a file except within a quoted string. Characters
between /* and */ are ignored. Characters after a // up to the end of the line are ignored.

Comments for Documentation Generator

The compiler recognizes comments in the source code based on certain markups. The compiler
recognizes these special types of comments that can be later exported for use in the
documentation generator. The documentation generator utility uses a user selectable template
to export these comments and create a formatted output document in Rich Text File Format.
This utility is only available in the IDE version of the compiler. The source code markups are as
follows.

Global Comments

These are named comments that appear at the top of your source code. The comment names
are case sensitive and they must match the case used in the documentation template.

For example:

/IFPURPOSE This program implements a Bootloader.

/*AUTHOR John Doe

A'll' followed by an * will tell the compiler that the keyword which follows it will be the named
comment. The actual comment that follows it will be exported as a paragraph to the
documentation generator.

Program Syntax

Multiple line comments can be specified by adding a : after the *, so the compiler will not
concatenate the comments that follow. For example:
/**:CHANGES
05/16/06 Added PWM loop
05/27.06 Fixed Flashing problem
*/

Variable Comments

A variable comment is a comment that appears immediately after a variable declaration. For
example:

int seconds; // Number of seconds since last entry

long day, // Current day of the month, /* Current Month */

long year; // Year

Function Comments

A function comment is a comment that appears just before a function declaration. For example:
/I The following function initializes outputs

void function_foo()

{
}

init_outputs();

Function Named Comments

The named comments can be used for functions in a similar manner to the Global Comments.
These comments appear before the function, and the names are exported as-is to the
documentation generator.

For example:

/I*PURPOSE This function displays data in BCD format

void display_BCD(byte n)

{

}

display_routine();

Trigraph Sequences

The compiler accepts three character sequences instead of some special
characters not available on all keyboards as follows:

Sequence | Same as
27= | #
272 I
27/ A
??)]
27" |~
27< {

10

Program Syntax

27! I

27> 1}

?22- |~

Multiple Project Files

When there are multiple files in a project they can all be included using the
#include in the main file or the sub-files to use the automatic linker included in the
compiler. All the header files, standard libraries and driver files can be included
using this method to automatically link them.

For example: if you have main.c, x.c, x.h, y.c,y.h and z.c and z.h files in your
project, you can say in:

#include <device header file>
#include<x.c>
#include<y.c>

main.c #include <z.c>
X.C #include <x.h>
y.C

#include <y.h>

zZ.C)
#include <z.h>

In this example there are 8 files and one compilation unit. Main.c is the only file compiled.

Note that the #module directive can be used in any include file to limit the visibility of the symbol
in that file.

To separately compile your files see the section "multiple compilation units".

Multiple Compilation Units

Traditionally, the CCS C compiler used only one compilation unit and multiple files
were implemented with #include files. When using multiple compilation units, care
must be given that pre-processor commands that control the compilation are
compatible across all units. It is recommended that directives such as #FUSES,
#USE and the device header file all put in an include file included by all units. When
a unit is compiled it will output a relocatable object file (*.0) and symbol file (*.osym).

There are several ways to accomplish this with the CCS C Compiler. All of these

methods and example projects are included in the MCU.zip in the examples
directory of the compiler.

11

Example

Here is a sample program with explanation using CCS C to read adc samples over rs232:

L1717 777770777777 7777777777777777777777777777777777777
/// This program displays the min and max of 30, ///
/// comments that explains what the program does, ///
/// and A/D samples over the RS-232 interface.]/
L1717 77 7770777777 7777777777777777777777777777777777777

Program Syntax

#include <16F887.h> // preprocessor directive that selects the chip
PIC16F887

#fuses NOPROTECT // Code protection turned off

#use delay(crystal=20mhz) // preprocessor directive that specifies the clock

type and speed
#use rs232(baud=9600, xmit=PIN C6, rcv=PIN C7) //
includes the

// rs232 libraries

void main() { //
int i, value, min, max; //
printf ("Sampling:"); //
the RS232 library
setup port a(ALL ANALOG); //
in
setup_adc (ADC_CLOCK INTERNAL) ; //
set _adc_channel(0); /7
do { //
min=255;
max=0;
for (i=0; i<=30; ++i) { //
delay ms(100); //
second
value = Read ADC(); //
in
if (value<min) //
min=value;
if (value>max) //

max=value;

}

preprocessor directive that

main function

local variable declaration
printf function included in
A/D setup functions- built-
Internal clock always works

Set channel to ANO
do forever statement

Take 30 samples

Wait for a tenth of a

A/D read functions- built-
Find smallest sample

Find largest sample

printf ("\n\rMin: %2X Max: %2X\n\r",min,max);

} while (TRUE) ;

12

l ol-ebheal
A\

STATEMENTS

if

if-else

The if-else statement is used to make decisions.
The syntax is:

if (expr)
stmt-1;

[else
stmt-2;]

The expression is evaluated; if it is true stmt-1 is done. If it is false then stmt-2 is done.

else-if
This is used to make multi-way decisions.
The syntax is:

if (expr)
stmt;
[else if (expr)
stmt;]
[else
stmt;]
The expressions are evaluated in order; if any expression is true, the statement associated with

it is executed and it terminates the chain. If none of the conditions are satisfied the last else part
is executed.

Example:

if (x==25)
x=1;

else
x=x+1;

Also See: Statements

13

Statements

while

While is used as a loop/iteration statement.
The syntax is:

while (expr)
statement

The expression is evaluated and the statement is executed until it becomes false in which case
the execution continues after the statement.

Example:
while (get rtcc() !=0)
putc('n');

Also See: Statements

do-while

do-while: Differs from while and for loop in that the termination
condition is checked at the bottom of the loop rather than at the
top and so the body of the loop is always executed at least once.
The syntax is:

do
statement
while (expr);

The statement is executed; the expr is evaluated. If true, the
same is repeated and when it becomes false the loop terminates.

Also See: Statements , While

for

For is also used as a loop/iteration statement.
The syntax is:

for (exprl;expr2;expr3)
statement

The expressions are loop control statements. exprl is the
initialization, expr2 is the termination check and expr3 is re-
initialization. Any of them can be omitted.

Example:

for (i=1;1i<=10;++1)

printf ("Su\r\n",1i);

Also See: Statements

14

Statements

switch

Switch is also a special multi-way decision maker.
The syntax is

switch (expr) {
case constl: stmt sequence;
break;

taefault:stmt]
}

This tests whether the expression matches one of the constant values and branches
accordingly.

If none of the cases are satisfied the default case is executed. The break causes an immediate
exit, otherwise control falls through to the next case.

Example:
switch (cmd) {
case O:printf("cmd 0");

break;
case l:printf("cmd 1");
break;
default:printf ("bad cmd") ;
break; }

Also See: Statements

return

return

A return statement allows an immediate exit from a switch or a loop or function and also
returns a value.

The syntax is:

return(expr);

Example:
return (5);

Also See: Statements

15

Statements

goto

goto
The goto statement cause an unconditional branch to the label.

The syntax is:
goto label,

A label has the same form as a variable name, and is followed by a colon. The goto's
are used sparingly, if at all.

Example:
goto loop;

Also See: Statements

label

label

The label a goto jumps to.
The syntax is:

label: stmnt;

Example:
loop: i++;

Also See: Statements

break

break.
The break statement is used to exit out of a control loop. It provides an early exit
from while, for ,do and switch.
The syntax is
break;
It causes the innermost enclosing loop (or switch) to be exited immediately.

Example:
break;

Also See: Statements

16

Statements

continue

The continue statement causes the next iteration of the enclosing loop(While, For,
Do) to begin.
The syntax is:

continue;

It causes the test part to be executed immediately in case of do and while and the
control passes the
re-initialization step in case of for.

Example:
continue;

Also See: Statements

expr

The syntax is:
expr;

Example:
i=1;

Also See: Statements

Statement: ;

Example:

4

Also See: Statements

stmt

Zero or more semi-colon separated.
The syntax is:

{[stmt]}

Example:

{a=1;
b=1;}

Also See: Statements

17

;o
L\

EXPRESSIONS

Operators

%=
%

Addition Operator

Addition assignment operator, x+=y, is the same as x=x+y
Bitwise and assignment operator, x&=y, is the same as
X=X&Y

Address operator

Bitwise and operator

Bitwise exclusive or assignment operator, x=y, is the same
as x=x"y

Bitwise exclusive or operator

Bitwise inclusive or assignment operator, xl=y, is the same
as x=xly

Bitwise inclusive or operator

Conditional Expression operator

Decrement

Division assignment operator, x/=y, is the same as x=x/y
Division operator

Equality

Greater than operator

Greater than or equal to operator

Increment

Indirection operator

Inequality

Left shift assignment operator, x<<=y, is the same as
X=X<<y

Less than operator

Left Shift operator

Less than or equal to operator

Logical AND operator

Logical negation operator

Logical OR operator

Modules assignment operator x%-=y, is the same as x=x%y
Modules operator

Multiplication assignment operator, x*=y, is the same as
X=X*y

18

Expressions

* Multiplication operator
~ One's complement operator
>>= Right shift assignment, x>>=y, is the same as x=x>>y
>> Right shift operator
-> Structure Pointer operation
Subtraction assignment operator, x-=y, is the same as x=x-
y
- Subtraction operator
sizeof Determines size in bytes of operand

Operator Precedence
PIN DESCENDING PRECEDENCE

(expr)

++expr expr++ - =expr expr - -
lexpr ~expr +expr =expr
(type)expr *expr &value sizeof(type)
expr*expr exprlexpr expr%expr

expr+expr expr-expr

expr<<expr expr>>expr

expr<expr expr<=expr expr>expr expr>=expr
expr==expr expri=expr

expr&expr

expriexpr

expr | expr

expr&& expr

expr || expr

expr ? expr: expr

Ivalue = expr Ivalue+=expr Ivalue-=expr

Ivalue*=expr Ivalue/=expr Ivalue%=expr

Ivalue>>=expr lvalue<<=expr Ivalue &=expr

Ivalue=expr Ivalue|=expr

expr, expr

(Operators on the same line are equal in precedence)

19

Expressions

Reference Parameters

The compiler has limited support for reference parameters. This increases the readability of
code and the efficiency of some inline procedures. The following two procedures are the

same. The one with reference parameters will be implemented with greater efficiency when it is
inline.

funct a(int*x,int*y) {
/*Traditional*/
1if (*x!=5)
*y=*x+3;

}

funct a(&a, &b);

funct b (inté&x,intéy) {
/*Reference params*/
if (x!=5)
y=x+3;
}

funct b(a,b);

Variable Argument Lists

The compiler supports a variable number of parameters. This works like the ANSI requirements
except that it does not require at least one fixed parameter as ANSI does. The function can be
passed any number of variables and any data types. The access functions are VA_START,
VA_ARG, and VA_END. To view the number of arguments passed, the NARGS function can be
used.

/%
stdarg.h holds the macros and va list data type needed for variable
number of parameters.

*/
#include <stdarg.h>

A function with variable number of parameters requires two things. First, it requires the ellipsis
(...), which must be the last parameter of the function. The ellipsis represents the variable
argument list. Second, it requires one more variable before the ellipsis (...). Usually you will use
this variable as a method for determining how many variables have been pushed onto the
ellipsis.

20

Expressions

Here is a function that calculates and returns the sum of all variables:
int Sum(int count, ...)
{
//a pointer to the argument list
va list al;
int x, sum=0;
//start the argument list
//count is the first variable before the ellipsis
va_start (al, count);
while (count--) {
//get an int from the list
x = var_arg(al, int);
sum += x;
}
//stop using the list
va_end(al) ;
return (sum) ;

Some examples of using this new function:
x=Sum (5, 10, 20, 30, 40, 50);
y=Sum (3, a, b, c);

Default Parameters

Default parameters allows a function to have default values if nothing is passed to it when

called.
int mygetc(char *c, int n=100) {
}

This function waits n milliseconds for a character over RS232. If a character is received, it saves
it to the pointer ¢ and returns TRUE. If there was a timeout it returns FALSE.

//gets a char, waits 100ms for timeout
mygetc (&c) ;

//gets a char, waits 200ms for a timeout
mygetc (&c, 200);

Overloaded Functions

Overloaded functions allow the user to have multiple functions with the same name, but they
must accept different parameters. The return types must remain the same.

Here is an example of function overloading: Two functions have the same name but differ in the
types of parameters. The compiler determines which data type is being passed as a parameter
and calls the proper function.

21

Expressions

This function finds the square root of a long integer variable.

long FindSquareRoot (long n) {
}

This function finds the square root of a float variable.

float FindSquareRoot (float n) {
}

FindSquareRoot is now called. If variable is of long type, it will call the first FindSquareRoot()
example. If variable is of float type, it will call the second FindSquareRoot() example.

result=FindSquareRoot (variable) ;

22

V' of o4

- '®

Basic and Special types
This section describes what the basic data types and specifiers
are and how variables can be declared using those types. In C all
the variables should be declared before they are used. They can
be defined inside a function (local) or outside all functions
(global). This will affect the visibility and life of the variables.
Basic Types

Range
Type-Specifier Size Unsigned Signed Digits
intl 1 bit number Otol N/A 1/2
int8 8 bit number 0to 255 -12810 127 2-3
int16 16 bit number 0 to 65535 ~32768 10 32767 4-5
int32 32 bit number 0 to 4294967295 ~2147483648 to 2147483047 9-10
: . 0to -140737488355328 to
Int48 A8 bitnumber 5g1474976710655 140737488355327 14-15
: . -9223372036854775808 to
int64 64 bit number N/A 9223372036854775807 18-19
floats2 32 bit float 1.5x 10 to 3.4 x 10% 7.8
C Standard Type Default Type
short intl
char unsigned int8
int int8
long intl6
long long int32
float float32
double N/A

Type-Qualifier
Variable is globally active and initialized to 0. Only accessible from this compilation
static unit.

Variable exists only while the procedure is active. This is the default and AUTO need
auto not be used.

double Is a reserved word but is not a supported data type.

23

extern

register

_ fixed(n)

unsigned

signed

volatile

const

rom

void
readonly

_bif

Special types

Data Definitions

External variable used with multiple compilation units. No storage is allocated. Is
used to make otherwise out of scope data accessible. there must be a non-extern
definition at the global level in some compilation unit.

Is allowed as a qualifier however, has no effect.

Creates a fixed point decimal number where n is how many decimal places to
implement.

Data is always positive. This is the default data type if not specified.
Data can be negative or positive.

Tells the compiler optimizer that this variable can be changed at any point during
execution.

Data is read-only. Depending on compiler configuration, this qualifier may just make
the data read-only -AND/OR- it may place the data into program memory to save
space. (see #DEVICE const=)

Forces data into program memory. Pointers may be used to this data but they can not
be mixed with RAM pointers.

Built-in basic type. Type void is used to indicate no specific type in places where a
type is required.

Writes to this variable should be dis-allowed

Used for compiler built in function prototypes on the same line

enum enumeration type: creates a list of integer constants.

enum

{[id [= cexpr]] }
L]

One or more comma separated

The id after enum is created as a type large enough to the
largest constant in the list. The ids in the list are each created as
a constant. By default the first id is set to zero and they
increment by one. If a = cexpr follows an id that id will have the
value of the constant expression an d the following list will

increment by one.

24

Data Definitions

For example:
enum colors{red, green=2, blue}; // red will be 0, green will be 2 and
// blue will be 3

Struct structure type: creates a collection of one or more
variables, possibly of different types, grouped together as a

single unit.
A
structl*1 Il 4y e qualifier [*] id [:bits]; }[id]
One or more, Zero
semi-colon or more
separated
For example:
struct data record {
int al2];
int b : 2; /*2 bits */
int c : 3; /*3 bits*/
int d;
} data var; //data_record is a structure type

//data _var is a variable

Union type: holds objects of different types and sizes, with the
compiler keeping track of size and alignment requirements. They
provide a way to manipulate different kinds of data in a single
area of storage.

union[*] [id] { type-qualifier [*] id [:bits]; }[id]
One or more,

: Zero
semi-colon or more
separated

For example:

union u_tab {
int ival;

long 1lval;
float fwval;
}i // u_tag is a union type that can hold a float

If typedef is used with any of the basic or special types it creates a
new type name that can be used in declarations. The identifier

25

Data Definitions

does not allocate space but rather may be used as a type specifier
in other data definitions.

typedef [type-qualifier] [type-specifier] [declarator];

For example:
typedef int mybyte; // mybyte can be used in
declaration to

// specify the int type
typedef short mybit; // mybyte can be used in
declaration to

// specify the int type
typedef enum {red, green=2,blue}colors; //colors can be used to
declare

//variables of this enum type

_ _ADDRESS__: A predefined symbol _ ADDRESS__ may be
used to indicate a type that must hold a program memory
address.

For example:
ADDRESS testa = 0x1000 //will allocate 16 bits for test a and
//initialize to 0x1000

Declarations

A declaration specifies a type qualifier and a type specifier, and is followed by a list
of one or more variables of that type.
For example:

int a,b,c,d;

mybit e, f;

mybyte g[3]1[2];

char *h;

colors j;

struct data record data[l0];

static int i;

extern long j;

Variables can also be declared along with the definitions of the special types.
For example:
enum colors{red, green=2,blue}i,j,k; // colors is the enum type and
i, 3,k
//are variables of that type

Non-RAM Data Definitions

CCS C compiler also provides a custom qualifier addressmod which can
be used to define a memory region that can be RAM, program eeprom,
data eeprom or external memory. Addressmod replaces the older
typemod (with a different syntax).

26

Data Definitions

The usage is :

addressmod

(name, read function,write function,start address,end address,
share) ;

Where the read_function and write_function should be blank for RAM, or
for other memory should be the following prototype:

// read procedure for reading n bytes from the memory starting at
location addr
void read function(int32 addr,int8 *ram, int nbytes) {

}

//write procedure for writing n bytes to the memory starting at
location addr
void write_ function(int32 addr,int8 *ram, int nbytes) {

}

For RAM the share argument may be true if unused RAM in this area can be used by the
compiler for standard variables.

Example:
void DataEE Read(int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
*ram=read eeprom(addr) ;

}

void DataEE Write (int32 addr, int8 * ram, int bytes) {
int i;
for (i=0;i<bytes;i++, ram++,addr++)
write eeprom(addr, *ram) ;

}

addressmod (DataEE,DataEE read,DataEE write,5,0xff);
// would define a region called DataEE between
// 0x5 and 0xff in the chip data EEprom.

void main (void)
{
int DataEE test;
int x,y;
x=12;
test=x; // writes x to the Data EEPROM
y=test; // Reads the Data EEPROM

Note: If the area is defined in RAM then read and write functions are not
required, the variables assigned in the memory region defined by the
addressmod can be treated as a regular variable in all valid expressions.
Any structure or data type can be used with an addressmod. Pointers
can also be made to an addressmod data type. The #type directive can
be used to make this memory region as default for variable allocations.

27

Data Definitions

The syntax is :
#type default=addressmodname // all the variable declarations
that

// follow will use this memory
region
#type default= // goes back to the default mode
For example:
Type default=emi //emi is the addressmod name
defined

char buffer([8192];
#include <memoryhog.h>
#type default=

Using Program Memory for Data

CCS C Compiler provides a few different ways to use program memory for data. The different
ways are discussed below:

Constant Data:

The const qualifier will place the variables into program memory. If the keyword const is used
before the identifier, the identifier is treated as a constant. Constants should be initialized and
may not be changed at run-time. This is an easy way to create lookup tables.

The rom Qualifier puts data in program memory with 3 bytes per instruction space. The address
used for ROM data is not a physical address but rather a true byte address. The & operator can
be used on ROM variables however the address is logical not physical.
The syntax is:
const type id[cexpr] = {value}
For example:
Placing data into ROM
const int table[l6]={0,1,2...15}
Placing a string into ROM
const char cstring[6]={"hello"}
Creating pointers to constants
const char *cptr;
cptr = string;

The #org preprocessor can be used to place the constant to specified address blocks.
For example:
The constant ID will be at 1C00.
#ORG 0x1C00, Ox1COF
CONST CHAR ID[10]= {"123456789"};

Note: Some extra code will precede the 123456789.
The function label_address can be used to get the address of the constant. The constant
variable can be accessed in the code. This is a great way of storing constant data in large
programs. Variable length constant strings can be stored into program memory.

A special method allows the use of pointers to ROM. This method does not contain extra code
at the start of the structure as does constant.

28

Data Definitions

For example:
char rom commands[] = {“put|get|status|shutdown”};

The compiler allows a non-standard C feature to implement a constant array of variable length
strings.
The syntax is:
const char id[n] [*] = { "string", "string" ...},

Where n is optional and id is the table identifier.

For example:
const char colors[] [*] = {"Red", "Green", "Blue"};

#ROM directive:
Another method is to use #rom to assign data to program memory.

The syntax is:
#rom address = {data, data, .. , data}

For example:
Places 1,2,3,4 to ROM addresses starting at 0x1000
#rom 0x1000 = {1, 2, 3, 4}
Places null terminated string in ROM
#rom 0x1000={"hello"}
This method can only be used to initialize the program memory.

Built-in-Functions:
The compiler also provides built-in functions to place data in program memory, they are:
° write program eeprom(address,data);
- Writes data to program memory
° write program memory (address, dataptr, count);
- Writes count bytes of data from dataptr to address in program memory.

Please refer to the help of these functions to get more details on their usage and limitations
regarding erase procedures. These functions can be used only on chips that allow writes to
program memory. The compiler uses the flash memory erase and write routines to implement
the functionality.

The data placed in program memory using the methods listed above can be read from width the
following functions:

e read program memory ((address, dataptr, count)

- Reads count bytes from program memory at address to RAM at dataptr.

These functions can be used only on chips that allow reads from program memory. The
compiler uses the flash memory read routines to implement the functionality.

29

Data Definitions

Function Definition

The format of a function definition is as follows:

[qualifier] id ([type-specifier id]) { [stmt]}

4 4 ! 1

Optional See Below Zero or more comma Zero or more Semi-colon
separated. separated. See
See Data Types Statements.

The qualifiers for a function are as follows:
e VOID

type-specifier

#separate

#inline

#int_..

When one of the above are used and the function has a prototype (forward declaration of the
function before it is defined) you must include the qualifier on both the prototype and function
definition.

A (non-standard) feature has been added to the compiler to help get around the problems
created by the fact that pointers cannot be created to constant strings. A function that has one
CHAR parameter will accept a constant string where it is called. The compiler will generate a
loop that will call the function once for each character in the string.

Example:
void lcd putc(char c) {

}

lcd putc ("Hi There.");

30

;o
L\

FUNCTIONAL OVERVIEW

12C

I2C™ is a popular two-wire communication protocol developed by Phillips. Many PIC
microcontrollers support hardware-based 12C™. CCS offers support for the hardware-based
I2C™ and a software-based master I2C™ device. (For more information on the hardware-based
I12C module, please consult the datasheet for you target device; not all PICs support 12C™.)

Relevant Functions:
i2c_start()
i2c_write(data)
i2c_read()

i2c_stop()

i2c_poll()

Relevant Preprocessor:

#USE 12C

Relevant Interrupts:
#INT_SSP
#INT_BUSCOL
#INT_I2C
#INT_BUSCOL2
#INT_SSP2

Relevant Include Files:

None, all functions built-in

Relevant getenv() Parameters:

I2C_SLAVE
I2C_MASTER

Example Code:

#define Device_SDA PIN_C3
#define Device_SLC PIN_C4

#use i2c(master,
sda=Device_SDA,
scl=Device_SCL)

Issues a start command when in the 12C master mode.
Sends a single byte over the 12C interface.

Reads a byte over the I12C interface.

Issues a stop command when in the 12C master mode.

Returns a TRUE if the hardware has received a byte in the
buffer.

Configures the compiler to support I2C™ to your
specifications.

12C or SPI activity

Bus Collision

I12C Interrupt (Only on 14000)

Bus Collision (Only supported on some PIC18's)

12C or SPI activity (Only supported on some PIC18's)

Returns a 1 if the device has 12C slave H/W
Returns a 1 if the device has a 12C master H/W

/I Pin defines

/I Configure Device as Master

31

BYTE data;
i2c_start();
i2c_write(data);
i2c_stop();

ADC

Functional Overview

// Data to be transmitted

/l Issues a start command when in the 12C master mode.
/l Sends a single byte over the 12C interface.

I/l Issues a stop command when in the 12C master mode.

These options let the user configure and use the analog to digital converter module. They are
only available on devices with the ADC hardware. The options for the functions and directives
vary depending on the chip and are listed in the device header file. On some devices there are
two independent ADC modules, for these chips the second module is configured using
secondary ADC setup functions (Ex. setup_ADC?2).

Relevant Functions:
setup_adc(mode)
setup_adc_ports(value)
set_adc_channel(channel)
read_adc(mode)

adc_done()

Relevant Preprocessor:
#DEVICE ADC=xx

Relevant Interrupts:
INT_AD
INT_ADOF

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

ADC_CHANNELS
ADC_RESOLUTION

Example Code:
#DEVICE ADC=10

Sets up the a/d mode like off, the adc clock etc.
Sets the available adc pins to be analog or digital.
Specifies the channel to be use for the a/d call.

Starts the conversion and reads the value. The mode
can also control the functionality.

Returns 1 if the ADC module has finished its conversion.

Configures the read_adc return size. For example, using
a PIC with a 10 bit A/D you can use 8 or 10 for xx- 8 will
return the most significant byte, 10 will return the full A/D
reading of 10 bits.

Interrupt fires when a/d conversion is complete
Interrupt fires when a/d conversion has timed out

Number of A/D channels
Number of bits returned by read_adc

32

Functional Overview

long value;

setup_adc(ADC_CLOCK_INTERNAL);//enables the a/d module
/land sets the clock to internal adc clock

setup_adc_ports(ALL_ANALOG); //sets all the adc pins to analog
set_adc_channel(0); /lthe next read_adc call will read channel 0
delay_us(10); /la small delay is required after setting the channel
/land before read
value=read_adc(); /Istarts the conversion and reads the result
/land store it in value
read_adc(ADC_START_ONLY); /lonly starts the conversion

value=read_adc(ADC_READ_ONLY); //reads the result of the last conversion and store it in
/Ivalue. Assuming the device hat a 10bit ADC module,
/Ivalue will range between 0-3FF. If #DEVICE ADC=8
had //been used instead the result will yield 0-FF. If
#DEVICE //ADC=16 had been used instead the result
will yield 0-//FFCO

Analog Comparator

These functions set up the analog comparator module. Only available in some devices.

Relevant Functions:

Enables and sets the analog comparator module. The options
setup_comparator(mode) vary depending on the chip. Refer to the header file for
details.

Relevant Preprocessor:
None

Relevant Interrupts:

Interrupt fires on comparator detect. Some chips have more

W eolial> than one comparator unit, and thus, more interrupts.
Relevant Include Files:

None, all functions built-in

Relevant getenv() Parameters:

Returns 1 if the device has a
comparator COMP

Example Code:
setup_comparator(A4_A5 NC_NC);
if(C1LOUT)

output_low(PIN_DO);

else

output_high(PIN_D1);

33

CAN Bus

Functional Overview

These functions allow easy access to the Controller Area Network (CAN) features included with
the MCP2515 CAN interface chip and the PIC18 MCU. These functions will only work with the
MCP2515 CAN interface chip and PIC microcontroller units containing either a CAN or an
ECAN module. Some functions are only available for the ECAN module and are specified by the
work ECAN at the end of the description. The listed interrupts are no available to the MCP2515

interface chip.
Relevant Functions:

can_init(void);

can_set_baud(void);

can_set_mode
(CAN_OP_MODE mode);

can_set_functional_mode
(CAN_FUN_OP_MODE mode);

can_set_id(int* addr, int32 id, intl ext);

can_get_id(int * addr, intl ext);

can_putd
(int32 id, int * data, int len,
int priority, intl ext, intl rtr);

can_getd
(int32 & id, int * data, int & len,
struct rx_stat & stat);

can_enable_rtr(PROG_BUFFER b);

can_disable_rtr(PROG_BUFFER b);

can_load_rtr

Initializes the CAN module and clears all the filters
and masks so that all messages can be received
from any ID.

Initializes the baud rate of the CAN bus to125kHz, if
using a 20 MHz clock and the default CAN-BRG
defines, it is called inside the can_init() function so
there is no need to call it.

Allows the mode of the CAN module to be changed
to configuration mode, listen mode, loop back mode,
disabled mode, or normal mode.

Allows the functional mode of ECAN modules to be
changed to legacy mode, enhanced legacy mode,
or first in firstout (fifo) mode. ECAN

Can be used to set the filter and mask ID's to the
value specified by addr. It is also used to set the ID
of the message to be sent.

Returns the ID of a received message.

Constructs a CAN packet using the given
arguments and places it in one of the available
transmit buffers.

Retrieves a received message from one of the CAN
buffers and stores the relevant data in the
referenced function parameters.

Enables the automatic response feature which
automatically sends a user created packet when a
specified ID is received. ECAN

Disables the automatic response feature. ECAN

Creates and loads the packet that will automatically

34

(PROG_BUFFER b, int * data, int len);

can_enable_filter(long filter);

can_disable_filter(long filter);

can_associate_filter_to_buffer

Functional Overview

transmitted when the triggering ID is received.
ECAN

Enables one of the extra filters included in the
ECAN module. ECAN

Disables one of the extra filters included in the
ECAN module. ECAN

(CAN_FILTER_ASSOCIATION_BUFFERS Used to associate a filter to a specific buffer. This

buffer, CAN_FILTER_ASSOCIATION
filter);

can_associate filter to_mask
(CAN_MASK_FILTER_ASSOCIATE
mask,
CAN_FILTER_ASSOCIATION filter);

can_fifo_getd(int32 & id,int * data,
int &len,struct rx_stat & stat);

Relevant Preprocessor:
None

Relevant Interrupts:

#int_canirx
#int_canwake
#int_canerr
#int_cantx0
#int_cantxl
#int_cantx2

#int_canrx0

#int_canrxl

Relevant Include Files:

can-mcp2510.c

allows only specific buffers to be filtered and is
available in the ECAN module. ECAN

Used to associate a mask to a specific buffer. This
allows only specific buffer to have this mask applied.
This feature is available in the ECAN module. ECAN

Retrieves the next buffer in the fifo buffer. Only
available in the ECON module while operating in fifo
mode. ECAN

This interrupt is triggered when an invalid packet is
received on the CAN.

This interrupt is triggered when the PIC is woken up
by activity on the CAN.

This interrupt is triggered when there is an error in
the CAN module.

This interrupt is triggered when transmission from
buffer 0 has completed.

This interrupt is triggered when transmission from
buffer 1 has completed.

This interrupt is triggered when transmission from
buffer 2 has completed.

This interrupt is triggered when a message is
received in buffer 0.

This interrupt is triggered when a message is
received in buffer 1.

Drivers for the MCP2510 and MCP2515 interface
chips

35

Functional Overview

can-18xxx8.c Drivers for the built in CAN module

can-18F4580.c Drivers for the build in ECAN module

Relevant getenv() Parameters:
none

Example Code:

can_init(); /[initializes the CAN bus

can_putd(0x300,data,8,3, TRUE,FALSE); // places a message on the CAN buss with
/I 1D = 0x300 and eight bytes of data pointed to by
/l “data”, the TRUE creates an extended ID, the
/I FALSE creates

can_getd(ID,data,len,stat); /I retrieves a message from the CAN bus storing the

/I ID in the ID variable, the data at the array pointed
to by

/I “data’, the number of data bytes in len, and
statistics

/I about the data in the stat structure.

CCP1

These options lets to configure and use the CCP module. There might be multiple CCP modules
for a device. These functions are only available on devices with CCP hardware. They operate in
3 modes: capture, compare and PWM. The source in capture/compare mode can be timerl or
timer3 and in PWM can be timer2 or timer4. The options available are different for different
devices and are listed in the device header file. In capture mode the value of the timer is copied
to the CCP_X register when the input pin event occurs. In compare mode it will trigger an action
when timer and CCP_x values are equal and in PWM mode it will generate a square wave.

Relevant Functions:
setup_ccpl(mode) Sets the mode to capture, compare or PWM. For capture
set_pwml_duty(value) The value is written to the pwml1 to set the duty.

Relevant Preprocessor:
None

Relevant Interrupts :
INT_CCP1 Interrupt fires when capture or compare on CCP1

Relevant Include Files:
None, all functions built-in

36

Functional Overview

Relevant getenv() parameters:
CCP1 Returns 1 if the device has CCP1

Example Code:

#int_ccpl

void isr()

{
rise = CCP_1; //[CCP_1 is the time the pulse went high
fall = CCP_2,; /ICCP_2 is the time the pulse went low
pulse_width = fall - rise; /Ipulse width

}

setup_ccpl(CCP_CAPTURE_RE);// Configure CCPL1 to capture rise
setup_ccp2(CCP_CAPTURE_FE); // Configure CCP2 to capture fall
setup_timer_1(T1_INTERNAL); // Start timer 1

Some chips also have fuses which allows to multiplex the ccp/pwm on different pins. So check
the fuses to see which pin is set by default. Also fuses to enable/disable pwm outputs.

CCP2, CCP3, CCP4, CCP5, CCP6
Similar to CCP1

Code Profile

Profile a program while it is running. Unlike in-circuit debugging, this tool grabs information
while the program is running and provides statistics, logging and tracing of it's execution. This
is accomplished by using a simple communication method between the processor and the ICD
with minimal side-effects to the timing and execution of the program. Another benefit of code
profile versus in-circuit debugging is that a program written with profile support enabled will run
correctly even if there is no ICD connected.

In order to use Code Profiling, several functions and pre-processor statements need to be
included in the project being compiled and profiled. Doing this adds the proper code profile
run-time support on the microcontroller.

See the help file in the Code Profile tool for more help
and usage examples.

Relevant Functions:

' Send a user specified message or variable to be displayed or
profileout() logged by the code profile tool.

Relevant Pre-Processor:

#use profile() Global configuration of the code profile run-time on the
microcontroller.

37

#profile

Relevant Interrupts:

Relevant Include Files:

Relevant getenv():

Example Code:

Configuration Memory

Functional Overview

Dynamically enable/disable specific elements of the profiler.

The profiler can be configured to use a microcontroller's
internal timer for more accurate timing of events over the
clock on the PC. This timer is configured using the #profile
pre-processor command.

None — all the functions are built into the compiler.

None

#include <18F4520.h>

#use delay(crystal=10MHz, clock=40MHz)

#profile functions, parameters

void main(void)

{
int adc;
setup_adc(ADC_CLOCK_INTERNAL);
set_adc_channel(0);

for(;;)
{
adc = read_adc();
profileout(adc);
delay_ms(250);
}
}

On all PIC18 Family of chips, the configuration memory is readable and writable. This
functionality is not available on the PIC16 Family of devices..

Relevant Functions:

write_configuration_memory
(ramaddress, count)

or

write_configuration_memory
(offset,ramaddress, count)

read_configuration_memory
(ramaddress,count)

Relevant Preprocessor:
None

Writes count bytes, no erase needed

Writes count bytes, no erase needed starting at byte
address offset

Read count bytes of configuration memory

38

Functional Overview

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For PIC18f452
intl6 data=0xc32;

write_configuration_memory(data,2); //writes 2 bytes to the configuration memory

DAC

These options let the user configure and use the digital to analog converter module. They are
only available on devices with the DAC hardware. The options for the functions and directives
vary depending on the chip and are listed in the device header file.

Relevant Functions:
setup_dac(divisor) Sets up the DAC e.g. Reference voltages

dac_write(value) Writes the 8-bit value to the DAC module
Sets up the d/a mode e.g. Right enable, clock divisor
Writes the 16-bit value to the specified channel

Relevant Preprocessor:

#USE DELAY (clock=20M, Aux: crystal=6M, clock=3M)
Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in
Relevant getenv()

parameters:
None

int8 i=0;
setup_dac

39

Functional Overview

(DAC_VSS_VDD);
while (TRUE) {

itt;

dac_write(i);

}

Data Eeprom

The data eeprom memory is readable and writable in some chips. These options lets the user
read and write to the data eeprom memory. These functions are only available in flash chips.

Relevant Functions:

(8 bit or 16 bit depending on the
device)

read_eeprom(address) Reads the data EEPROM memory location
write_eeprom(address, value) Erases and writes value to data EEPROM location address.

Reads N bytes of data EEPROM starting at memory location
address. The maximum return size is int64.

Reads from EEPROM to fill variable starting at address
Reads N bytes, starting at address, to pointer

Writes value to EEPROM address

Writes N bytes to address from pointer

Relevant Preprocessor:

#ROM address={list} Can also be used to put data EEPROM memory data into the
hex file.
write_eeprom = noint Allows interrupts to occur while the write_eeprom() operations

is polling the done bit to check if the write operations has
completed. Can be used as long as no EEPROM operations
are performed during an ISR.

Relevant Interrupts:
INT_EEPROM Interrupt fires when EEPROM write is complete

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
DATA_EEPROM Size of data EEPROM memory.

Example Code:

For 18F452 /linserts this data into the hex file. The data eeprom address
#rom 0xf00000={1,2,3,4,5} /[differs for different family of chips. Please refer to the
/lprogramming specs to find the right value for the device

40

Functional Overview

write_eeprom(0x0,0x12); /Iwrites 0x12 to data eeprom location O
value=read_eeprom(0x0); /Ireads data eeprom location 0x0 returns 0x12

#ROM 0x007FFC00={1,2,3,4,5} /I Inserts this data into the hex file

/I The data EEPROM address differs between PICs
/I Please refer to the device editor for device specific values.

write_eeprom(0x10, 0x1337); /l Writes 0x1337 to data EEPROM location 10.
value=read_eeprom(0x0); /I Reads data EEPROM location 10 returns 0x1337.

Data Signal Modulator

The Data Signal Modulator (DSM) allows the user to mix a digital data stream (the “modulator
signal”) with a carrier signal to produce a modulated output. Both the carrier and the modulator
signals are supplied to the DSM module, either internally from the output of a peripheral, or
externally through an input pin. The modulated output signal is generated by performing a
logical AND operation of both the carrier and modulator signals and then it is provided to the
MDOUT pin. Using this method, the DSM can generate the following types of key modulation
schemes:

. Frequency Shift Keying (FSK)
. Phase Shift Keying (PSK)
. On-Off Keying (OOK)

Relevant Functions:

(8 bit or 16 bit depending on the
device)

setup_dsm(mode,source,carrier) Configures the DSM module and selects the source signal and
carrier signals.

setup_dsm(TRUE) Enables the DSM module.

setup_dsm(FALSE) Disables the DSM module.

Relevant Preprocessor:

None

Relevant Interrupts:

None

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters: None

41

Example Code:
setup_dsm(DSM_ENABLED |

DSM_OUTPUT_ENABLED,
DSM_SOURCE_UARTY,
DSM_CARRIER_HIGH_VSS |

DSM_CARRIER_LOW_OC1);

if(input(PIN_BO))
setup_dsm(FALSE);

else
setup_dsm(TRUE);

External Memory

Functional Overview

/[Enables DSM module with the output enabled and selects
UART1

/las the source signal and VSS as the high carrier signal and OC1's
/IPWM output as the low carrier signal.

Disable DSM module

Enable DSM module

Some PIC18 devices have the external memory functionality where the external memory can be
mapped to external memory devices like (Flash, EPROM or RAM). These functions are
available only on devices that support external memory bus.

General Purpose I/O

These options let the user configure and use the 1/O pins on the device. These functions will
affect the pins that are listed in the device header file.

Relevant Functions:
output_high(pin)
output_low(pin)
output_float(pin)

output_x(value)
output_bit(pin,value)
input(pin)
input_state(pin)

set_tris_x(value)

input_change_x()

Relevant Preprocessor:

#USE STANDARD_IO(port)

Sets the given pin to high state.
Sets the given pin to the ground state.

Sets the specified pin to the output mode. This will allow the pin
to float high to represent a high on an open collector type of
connection.

Outputs an entire byte to the port.
Outputs the specified value (0,1) to the specified 1/O pin.
The function returns the state of the indicated pin.

This function reads the level of a pin without changing the
direction of the pin as INPUT() does.

Sets the value of the I/O port direction register. A '1' is an input
and '0' is for output.

This function reads the levels of the pins on the port, and
compares them to the last time they were read to see if there was
a change, 1 if there was, 0 if there wasn't.

This compiler will use this directive be default and it will
automatically inserts code for the direction register whenever an

42

#USE FAST_IO(port)

#USE FIXED_IO
(port_outputs=;in,pin?)

Relevant Interrupts:
None

Relevant Include Files:
None, all functions built-in

Functional Overview

I/O function like output_high() or input() is used.

This directive will configure the 1/0O port to use the fast method of
performing I/O. The user will be responsible for setting the port
direction register using the set_tris_x() function.

This directive set particular pins to be used an input or output,
and the compiler will perform this setup every time this pin is
used.

Relevant getenv() parameters:

PIN:pb

Example Code:
#use fast io(b)

Int8 Tris value= 0xO0F;

intl Pin value;

set tris b(Tris value);
output high(PIN B7);

If (input (PIN_BO0)) {
output high (PIN B7);}

Internal LCD

Returns a 1 if bit b on port p is on this part

//Sets BO:B3 as input and B4:B7 as output
//Set the pin B7 to High
//Read the value on pin BO, set B7 to low if pin BO is high

Some families of PIC microcontrollers can drive a glass segment LCD directly, without the need
of an LCD controller. For example, the PIC16C92X, PIC16F91X, and PIC16F193X series of
chips have an internal LCD driver module.

Relevant Functions:

setup_lcd
(mode, prescale, [segments])

lcd_symbol
(symbol, segment_b7 ...
segment_b0)

Configures the LCD Driver Module to use the specified mode,
timer prescaler, and segments. For more information on valid
modes and settings, see the setup_lcd() manual page and the
*.h header file for the PIC micro-controller being used.

The specified symbol is placed on the desired segments, where
segment_b7 to segment_bO represent SEGXX pins on the PIC
micro-controller. For example, if bit O of symbol is set, then
segment_bO is set, and if segment_b0 is 15, then SEG15 would
be set.

43

Functional Overview

Icd_load(ptr, offset, length) Writes length bytes of data from pointer directly to the LCD
segment memory, starting with offset.

lcd_contrast (contrast) Passing a value of 0 — 7 will change the contrast of the LCD
segments, 0 being the minimum, 7 being the maximum.

Relevant Preprocessor:
None

Relevant Interrupts:
#int_Icd LCD frame is complete, all pixels displayed

Relevant Inlcude Files: None, all functions built-in to the compiler.

Relevant getenv() Parameters:
LCD Returns TRUE if the device has an Internal LCD Driver Module.

Example Program:
/l How each segment of the LCD is set (on or off) for the ASCII digits O to 9.

byte CONST DIGIT_MAP[10] = {OXFC, 0x60, 0XxDA, 0xF2, 0x66, 0xB6, OXBE, OXEO, OXFE,
OxE6};

/I Define the segment information for the first digit of the LCD

#define DIGIT1 COM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28,
COM2+20, COM3+18

/I Displays the digits 0 to 9 on the first digit of the LCD.
for(i=0;i<=9; i++) {
lcd_symbol(DIGIT_MAPJi], DIGIT1);
delay_ms(1000);

}

Internal Oscillator

Many chips have internal oscillator. There are different ways to configure the internal oscillator.
Some chips have a constant 4 Mhz factory calibrated internal oscillator. The value is stored in
some location (mostly the highest program memory) and the compiler moves it to the osccal
register on startup. The programmers save and restore this value but if this is lost they need to
be programmed before the oscillator is functioning properly. Some chips have factory calibrated
internal oscillator that offers software selectable frequency range(from 31Kz to 8 Mhz) and they
have a default value and can be switched to a higher/lower value in software. They are also
software tunable. Some chips also provide the PLL option for the internal oscillator.

Relevant Functions:

setup_oscillator(mode, Sets the value of the internal oscillator and also tunes it. The
finetune) options vary depending on the chip and are listed in the device

44

Functional Overview

header files.
Relevant Preprocessor:
None

Relevant Interrupts:

INT_OSC_FAIL or INT_OSCF Interrupt fires when the system oscillator fails and the processor
switches to the internal oscillator.

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:

None

Example Code:
For PIC18F8722
setup_oscillator(OSC_32MHZ); //sets the internal oscillator to 32MHz (PLL enabled)

If the internal oscillator fuse option are specified in the #fuses and a valid clock is specified in
the #use delay(clock=xxx) directive the compiler automatically sets up the oscillator. The #use
delay statements should be used to tell the compiler about the oscillator speed.

Interrupts

The following functions allow for the control of the interrupt subsystem of the microcontroller.
With these functions, interrupts can be enabled, disabled, and cleared. With the preprocessor
directives, a default function can be called for any interrupt that does not have an associated
ISR, and a global function can replace the compiler generated interrupt dispatcher.

Relevant Functions:

disable_interrupts() Disables the specified interrupt.
enable_interrupts() Enables the specified interrupt.
ext_int_edge() Enables the edge on which the edge interrupt should trigger. This

can be either rising or falling edge.

clear_interrupt() This function will clear the specified interrupt flag. This can be
used if a global isr is used, or to prevent an interrupt from being
serviced.

interrupt_active() This function checks the interrupt flag of specified interrupt and
returns true if flag is set.

interrupt_enabled() This function checks the interrupt enable flag of the specified

interrupt and returns TRUE if set.
Relevant Preprocessor:

45

#DEVICE HIGH_INTS=

#INT_XXX fast

Relevant Interrupts:
#int_default

#int_global

#int_xxx

Relevant Include Files:
none, all functions built in.

Relevant getenv()
Parameters:
none

Example Code:
#int_timer0
void timerQinterrupt()

enable_interrupts(TIMERO);
disable_interrtups(TIMERO);

clear_interrupt(TIMERO);

Low Voltage Detect

Functional Overview

This directive tells the compiler to generate code for high priority
interrupts.

This directive tells the compiler that the specified interrupt should
be treated as a high priority interrupt.

This directive specifies that the following function should be called
if an interrupt is triggered but no routine is associated with that
interrupt.

This directive specifies that the following function should be called
whenever an interrupt is triggered. This function will replace the
compiler generated interrupt dispatcher.

This directive specifies that the following function should be called
whenever the xxx interrupt is triggered. If the compiler generated
interrupt dispatcher is used, the compiler will take care of clearing
the interrupt flag bits.

/I #int_timer associates the following function with the
/I interrupt service routine that should be called

/I enables the timer0 interrupt

/I disables the timer0 interrupt

/I clears the timerO interrupt flag

These functions configure the high/low voltage detect module. Functions available on the chips
that have the low voltage detect hardware.

Relevant Functions:

setup_low_volt_detect(mode)

Sets the voltage trigger levels and also the mode (below or
above in case of the high/low voltage detect module). The
options vary depending on the chip and are listed in the
device header files.

46

Functional Overview

Relevant Preprocessor:
None

Relevant Interrupts :
INT_LOWVOLT Interrupt fires on low voltage detect

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:
For PIC18F8722

setup_low_volt_detect
(LvVD_36|LVD_TRIGGER_ABOVE);//sets the trigger level as 3.6 volts and

/I trigger direction as above. The interrupt
/lif enabled is fired when the voltage is
/labove 3.6 volts.

PMP/EPMP

The Parallel Master Port (PMP)/Enhanced Parallel Master Port (EPMP) is a parallel 8-bit/16-bit
I/0 module specifically designed to communicate with a wide variety of parallel devices. Key

features of the PMP module are:

- 8 or 16 Data lines

- Up to 16 or 32 Programmable Address Lines
- Up to 2 Chip Select Lines

- Programmable Strobe option

- Address Auto-Increment/Auto-Decrement

- Programmable Address/Data Multiplexing

- Programmable Polarity on Control Signals

- Legacy Parallel Slave(PSP) Support

- Enhanced Parallel Slave Port Support

- Programmable Wait States

Relevant Functions:

This will setup the PMP/EPMP module for various mode and

specifies which address lines to be used.

setup_psp This will setup the PSP module for various mode and specifies

(options,address_mask) which address lines to be used.

setup_pmp_csx(options,[offset]) Sets up the Chip Select X Configuration, Mode and Base

Address registers

setup_psp_es(options) Sets up the Chip Select X Configuration and Mode registers

Write the data byte to the next buffer location.

47

Functional Overview

This will write a byte of data to the next buffer location or will
write a byte to the specified buffer location.

Reads a byte of data.

psp_read() will read a byte of data from the next buffer
location and psp_read (address) will read the buffer location
address.

Configures the address register of the PMP module with the
destination address during Master mode operation.

This will return the status of the output buffer underflow bit.
This will return the status of the input buffers.

psp_input_full() This will return the status of the input buffers.
This will return the status of the output buffers.

psp_output_full() This will return the status of the output buffers.

Relevant Preprocessor:

None

Relevant Interrupts :
#INT_PMP Interrupt on read or write strobe

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
None

Example Code:

setup_pmp(PAR_ENABLE | Sets up Master mode with address lines PMAO:PMA7
PAR_MASTER_MODE_1 |

PAR_STOP_IN_IDLE,Ox00FF);

If (pmp_output_full ()

{
pmp_write(next_byte);

}

Power PWM

These options lets the user configure the Pulse Width Modulation (PWM) pins. They are only
available on devices equipped with PWM. The options for these functions vary depending on
the chip and are listed in the device header file.

Relevant Functions:

48

Functional Overview

setup_power_pwm(config) Sets up the PWM clock, period, dead time etc.

setup_power_pwm_pins(module x) Configure the pins of the PWM to be in
Complimentary, ON or OFF mode.

set_power_pwmx_duty(duty) Stores the value of the duty cycle in the PDCXL/H
register. This duty cycle value is the time for
which the PWM is in active state.

set_power_pwm_override(pwm,override,valu This function determines whether the OVDCONS
e) or the PDC registers determine the PWM output .

Relevant Preprocessor:
None

Relevant Interrupts:

#INT_PWMTB PWM Timebase Interrupt (Only available on
PIC18XX31)

Relevant getenv() Parameters:
None

Example Code:
long duty_cycle, period;

/I Configures PWM pins to be ON,OFF or in Complimentary mode.
setup_power_pwm_pins(PWM_COMPLEMENTARY ,PWM_OFF, PWM_OFF, PWM_OFF);

//Sets up PWM clock , postscale and period. Here period is used to set the

//PWM Frequency as follows:

/[Frequency = Fosc / (4 * (period+1) *postscale)
setup_power_pwm(PWM_CLOCK_DIV_4|PWM_FREE_RUN,1,0,period,0,1,0);

set_power_pwmO_duty(duty cycle)); /I Sets the duty cycle of the PWM 0,1 in
/IComplementary mode

49

Functional Overview

Program Eeprom

The Flash program memory is readable and writable in some chips and is just readable in
some. These options lets the user read and write to the Flash program memory. These
functions are only available in flash chips.

Relevant Functions:

read_program_eeprom(address) Reads the program memory location (16 bit or
32 hit depending on the device).

write_program_eeprom(address, value) Writes value to program memory location
address.

erase_program_eeprom(address) Erases FLASH_ERASE_SIZE bytes in program
memory.

write_program_memory(address,dataptr,count) Writes count bytes to program memory from
dataptr to address. When address is a mutiple
of FLASH_ERASE_SIZE an erase is also
performed.

read_program_memory(address,dataptr,count) Read count bytes from program memory at
address to dataptr.

Relevant Preprocessor:

#ROM address={list} Can be used to put program memory data into
the hex file.
#DEVICE(WRITE_EEPROM=ASYNC) Can be used with #DEVICE to prevent the write

function from hanging. When this is used make
sure the eeprom is not written both inside and
outside the ISR.

Relevant Interrupts:
INT_EEPROM Interrupt fires when eeprom write is complete.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters

PROGRAM_MEMORY Size of program memory
READ_PROGRAM Returns 1 if program memory can be read
FLASH WRITE_SIZE Smallest number of bytes written in flash
FLASH_ERASE_SIZE Smallest number of bytes erased in flash

50

Example Code:

Functional Overview

For 18F452 where the write size is 8 bytes and erase size is 64 bytes

#rom 0xa00={1,2,3,4,5}
erase_program_eeprom(0x1000);
write_program_eeprom(0x1000,0x1234);
value=read_program_eeprom(0x1000);
write_program_memory(0x1000,data,8);

read_program_memory(0x1000,value,8);

erase_program_eeprom(0x1000);

write_program_memory(0x1010,data,8);
read_program_memory(0x1000,value,8);

/linserts this data into the hex file.
llerases 64 bytes strting at 0x1000
/Iwrites 0x1234 to 0x1000

/lreads 0x1000 returns 0x1234

/lerases 64 bytes starting at 0x1000 as 0x1000
is a multiple

/lof 64 and writes 8 bytes from data to 0x1000
/lreads 8 bytes to value from 0x1000
llerases 64 bytes starting at 0x1000
/lwrites 8 bytes from data to 0x1000
/lreads 8 bytes to value from 0x1000

For chips where getenv("FLASH_ERASE_SIZE") > getenv("FLASH_WRITE_SIZE")

WRITE_PROGRAM_EEPROM -

WRITE_PROGRAM_MEMORY -

ERASE_PROGRAM_EEPROM -

Writes 2 bytes,does not erase (use
ERASE_PROGRAM_EEPROM)

Writes any number of bytes,will erase a block
whenever the first (lowest) byte in a block is
written to. If the first address is not the start of a
block that block is not erased.

Will erase a block. The lowest address bits are
not used.

For chips where getenv("FLASH_ERASE_SIZE") = getenv("FLASH_WRITE_SIZE")

WRITE_PROGRAM_EEPROM -
WRITE_PROGRAM_MEMORY -

ERASE_PROGRAM_EEPROM -

Writes 2 bytes, no erase is needed.

Writes any number of bytes, bytes outside the
range of the write block are not changed. No
erase is needed.

Not available.

51

PSP

Functional Overview

These options let to configure and use the Parallel Slave Port on the supported devices.

Relevant Functions:
setup_psp(mode)
psp_output_full()

psp_input_full()
psp_overflow()

Relevant Preprocessor:
None

Relevant Interrupts :
INT_PSP

Relevant Include Files:
None, all functions built-in

Relevant getenv()
parameters:

PSP

Example Code:
while(psp_output_full());
psp_data=command;
while(linput_buffer_full());
if (psp_overflow())

error=true
else
data=psp_data;

Enables/disables the psp port on the chip

Returns 1 if the output buffer is full(waiting to be read by the
external bus)

Returns 1 if the input buffer is full(waiting to read by the cpu)

Returns 1 if a write occurred before the previously written byte
was read

Interrupt fires when PSP data is in

Returns 1 if the device has PSP

/Iwaits till the output buffer is cleared
/hwrites to the port
/waits till input buffer is cleared

/lif there is an overflow set the error flag

/lif there is no overflow then read the port

52

Functional Overview

QEI

The Quadrature Encoder Interface (QEI) module provides the interface to incremental encoders
for obtaining mechanical positional data.

Relevant Functions:

setup_qei(options, filter,maxcount) Configures the QEI module.

gei_status() Returns the status of the QUI module.
gei_set_count(value) Write a 16-bit value to the position counter.
gei_get count() Reads the current 16-bit value of the position counter.

Relevant Preprocessor:

None

Relevant Interrupts :

#INT_QEI Interrupt on rollover or underflow of the position counter.

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:

None

Example Code:

int16 Value;
setup_qei(QEI_MODE_X2 | Setup the QEI module
QEI_TIMER_INTERNAL,

QEI_FILTER_DIV_2,QEI__ FORWARD);

Value = qei_get_count(); Read the count.

53

RS232 1/0

Functional Overview

These functions and directives can be used for setting up and using RS232 1/O functionality.

Relevant Functions:

getc() or getch()
getchar() or fgetc()

gets() or fgets()

putc() or putchar() or
fputc()

puts() or fputs()

printf() or fprintf()

kbhit()

setup_uart(baud,[stream])

or

Gets a character on the receive pin(from the specified stream
in case of fgetc, stdin by default). Use KBHIT to check if the
character is available.

Gets a string on the receive pin(from the specified stream in
case of fgets, STDIN by default). Use getc to receive each
character until return is encountered.

Puts a character over the transmit pin(on the specified stream
in the case of fputc, stdout by default)

Puts a string over the transmit pin(on the specified stream in
the case of fputc, stdout by default). Uses putc to send each
character.

Prints the formatted string(on the specified stream in the case
of fprintf, stdout by default). Refer to the printf help for details
on format string.

Return true when a character is received in the buffer in case
of hardware RS232 or when the first bit is sent on the RCV pin
in case of software RS232. Useful for polling without waiting in
getc.

setup_uart_speed(baud,[stream]) Used to change the baud rate of the hardware UART at run-

assert(condition)

perror(message)

putc_send() or fputc_send()

rcv_buffer_bytes()

time. Specifying stream is optional. Refer to the help for more
advanced options.

Checks the condition and if false prints the file name and line
to STDERR. Will not generate code if #DEFINE NODEBUG is
used.

Prints the message and the last system error to STDERR.
When using transmit buffer, used to transmit data from buffer.

See function description for more detail on when needed.

When using receive buffer, returns the number of bytes in
buffer that still need to be retrieved.

54

Functional Overview

tx_buffer_bytes() When using transmit buffer, returns the number of bytes in
buffer that still need to be sent.

tx_buffer_full() When using transmit buffer, returns TRUE if transmit buffer is
full.

receive_buffer_full() When using receive buffer, returns TRUE if receive buffer is
full.

Relevant Interrupts:

INT_RDA Interrupt fires when the receive data available

INT_TBE Interrupt fires when the transmit data empty

Some chips have more than one hardware uart, and hence more interrupts.

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

UART Returns the number of UARTS on this PIC

AUART Returns true if this UART is an advanced UART

UART_RX Returns the receive pin for the first UART on this PIC (see
PIN_XX)

UART_TX Returns the transmit pin for the first UART on this PIC

UART2_RX Returns the receive pin for the second UART on this PIC

UART2_TX TX — Returns the transmit pin for the second UART on this
PIC

Example Code:

/* configure and enable uart, use first hardware UART on PIC */

#use rs232(uartl, baud=9600)

[* print a string */

printf(“enter a character”);

[* get a character */

if (kbhit()) /lcheck if a character has been received
¢ = getc(); /lread character from UART

55

RTOS

Functional Overview

These functions control the operation of the CCS Real Time Operating System (RTOS). This
operating system is cooperatively multitasking and allows for tasks to be scheduled to run at
specified time intervals. Because the RTOS does not use interrupts, the user must be careful to
make use of the rtos_yield() function in every task so that no one task is allowed to run forever.

Relevant Functions:
rtos_run()

rtos_terminate()

rtos_enable(task)

rtos_disable(task)

rtos_msg_poll()

rtos_msg_read()

rtos_msg_send(task,byte)

rtos_yield()

rtos_signal(sem)

rtos_wait(sem)

rtos_await(expre)

Begins the operation of the RTOS. All task management
tasks are implemented by this function.

This function terminates the operation of the RTOS and
returns operation to the original program. Works as a
return from the rtos_run()function.

Enables one of the RTOS tasks. Once a task is enabled,
the rtos_run() function will call the task when its time
occurs. The parameter to this function is the name of task
to be enabled.

Disables one of the RTOS tasks. Once a task is disabled,
the rtos_run() function will not call this task until it is
enabled using rtos_enable(). The parameter to this
function is the name of the task to be disabled.

Returns true if there is data in the task's message queue.

Returns the next byte of data contained in the task's
message queue.

Sends a byte of data to the specified task. The data is
placed in the receiving task's message queue.

Called with in one of the RTOS tasks and returns control
of the program to the rtos_run() function. All tasks should
call this function when finished.

Increments a semaphore which is used to broadcast the
availability of a limited resource.

Waits for the resource associated with the semaphore to
become available and then decrements to semaphore to
claim the resource.

Will wait for the given expression to evaluate to true
before allowing the task to continue.

56

Functional Overview

rtos_overrun(task) Will return true if the given task over ran its alloted time.

rtos_stats(task,stat) Returns the specified statistic about the specified task.
The statistics include the minimum and maximum times
for the task to run and the total time the task has spent
running.

Relevant Preprocessor:

#USE RTOS(options) This directive is used to specify several different RTOS
attributes including the timer to use, the minor cycle time
and whether or not statistics should be enabled.

#TASK(options) This directive tells the compiler that the following function
is to be an RTOS task.
#TASK specifies the rate at which the task should be called, the

maximum time the task shall be allowed to run, and how
large it's queue should be

Relevant Interrupts:

none

Relevant Include Files:
none all functions are built in

Relevant getenv() Parameters:
none

Example Code:

#USE /Il RTOS will use timer zero, minor cycle will be 20ms
RTOS(timer=0,minor_cycle=20ms)

int sem;

#TASK(rate=1s,max=20ms,queue=>5) // Task will run at a rate of once per second

void task_name(); /l with a maximum running time of 20ms and
/l a 5 byte queue
rtos_run(); /I begins the RTOS
rtos_terminate(); /I ends the RTOS
rtos_enable(task_name); /I enables the previously declared task.
rtos_disable(task_name); /l disables the previously declared task
rtos_msg_send(task_name,5); /I places the value 5 in task_names queue.
rtos_yield(); /I yields control to the RTOS
rtos_sigal(sem); /I signals that the resource represented by sem is
available.

For more information on the CCS RTOS please

57

Functional Overview

SPI

SPI™ is a fluid standard for 3 or 4 wire, full duplex communications named by Motorola. Most
PIC devices support most common SPI™ modes. CCS provides a support library for taking
advantage of both hardware and software based SPI™ functionality. For software support, see
#USE SPI.

Relevant Functions:

setup_spi(mode) Configure the hardware SPI to the specified mode. The mode
setup_spi2(mode) configures setup_spi2(mode) thing such as master or slave
setup_spi3 (mode) mode, clock speed and clock/data trigger configuration.

setup_spi4 (mode)
Note: for devices with dual SPI interfaces a second function, setup_spi2(), is provided to
configure the second interface.

spi_data_is_in() Returns TRUE if the SPI receive buffer has a byte of data.
spi_data_is_in2()

spi_write(value) Transmits the value over the SPI interface. This will cause the
spi_write2(value) data to be clocked out on the SDO pin.

spi_read(value) Performs an SPI transaction, where the value is clocked out on
spi_read2(value) the SDO pin and data clocked in on the SDI pin is returned. If

you just want to clock in data then you can use spi_read() without
a parameter.

Relevant Preprocessor:
None

Relevant Interrupts:

#int_ssp Transaction (read or write) has completed on the indicated
#int_ssp2 peripheral.

Relevant getenv() Parameters:
SPI Returns TRUE if the device has an SPI peripheral

Example Code:
/lconfigure the device to be a master, data transmitted on H-to-L clock transition
setup_spi(SPI_MASTER | SPI_H_TO_L | SPI_CLK DIV_16);

spi_write(0x80); /Iwrite 0x80 to SPI device
value=spi_read(); /lread a value from the SPI device
value=spi_read(0x80); /lwrite 0x80 to SPI device the same time you are reading a value.

58

Functional Overview

TimerO

These options lets the user configure and use timerO. It is available on all devices and is always
enabled. The clock/counter is 8-bit on pic16s and 8 or 16 bit on pic18s. It counts up and also
provides interrupt on overflow. The options available differ and are listed in the device header
file.

Relevant Functions:

setup_timer_0(mode) Sets the source, prescale etc for timer0

set_timerO(value) or Initializes the timer0 clock/counter. Value may be a 8 bit or 16
set_rtcc(value) bit depending on the device.

value=get_timer0 Returns the value of the timerO clock/counter

Relevant Preprocessor: None

Relevant Interrupts :
INT_TIMERO or INT_RTCC Interrupt fires when timer0 overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMERO Returns 1 if the device has timer0

Example Code:
For PIC18F452

setup_timer_O(RTCC_INTERNAL //sets the internal clock as source
|[RTCC_DIV_2|RTCC_8 BIT); //and prescale 2. At 20Mhz timer0Q

/iwill increment every 0.4us in this
/[setup and overflows every

1/102.4us
set_timer0(0); Ithis sets timerO register to O
time=get_timer0(); /this will read the timerO register
/Ivalue

59

Functional Overview

Timerl

These options lets the user configure and use timerl. The clock/counter is 16-bit on pic16s and
picl8s. It counts up and also provides interrupt on overflow. The options available differ and are
listed in the device header file.

Relevant Functions:

setup_timer_1(mode) Disables or sets the source and prescale for
timerl

set_timerl(value) Initializes the timerl clock/counter

value=get_timerl Returns the value of the timerl clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMERL1 Interrupt fires when timerl overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER1 Returns 1 if the device has timerl

Example Code:

For PIC18F452

setup_timer_1(T1_DISABLED); /[disables timerl

or

setup_timer_1(T1_INTERNAL|T1_DIV_BY_8);//sets the internal clock as source

/land prescale as 8. At 20Mhz timer1 will
increment

/levery 1.6us in this setup and overflows every
//104.896ms
set_timer1(0); [lthis sets timerl register to 0
time=get_timerl(); /lthis will read the timerl register value

60

Functional Overview

Timer2

These options lets the user configure and use timer2. The clock/counter is 8-bit on pic16s and
picl8s. It counts up and also provides interrupt on overflow. The options available differ and are
listed in the device header file.

Relevant Functions:

setup_timer_2 Disables or sets the prescale, period and a postscale for
(mode,period,postscale) timer2

set_timer2(value) Initializes the timer2 clock/counter

value=get_timer2 Returns the value of the timer2 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts:
INT_TIMER2 Interrupt fires when timer2 overflows

Relevant Include Files:
None, all functions built-in

Relevant getenv() parameters:
TIMER2 Returns 1 if the device has timer2

Example Code:

For PIC18F452

setup_timer_2(T2_DISABLED); /ldisables timer2
or

setup_timer_2(T2_DIV_BY_4,0xc0,2);//sets the prescale as 4, period as 0xc0 and
/Ipostscales as 2.

/At 20Mhz timer2 will increment every .8us in this
/Isetup overflows every 154.4us and interrupt every

308.2us
set_timer2(0); /lthis sets timer2 register to 0
time=get_timer2(); /lthis will read the timerl register value

Timer3

Timer3 is very similar to timerl. So please refer to the Timerl section for more details.

Timer4

Timer4 is very similar to Timer2. So please refer to the Timer2 section for more details.

61

Functional Overview

Timer5

These options lets the user configure and use timer5. The clock/counter is 16-bit and is
available only on 18Fxx31 devices. It counts up and also provides interrupt on overflow. The
options available differ and are listed in the device header file.

Relevant Functions:

setup_timer_5(mode) Disables or sets the source and prescale for
imer5

set_timer5(value) Initializes the timer5 clock/counter

value=get_timer5 Returns the value of the timer51 clock/counter

Relevant Preprocessor:
None

Relevant Interrupts :
INT_TIMERS Interrupt fires when timer5 overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERS Returns 1 if the device has timer5

Example Code:

For PIC18F4431

setup_timer_5(T5_DISABLED) /[disables timer5
or

setup_timer_5(T5_INTERNAL|T5_DIV_BY_1);//sets the internal clock as source and
llprescale as 1.

/At 20Mhz timer5 will increment every .2us in

this

//[setup and overflows every 13.1072ms
set_timer5(0); Ilthis sets timer5 register to 0
time=get_timer5(); /lthis will read the timer5 register value

62

Functional Overview

TimerA

These options lets the user configure and use timerA. It is available on devices with Timer A
hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The
options available are listed in the device's header file.

Relevant Functions:

setup_timer_A(mode) Disable or sets the source and prescale for timerA
set_timerA(value) Initializes the timerA clock/counter
value=get_timerA() Returns the value of the timerA clock/counter
Relevant Preprocessor:

None

Relevant Interrupts :
INT_TIMERA Interrupt fires when timerA overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERA Returns 1 if the device has timerA

Example Code:

setup_timer_A(TA_OFF); //disable timerA

or

setup_timer_A /Isets the internal clock as source

(TA_INTERNAL | TA_DIV_8); /land prescale as 8. At 20MHz timerA will increment
/levery 1.6us in this setup and overflows every
//409.6us

set_timerA(0); /lthis sets timerA register to 0

time=get_timerA(); /lthis will read the timerA register value

63

Functional Overview

TimerB

These options lets the user configure and use timerB. It is available on devices with TimerB
hardware. The clock/counter is 8 bit. It counts up and also provides interrupt on overflow. The
options available are listed in the device's header file.

Relevant Functions:

setup_timer_B(mode) Disable or sets the source and prescale for timerB
set_timerB(value) Initializes the timerB clock/counter
value=get_timerB() Returns the value of the timerB clock/counter
Relevant Preprocessor:

None

Relevant Interrupts :
INT_TIMERB Interrupt fires when timerB overflows

Relevant Include Files: None, all functions built-in

Relevant getenv() parameters:
TIMERB Returns 1 if the device has timerB

Example Code:

setup_timer_B(TB_OFF); /[disable timerB
or
setup_timer_B //sets the internal clock as source

(TB_INTERNAL | TB_DIV_8); /land prescale as 8. At 20MHz timerB will increment
/levery 1.6us in this setup and overflows every

//1409.6us
set_timerB(0); /lthis sets timerB register to 0
time=get_timerB(); /Ithis will read the timerB register value

64

USB

Functional Overview

Universal Serial Bus, or USB, is used as a method for peripheral devices to connect to and talk
to a personal computer. CCS provides libraries for interfacing a PIC to PC using USB by using
a PIC with an internal USB peripheral (like the PIC16C765 or the PIC18F4550 family) or by
using any PIC with an external USB peripheral (the National USBN9603 family).

Relevant Functions:
usb_init()

usb_init_cs()

usb_task()

Initializes the USB hardware. Will then wait in an infinite loop for the
USB peripheral to be connected to bus (but that doesn't mean it has
been enumerated by the PC). Will enable and use the USB interrupt.

The same as usb_init(), but does not wait for the device to be
connected to the bus. This is useful if your device is not bus powered
and can operate without a USB connection.

If you use connection sense, and the usb_init_cs() for initialization, then
you must periodically call this function to keep an eye on the connection
sense pin. When the PIC is connected to the BUS, this function will then
perpare the USB peripheral. When the PIC is disconnected from the
BUS, it will reset the USB stack and peripheral. Will enable and use the
USB interrupt.

Note: In your application you must define USB_CON_SENSE_PIN to the connection sense pin.

usb_detach()

usb_attach()

usb_attached()

usb_enumerated()

usb_put_packet

Removes the PIC from the bus. Will be called automatically by
usb_task() if connection is lost, but can be called manually by the user.

Attaches the PIC to the bus. Will be called automatically by usb_task()
if connection is made, but can be called manually by the user.

If using connection sense pin (USB_CON_SENSE_PIN), returns TRUE
if that pin is high. Else will always return TRUE.

Returns TRUE if the device has been enumerated by the PC. If the
device has been enumerated by the PC, that means it is in normal
operation mode and you can send/receive packets.

Places the packet of data into the specified endpoint buffer. Returns

(endpoint, data, len, tgl) TRUE if success, FALSE if the buffer is still full with the last packet.

usb_puts
(endpoint, data, len,
timeout)

usb_kbhit(endpoint)

usb_get_packet

Sends the following data to the specified endpoint. usb_puts() differs
from usb_put_packet() in that it will send multi packet messages if the
data will not fit into one packet.

Returns TRUE if the specified endpoint has data in it's receive buffer

Reads up to max bytes from the specified endpoint buffer and saves it

65

Functional Overview

(endpoint, ptr, max) to the pointer ptr. Returns the number of bytes saved to ptr.

usb_gets(endpoint, ptr, Reads a message from the specified endpoint. The difference

max, timeout) usb_get packet() and usb_gets() is that usb_gets() will wait until a full
message has received, which a message may contain more than one
packet. Returns the number of bytes received.

Relevant CDC Functions:

A CDC USB device will emulate an RS-232 device, and will appear on your PC as a COM port.
The follow functions provide you this virtual RS-232/serial interface

Note: When using the CDC library, you can use the same functions above, but do not use the
packet related function such as
usb_kbhit(), usb_get_packet(), etc.

usb_cdc_kbhit() The same as kbhit(), returns TRUE if there is 1 or more character in the
receive buffer.

usb_cdc_getc() The same as getc(), reads and returns a character from the receive
buffer. If there is no data in the receive buffer it will wait indefinitely until
there a character has been received.

usb_cdc_putc(c) The same as putc(), sends a character. It actually puts a character into
the transmit buffer, and if the transmit buffer is full will wait indefinitely
until there is space for the character.

usb_cdc_putc_fast(c) The same as usb_cdc_putc(), but will not wait indefinitely until there is
space for the character in the transmit buffer. In that situation the
character is lost.

usb_cdc_puts(*str) Sends a character string (null terminated) to the USB CDC port. Will
return FALSE if the buffer is busy, TRUE if buffer is string was put into
buffer for sending. Entire string must fit into endpoint, if string is longer
than endpoint buffer then excess characters will be ignored.

usb_cdc_putready() Returns TRUE if there is space in the transmit buffer for another
character.

Relevant Preporcessor:
None
Relevant Interrupts:

#int_usb A USB event has happened, and requires application intervention. The
USB library that CCS provides handles this interrupt automatically.

66

Relevant Include files:
pic_usb.h

picl8 usb.h

usbn960x.h

usb.h

usbh.c

usb_cdc.h

Functional Overview

Hardware layer driver for the PIC16C765 family PICmicro controllers
with an internal USB peripheral.

Hardware layer driver for the PIC18F4550 family PICmicro controllers
with an internal USB peripheral.

Hardware layer driver for the National USBN9603/USBN9604 external
USB peripheral. You can use this external peripheral to add USB to any
microcontroller.

Common definitions and prototypes used by the USB driver

The USB stack, which handles the USB interrupt and USB Setup
Requests on Endpoint 0.

A driver that takes the previous include files to make a CDC USB
device, which emulates an RS232 legacy device and shows up as a
COM port in the MS Windows device manager.

Relevant getenv() Parameters:

USB

Example Code:

Returns TRUE if the PICmicro controller has an integrated internal USB
peripheral.

Due to the complexity of USB example code will not fit here. But you can find the following
examples installed with your CCS C Compiler:

ex_usb_hid.c
ex_usb_mouse.c

ex_usb_kbmouse.c

ex_usb_kbmouse2.c

ex_usb_scope.c

ex_usb_serial.c

ex_ushb_serial2.c

A simple HID device

A HID Mouse, when connected to your PC the mouse cursor will go in
circles.

An example of how to create a USB device with multiple interfaces by
creating a keyboard and mouse in one device.

An example of how to use multiple HID report Ids to transmit more than
one type of HID packet, as demonstrated by a keyboard and mouse on
one device.

A vendor-specific class using bulk transfers is demonstrated.

The CDC virtual RS232 library is demonstrated with this RS232 < - >
USB example.

Another CDC virtual RS232 library example, this time a port of the
ex_intee.c example to use USB instead of RS232.

67

Functional Overview

Voltage Reference

These functions configure the votlage reference module. These are available only in the

supported chips.

Relevant Functions:

setup_vref(mode | value) Enables and sets up the internal voltage reference value.
Constants are defined in the device's .h file.

Relevant Preprocesser:

none

Relevant Interrupts:
none

Relevant Include Files:
none, all functions built-in

Relevant getenv() parameters:
VREF Returns 1 if the device has VREF

Example code:
for PIC12F675

#INT_COMP /lcomparator interrupt handler
void isr() {
safe_conditions = FALSE;
printf("WARNING!!!! Voltage level is above
3.6V.\r\n");

}

setup_comparator(Al_VR_OUT_ON_A2)//sets 2
comparators(Al and VR and A2 as output)
{
setup_vref(VREF_HIGH | 15);//sets 3.6(vdd *
value/32 + vdd/4) if vdd is 5.0V
enable_interrupts(INT_COMP); // enable the
comparator interrupt
enable_interrupts(GLOBAL); //enable global
interrupts

}

68

Functional Overview

WDT or Watch Dog Timer

Different chips provide different options to enable/disable or configure the WDT.

Relevant Functions:
setup_wadt() Enables/disables the wdt or sets the prescalar.

restart_wdt() Restarts the wdt, if wdt is enables this must be periodically called
to prevent a timeout reset.

For PCB/PCM chips it is enabled/disabled using WDT or NOWDT fuses whereas on PCH
device it is done using the setup_wdt function.

The timeout time for PCB/PCM chips are set using the setup_wdt function and on PCH using
fuses like WDT16, WDT256 etc.

RESTART_WDT when specified in #USE DELAY, #USE 12C and #USE RS232 statements like
this #USE DELAY (clock=20000000, restart_wdt) will cause the wdt to restart if it times out
during the delay or I2C_READ or GETC.

Relevant Preprocessor:

#FUSES WDT/NOWDT Enabled/Disables wdt in PCB/PCM devices
#FUSES WDT16 Sets ups the timeout time in PCH devices
Relevant Interrupts:

None

Relevant Include Files:

None, all functions built-in

Relevant getenv() parameters:

None

Example Code:

For PIC16F877

#fuses wdt
setup_wdt(WDT_2304MS);

while(true){

restart_wdt();
perform_activity();
}

For PIC18F452

#fuse WDT1

setup_wdt(WDT_ON);

while(true){
restart_wdt();
perform_activity();

}

Some of the PCB chips are share the WDT prescalar bits with timer0 so the WDT prescalar
constants can be used with setup_counters or setup_timer0 or setup_wdt functions.

69

Functional Overview

interrupt_enabled()

This function checks the interrupt enabled flag for the specified interrupt and returns

TRUE if set.

Syntax interrupt_enabled(interrupt);

Parameters interrupt- constant specifying the interrupt

Returns Boolean value

Function The function checks the interrupt enable flag of the specified
interrupt and returns TRUE when set.

Availability Devices with interrupts

Requires Interrupt constants defined in the device's .h file.

Examples if(interrupt_enabled(INT_RDA))

disable_interrupt(INT_RDA);

Example Files None

Also see DISABLE_INTERRUPTS(), , Interrupts Overview,
CLEAR_INTERRUPT(),
ENABLE_INTERRUPTS(),,INTERRUPT_ACTIVE()

Stream 1/O

Syntax: #include <ios.h> is required to use any of the ios identifiers.

Output: output:

stream << variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cout.

stream may also be the name of a char array. In this case the data is
written to the array with a O terminator.

stream may also be the name of a function that accepts a single char
parameter. In this case the function is called for each character to be output.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
output as strings and all other types are output as an address of the variable.

manipulators:

hex -Hex format numbers

dec- Decimal format numbers (default)

setprecision(x) -Set number of places after the decimal point
setw(x) -Set total number of characters output for numbers
boolalpha- Output intl as true and false

noboolalpha -Output intl as 1 and 0 (default)

fixed Floats- in decimal format (default)

70

Functional Overview

scientific Floats- use E notation

iosdefault- All manipulators to default settings
endl -Output CR/LF

ends- Outputs a null (\000")

Examples: cout << "Value is " << hex << data << end|;
cout << "Price is $" << setw(4) << setprecision(2) << cost << end|;
lcdputc << '\f' << setw(3) << count<<" "<<min<<" " << max;
stringl << setprecision(1) << sum / count;
string2 << x <<',' << y;

Input: stream >> variable_or_constant_or_manipulator ;

one or more repeats
stream may be the name specified in the #use RS232 stream= option
or for the default stream use cin.

stream may also be the name of a char array. In this case the data is
read from the array up to the 0 terminator.

stream may also be the name of a function that returns a single char and has
no parameters. In this case the function is called for each character to be input.
Make sure the function returns a \r to terminate the input statement.

variables/constants: May be any integer, char, float or fixed type. Char arrays are
input as strings. Floats may use the E format.

Reading of each item terminates with any character not valid for the type. Usually
items are separated by spaces. The termination character is discarded. At the end
of any stream input statement characters are read until a return (\r) is read. No
termination character is read for a single char input.

manipulators:

hex -Hex format numbers

dec- Decimal format numbers (default)

noecho- Suppress echoing

strspace- Allow spaces to be input into strings
nostrspace- Spaces terminate string entry (default)
iosdefault -All manipulators to default settings

Examples: cout << "Enter number: ";

cin >> value;

cout << "Enter title: ";

cin >> strspace >> title;

cin >> datali].recordid >> data][i].xpos >> data]i].ypos >> data[i].sample ;

stringl >> data;

lcdputc << "\fEnter count";

lcdputc << keypadgetc >> count; // read from keypad, echo to Icd
/[This syntax only works with
/[user defined functions.

71

Functional Overview

72

V' of of)

ww®

PRE-PROCESSOR

PRE-PROCESSOR

Pre-processor directives all begin with a # and are followed by a specific command. Syntax is
dependent on the command. Many commands do not allow other syntactical elements on the
remainder of the line. A table of commands and a description is listed on the previous page.

Several of the pre-processor directives are extensions to standard C. C provides a pre-
processor directive that compilers will accept and ignore or act upon the following data. This
implementation will allow any pre-processor directives to begin with #PRAGMA. To be
compatible with other compilers, this may be used before non-standard features.

Examples:

Both of the following are valid

#INLINE

#PRAGMA INLINE

#IF expr #DEFINE id string #LIST
#IFDEF id #UNDEF id #NOLIST
Standard C #IFNDEF #INCLUDE FILENAME #PRAGMA cmd
#ELSE #WARNING #ERROR
HELIF #ENDIF #DEFINEDINC
Function #INLINE #INT_GLOBAL
Qualifier #SEPARATE #INT DEFAULT
_ _ _DATE__ LINE _ _PCH__
Pre-Defined DEVICE FILENAME PCM
Identifier - - - - - -
FILE TIME PCB
RTOS #TASK #USE RTOS
_ #DEVICE chip #ID "filename” #HEXCOMMENT
Device #FUSES options #1D number #ID CHECKSUM
Specification
#SERIALIZE #PIN_SELECT
#USE DELAY #USE FIXED 10 #USE RS232
Built-in #USE FAST 10 #USE 12C #USE STANDARL
Libraries #USE TIMER

#USE SPI

#USE TOUCHPAD

73

10

Pre-Processor

#USE CAPTURE

#ASM #ENDASM #ROM
#BIT id=id.const #FILL_ROM #TYPE
Memory #BIT id=const.const #LOCATE id=const #ZERO_RAM
Control #BYTE id=const #ORG #WORD
#BYTE id=id #RESERVE #LINE
#USE DYNAMIC_MEMORY
_ #CASE #IMPORT #PRIORITY
gg nmt'?(')ller HEXPORT HOPT #OCS
#IGNORE_WARNINGS #MODULE
Linker #IMPORT #EXPORT #BUILD

74

_attribute_x
Syntax:

Elements:

Purpose

Examples:

Example Files:

Pre-Processor

_attribute_x
X is the attribute you want to apply. Valid values for x are as follows:

packed
By default each element in a struct or union are padded to be evenly
spaced by the size of 'int'. This is to prevent an address violation when
accessing an element of struct. See the following example:
struct
{
int8 a;
int8 b;
} test;

On architectures where 'int' is 16bit (such as dsPIC or PIC24
PICmicrocontrollers), 'test' would take 4 bytes even though it is
comprised of two 8-bit elements. By applying the 'packed' attribute to
this struct then it would take 2 bytes as originally intended:
struct __attribute__ (packed)
{

int8 a;

int8 b;

} test;

Care should be taken by the user when accessing individual elements
of a packed struct — creating a pointer to 'b' in 'test' and attempting to
dereference that pointer would cause an access violation. Any
attempts to read/write 'b' should be done in context of 'test' so the
compiler knows it is packed:

test.b = 5;

aligned(y)
By default the compiler will alocate a variable in the first free memory
location. The aligned attribute will force the compiler to allocate a
location for the specified variable at a location that is modulus of the y
parameter. For example:

int8 array[256] __ attribute__ (aligned(0x1000));
This will tell the compiler to try to place 'array' at either 0x0, 0x1000,
0x2000, 0x3000, 0x4000, etc.

To alter some specifics as to how the compiler operates

struct attribute__ (packed_)
{

int8 a;
int8 b;
} test;
int8 array[256] __attribute__ (aligned(0x1000));

None

75

#ASM #ENDASM

Syntax:
Elements:

Examples:

Example Files:

Also See:

ADD
ADD
ADD
ADD
ADD
ADD
ADD
ADD.B
ADD
ADD.B
ADD.B
ADD.B
ADD.B
ADD.B
ADDC
ADDC
ADDC
ADDC
ADDC
ADDC.B
ADDC.B
ADDC.B
ADDC.B
ADDC.B
AND

Pre-Processor

#ASM or #ASM ASIS code #ENDASM
code is a list of assembly language instructions

int_ffind_parity(int data){int count;, result,datal; datal=data; asm MOV
#0x08, MOV WF, count CLRF result Loop: MOVF datal,w XORWF
result, F RRCF datal,F DECFSZ count,F BRA LOOP MOVLW 0x01

ANDWE resutt, F #end asm

retturn (result)';

}

ex_glint.c

None
Wa,Wb,wd wWd = Wa+Whb
f,W WO = f+wd
lita0,Wd wd = lit10+wd
Wa,lit5,Wd Wd = lit5+Wa
f,F f =f+Wd
acc Acc = AccA+AccB
wd {lit4},acc Acc = Acc+(Wa shifted slit4)
lita0,Wd Wd = lit10+Wd (byte)
Wd,{lit4},acc Acc = Acc+(Wa shifted slit4)
lit0,Wd Wd = lit10+Wd (byte)
f,F f = f+Wd (byte)
Wa,Wb,Wd Wd = Wa+Whb (byte)
Wa,lit5,Wd Wd = lit5+Wa (byte)
f,W WO = f+Wd (byte)
f,W wd = f+Wa+C
lita0,Wd Wd = lit10+wWd+C
Wa,lit5,Wd Wd = lit5+Wa+C
f,F wd = f+Wa+C
Wa,Wb,wd Wd = Wa+Whb+C
lit0,Wd Wd = lit10+Wd+C(byte)
Wa,Wb,Wd Wd = Wa+Wb+C(byte)
Wa,lit5,wd Wd = lit5+Wa+C(byte)
f,W Wd = f+Wa+C(byte)
f,F Wd = f+Wa+C(byte)
Wa,Wb,wd Wd =Wa.& Wb

76

AND
AND
AND
AND
AND.B
AND.B
AND.B
AND.B
AND.B
ASR
ASR
ASR
ASR
ASR
ASR.B
ASR.B
ASR.B
BCLR
BCLR
BCLR.B
BRA
BRA
BRA BZ
BRAC
BRA GE
BRA GEU
BRA GT
BRA GTU
BRA LE
BRA LEU
BRALT
BRALTU
BRA N
BRA NC
BRA NN
BRA NOV
BRA Nz
BRA OA
BRA OB
BRA OV
BRA SA

lit10,wd
f,W

f,F
Wa,lit5,wd
f,W
Wa,Wb,wd
lit10,wd
f,F
Wa,lit5,wd
f,W

f,F

Wa,Wwd
Wa,lit4,wd
Wa,Wb,Wd
f,F

f,W
Wa,Wwd

f,.B

wd,B
wd,B

a

=
o

O O Y LY DYDY D DD DD DD DYDY DYDY DD

wd = 1it10.&.Wd
WO =f.&Wa
f=f.&Wa

wd = lit5.&Wa

WO = f.& Wa (byte)

Wd = Wa.& Wb (byte)

Wd = 1it10.&.Wd (byte)
f=f.&Wa (byte)

Wd = lit5.&.Wa (byte)

WO = f >> larithmetic

f = f >> larithmetic

Wd = Wa >> larithmetic

Wd = Wa >> lit4arithmetic

Wd = Wa >> Whbarithmetic

f = f >> larithmetic (byte)

WO = f >> larithmetic (byte)

Wd = Wa >> larithmetic (byte)
f.bit=0

Wa.bit =0

Wa.bit = 0 (byte)

Branch unconditionally

Branch PC+Wa

Branch if Zero

Branch if Carry (no borrow)
Branch if greater than or equal
Branch if unsigned greater than or equal
Branch if greater than

Branch if unsigned greater than
Branch if less than or equal
Branch if unsigned less than or equal
Branch if less than

Branch if unsigned less than
Branch if negative

Branch if not carry (Borrow)
Branch if not negative

Branch if not Overflow

Branch if not Zero

Branch if Accumulator A overflow
Branch if Accumulator B overflow
Branch if Overflow

Branch if Accumulator A Saturate

Pre-Processor

77

BRA SB
BRA Z
BREAK
BSET
BSET
BSET.B
BSW.C
BSW.Z
BTG
BTG
BTG.B
BTSC
BTSC
BTSS
BTSS
BTST
BTST.C
BTST.C
BTST.Z
BTST.Z
BTSTS
BTSTS.C
BTSTS.Z
CALL
CALL
CLR
CLR
CLR
CLR
CLR.B
CLR.B
CLR.B
CLRWDT
COM
COM
COM
COM.B
COM.B
COM.B
CP

CP

a
a

wd,B
f,B
Wd,B
Wa,Wd
Wa,Wd
wd,B
f,B
Wd,B
f,B
Wd,B
f,B
wd,B
f,B
Wa,Wd
Wd,B
wd,B
Wa,Wd
f,B
Wd,B
wd,B

a

wd

f,F
acc,da,dc,pi
1AW
wd

1AW

wd

f,F

f,F

f,W
Wa,Wd
fW
Wa,Wwd
f,F

W, f
Wa,Wwd

Branch if Accumulator B Saturate
Branch if Zero

ICD Break

Wa.bit =1

f.bit=1

Wa.bit = 1 (byte)
WaWb=C
WaWb=2Z

Wa.bit = ~Wa.bit

f.bit = ~f.bit

Wa.bit = ~Wa.bit (byte)
Skip if f.bit =0

Skip if Wa.bit4 =0
Skip if f.bit =1

Skip if Wa.bit=1

Z =f.bit

C =WaWb

C =Wa.hit

Z = Wa.hit
Z=WaWb

Z =fbhit; f.bit=1

C = Wa.bit; Wa.bit=1
Z =Wa.bit; Wa.bit =1
Call subroutine

Call [Wa]

f=0

Acc = 0; prefetch=0
Ww0=0

wd=0

WO = 0 (byte)

wd = 0 (byte)

f =0 (byte)

Clear WDT

f=~f

WO = ~f

Wd = ~Wa

WO = ~f(byte)

Wd = ~Wa (byte)

f = ~f(byte)

Status set for f - WO
Status set for Wb a€“ Wa

Pre-Processor

78

cP
CP.B
CP.B
CP.B
CPO
CPO
CPO.B
CPO.B
CPB
CPB
CPB
CPB.B
CPB.B
CPB.B
CPSEQ
CPSEQ.B
CPSGT
CPSGT.B
CPSLT
CPSLT.B
CPSNE
CPSNE.B
DAW.B
DEC
DEC
DEC
DEC.B
DEC.B
DEC.B
DEC2
DEC2
DEC2
DEC2.B
DEC2.B
DEC2.B
DISI
DIV.S
DIV.SD
DIV.U
DIV.UD
DIVF

wd,lit5
W, f
Wa,Wd
Wd, lit5
wd

W, f

wd

W, f
Wd, lit5
Wa,wd
W, f
Wa,Wwd
Wd, lit5
W, f
Wa,Wd
Wa,Wwd
Wa,Wwd
Wa,Wwd
Wa,Wd
Wa,Wwd
Wa,Wwd
Wa,Wwd
wd
Wa,Wwd
f,W

f,F

f,F

fW
Wa,Wd
Wa,Wwd
f,W

f,F
Wa,Wd
fW

f,F

lit14
Wa,Wd
Wa,wd
Wa,Wwd
Wa,wd
Wa,Wwd

Pre-Processor

Status set for Wa a€“ it

Status set for f - WO (byte)

Status set for Wb &€ Wa (byte)
Status set for Wa a€“ lit5 (byte)
Status set for Wa a€“ 0

Status set for f &€ 0

Status set for Wa a€“ 0 (byte)
Status set for f &€ 0 (byte)
Status set for Wa &€° it a€“ C
Status set for Wb &€ Wa a€“ C
Status set for f &€“ W0 - C

Status set for Wb &€“ Wa &€" C (byte)
Status set for Wa a€“ lits 4€* C(byte)
Status set for f 4€“ WO - C (byte)
Skip if Wa = Wb

Skip if Wa = Wb (byte)

Skip if Wa > Wb

Skip if Wa > Wb (byte)

Skip if Wa < Wb

Skip if Wa < Wb (byte)

Skip if Wa = Wb

Skip if Wa = Wb (byte)

Wa = decimal adjust Wa

Wd =Wa a€“ 1

WO =f a€“ 1

f=fa€" 1

f="fa€" 1 (byte)

WO =f a€“ 1 (byte)

Wd =Wa a€“ 1 (byte)

Wd =Wa a€“ 2

WO =fa€“2

f=fa€'2

Wd = Wa a€“ 2(byte)

WO =f a€“ 2 (byte)

f=fa€“ 2 (byte)

Disable Interrupts lit14 cycles
Signed 16/16-bit integer divide
Signed 16/16-bit integer divide (dword)
UnSigned 16/16-bit integer divide
UnSigned 16/16-bit integer divide (dword)
Signed 16/16-bit fractional divide

79

DO
DO
ED
EDAC
EXCH
FBCL
FEX
FF1L
FF1R
GOTO
GOTO
INC
INC
INC
INC.B
INC.B
INC.B
INC2
INC2
INC2
INC2.B
INC2.B
INC2.B
IOR
IOR
IOR
IOR
IOR
IOR.B
IOR.B
IOR.B
IOR.B
IOR.B
LAC
LNK
LSR
LSR
LSR
LSR
LSR
LSR.B

litl4,a
Wd,a

Do block lit14 times
Do block Wa times

Wd*Wd,acc,da,db Euclidean Distance (No Accumulate)
Wd*Wd,acc,da,db Euclidean Distance

Wa,wd
Wa,Wd

Wa,Wd
Wa,wd

a

wd

f,W

Wa,Wwd

f,F

Wa,Wwd

f,F

f,W

f,W

Wa,Wwd

f,F

f,W

f,F

Wa,Wd
lit1o,wd

f,F

f,W
Wa,lit5,Wd
Wa,Wb,Wd
Wa,Wb,Wd
f,W
lita0,Wd
Wa,lit5,Wd
f,F
Wd,{lit4},acc
lit14

f,W
Wa,lit4,Wd
Wa,Wwd

f,F
Wa,Wb,Wd
f,W

Swap Wa and Wb
Find bit change from left (Msb) side
ICD Execute

Find first one from left (Msb) side
Find first one from right (Lsb) side
GoTo

GoTo [Wa]
WOo=f+1
Wd=Wa+1

f=f+1

wWd =Wa + 1 (byte)
f=1+ 1 (byte)

WO =f + 1 (byte)
WO=f+2
wd=Wa+2

f=f+2

WO =f + 2 (byte)
f=1+ 2 (byte)

Wd =Wa + 2 (byte)
wd = 1it10 | Wd
f=f|Wa

WO =f|Wa

Wd = Wa.|.lits

wd = Wa.|.Wb

Wd =Wa.|.Wb (byte)
WO =f | Wa (byte)
Wd = 1it10 | Wd (byte)
Wd = Wa.|.lit5 (byte)
f=1f| Wa (byte)

Acc = Wa shifted slit4
Allocate Stack Frame
Wo=f>>1

Wd = Wa >> lit4
wd=Wa>>1
f=f>>1

wd = Wb >>Wa

WO =f>>1 (byte)

Pre-Processor

80

LSR.B f,F

LSR.B Wa,Wd
MAC

MAC

MOV W f

MOV f,W

MOV f,F

MOV Wd,?
MOV Wa+lit, Wd
MOV ?,.wd
MOV litl6,Wd
MOV Wa,Wd
MOV Wa,Wd-+lit
MOV.B lit8,wd
MOV.B W f
MOV.B f,W
MOV.B f,F

MOV.B Wa-lit, wd
MOV.B Wa,Wd-+lit
MOV.B Wa,wd
MOV.D Wa,Wd
MOV.D Wa,Wd
MOVSAC acc,da,dc,pi
MPY

MPY

MPY.N

MSC

MUL W f
MUL.B W f
MUL.SS WaWwd
MUL.SU Wa,wd
MUL.SU Wa,lit5,wd
MUL.US WaWwd
MUL.UU WaWwd
MUL.UU Wa,lit5,wd
NEG f,F

PUSH Wd
PUSH.D Wd
PUSH.S

PWRSAV litl
RCALL a

f=1>>1 (byte)
Wd =Wa >> 1 (byte)

Wd*Wd,acc,da,dc Acc = Acc + Wa * Wa,; {prefetch}

Wd*Woc,acc,da,dc, Acc = Acc + Wa * Wb; {{W13] = Acc}; {prefetch}

f=Wa

WO =f

f=f

F=Wa

Wd = [Wa +SIit10]

wd = f

Wd = litl6

wd =Wa

[wd + Slit10] = Wa

wd = lit8(byte)

f = Wa (byte)

WO =f (byte)

f =f (byte)

Wd = [Wa +Slit10] (byte)
[wd + Slit10] = Wa (byte)
wWd = Wa (byte)
Wd:Wd+1 = Wa:Wa+1
Wd:Wd+1 = Wa:Wa+1
Move ? to ? and ? To ?

Wd*Wc,acc,da,dc Acc = Wa*Wb
Wd*Wd,acc,da,dc Square to Acc
Wd*Wc,acc,da,dc Acc = -(Wa*Wh)
Wd*Woc,acc,da,dc, Acc = Acc &€“ Wa*Wb

W3:W2 =f*Wa

W3:W2 = f*Wa (byte)

{Wd+1,wWd}= sign(Wa) * sign(Wb)
{wd+1,wd} = sign(Wa) * unsign(Wb)
{wWd+1,Wd}= sign(Wa) * unsign(lit5)
{Wd+1,Wd} = unsign(Wa) * sign(Whb)
{Wd+1,Wd} = unsign(Wa) * unsign(Whb)
{Wd+1,Wd} = unsign(Wa) * unsign(lit5)
f=-f

Push Wato TOS

PUSH double Wa:Wa + 1 to TOS
PUSH shadow registers

Enter Power-saving mode litl

Call (relative)

Pre-Processor

81

RCALL
REPEAT
REPEAT
RESET
RETFIE
RETLW
RETLW.B
RETURN
RLC
RLC
RLC
RLC.B
RLC.B
RLC.B
RLNC
RLNC
RLNC
RLNC.B
RLNC.B
RLNC.B
RRC
RRC
RRC
RRC.B
RRC.B
RRC.B
RRNC
RRNC
RRNC
RRNC.B
RRNC.B
RRNC.B
SAC
SAC.R
SE
SETM
SETM
SETM.B
SETM.B
SETM.B
SFTAC

Wd
lit14
Wd

lit10,wd
lita0,wd

Wa,wd
f,F

fW

f,F

f,W
Wa,Wd
Wa,Wwd
f,F

f,W

f,W
Wa,Wwd
f,F

f,F
Wa,Wwd
f,W

f,W

f,F
Wa,Wd
f,F

f,W
Wa,Wwd
f,F
Wa,Wwd
f,W
acc,{lit4},wd
acc,{lit4},wd
Wa,wd
wd

f,F

wd

fW

f,F
acc,Wd

Pre-Processor

Call Wa

Repeat next instruction (lit14 + 1) times
Repeat next instruction (Wa + 1) times
Reset

Return from interrupt enable

Return; Wa = 1it10

Return; Wa = 1it10 (byte)

Return

Wd = rotate left through Carry Wa

f = rotate left through Carry f

WO = rotate left through Carry f

f = rotate left through Carry f (byte)
WO = rotate left through Carry f (byte)
Wd = rotate left through Carry Wa (byte)
Wd = rotate left (no Carry) Wa

f = rotate left (no Carry) f

WO = rotate left (no Carry) f

WO = rotate left (no Carry) f (byte)

Wd = rotate left (no Carry) Wa (byte)

f = rotate left (no Carry) f (byte)

f = rotate right through Carry f

W(d = rotate right through Carry Wa
WO = rotate right through Carry f

WO = rotate right through Carry f (byte)
f = rotate right through Carry f (byte)
W(d = rotate right through Carry Wa (byte)
f = rotate right (no Carry) f

WO = rotate right (no Carry) f

Wd = rotate right (no Carry) Wa

f = rotate right (no Carry) f (byte)

Wd = rotate right (no Carry) Wa (byte)
WO = rotate right (no Carry) f (byte)
Wd = Acc slit 4

Wd = Acc slit 4 with rounding

Wd = sign-extended Wa

Wd = OXFFFF

WO = OxFFFF

Wd = OxFFFF (byte)

WO = OxFFFF (byte)

WO = OxFFFF (byte)

Arithmetic shift Acc by (Wa)

82

SFTAC
SL

SL

SL

SL

SL
SL.B
SL.B
SL.B
SSTEP
SUB
SuUB
SuUB
SUB
SUB
SuUB
SUB.B
SUB.B
SUB.B
SUB.B
SUB.B
SUBB
SUBB
SUBB
SUBB
SUBB
SUBB.B
SUBB.B
SUBB.B
SUBB.B
SUBB.B
SUBBR
SUBBR
SUBBR
SUBBR
SUBBR.B
SUBBR.B
SUBBR.B
SUBBR.B
SUBR
SUBR

acc,lits

f,W
Wa,Wb,Wd
Wa,lit4,wd
Wa,Wwd

f,F

f,W
Wa,wd

f,F

f,F

fW
Wa,Wb,Wd
Wa,lit5,wd
acc
lita0,Wd
Wa,lit5,wd
lit0,Wd
f,W
Wa,Wb,Wd
f,F

f,W
Wa,Wb,Wd
f,F
Wa,lit5,wd
lita0,Wd
lita0,Wd
Wa,Wb,Wd
f,F
Wa,lit5,wd
f,W
Wa,lit5,Wd
f,W

f,F
Wa,Wb,Wd
f,F

fW
Wa,Wb,wd
Wa,lit5,wd
Wa,lit5,Wd
f,F

Pre-Processor

Arithmetic shift Acc by Slit6
WOo=f<<1

Wd = Wa << Wb

Wd = Wa << lit4
Wd=Wa<<1

f=f<<1

WO =f << 1 (byte)

Wd = Wa << 1 (byte)
f=f<<1 (byte)

ICD Single Step
f=fa€*Wo

WO =f a€“Wo0

Wd = Wa a€“ Wb

Wd = Wa a€“ lits

Acc = AccA a€“ AccB

Wd =Wd a€“ lit10

Wd = Wa a€“ lit5 (byte)
Wd = Wd a€“ lit10 (byte)
WO = f a€“ WO (byte)

Wd = Wa a€“ Wb (byte)
f=fa€“ WO (byte)

WO =fa€* W0 a€“ C

Wd =Wa a€“ Wb a€“ C
f=fa€"Wo0 a€“ C

Wd =Wa a€“lit5 - C

Wd =Wd a€“ lit10 &€ C
Wd = Wd a€“ lit10 &€ C(byte)
Wd = Wa a€“ Wb a€" C(byte)
f=1fa€" W0 a€" C (byte)
Wd = Wa a€" lit5 - C(byte)
WO =f &€“ W0 a€“ C (byte)
Wd = lit5 4€"Wa - C

W0 =W0 a€“f a€“ C
f=WO0 a€“fa€“ C
Wd=Wa a€‘Wb-C
f=WO0 a€“ f a€* C(byte)
WO0 = WO a€“ f a€“ C(byte)
Wd = Wa a€“ Wb - C(byte)
Wd = lit5 &€“ Wa - C(byte)
Wd = lit5 4€“ Wb

f=WO0 a€“f

83

SUBR Wa,Wb,wd

SUBR f,W
SUBR.B Wa,Wb,wd
SUBR.B fF
SUBR.B Wa,lit5,Wd
SUBR.B fW
SWAP Wd
SWAP.B Wd

TBLRDH Wa,wd
TBLRDH.B Wa,wd
TBLRDL Wa,wd
TBLRDL.B Wa,wd
TBLWTH Wa,wd
TBLWTH.BWa,wd
TBLWTL Wa,wd
TBLWTL.B Wa,wd
ULNK

URUN

XOR Wa,Wb,Wd
XOR f,F

XOR f,W

XOR Wa,lit5,Wwd
XOR lit10,wd
XOR.B lita0,wd
XOR.B f,W

XOR.B Wa,lit5,wd
XOR.B Wa,Wb,wd
XOR.B f,F

ZE Wa,wd

12 Bit and 14 Bit
ADDWF f,d
CLRF f
COMF f,d
DECFSZ f,d
INCFSZ f,d
MOVF f,d
MOVPLW
NOP
RRF f,d

Pre-Processor

Wd = Waa€“ Wb

W0 =WO0 a€“ f

Wd = Waa€"“ Wb (byte)

f=WO0 a€“ f(byte)

Wd = lits &€“ Wb(byte)

WO = WO &€ f(byte)

Wa = byte or nibble swap Wa

Wa = byte or nibble swap Wa (byte)
Wd = ROM[Wa] for odd ROM

Wd = ROM[Wa] for odd ROM (byte)
Wd = ROM[Wa] for even ROM

Wd = ROM[Wa] for even ROM (byte)
ROM[Wa] = Wd for odd ROM
ROM[Wa] = Wd for odd ROM (byte)
ROM[Wa] = Wd for even ROM
ROM[Wa] = Wd for even ROM (byte)
Deallocate Stack Frame

ICD Run

Wd =Wa Wb

f=fAWO0

W0 =f WO

wWd =WaIlits

wd =Wd ~ [it10

Wd =Wd ~ it10 (byte)

WO = f WO (byte)

wWd = Wa 2 lit5 (byte)

Wd = Wa ™ Wb (byte)

f=f~WO (byte)

Wd =Wa & FF

ANDWEF f,d
CLRW
DECF f,d
INCF f,d
IORWF f,d
MOVPHW
MOVWEF f
RLF f,d
SUBWF f,d

84

SWAPF f,d
BCF f,b
BTFSC f,b
ANDLW k
CLRWDT
IORLW k
RETLW k
XORLW
TRIS k

Q_—h

f,b

Kk

XORWEF f,d
BSF f,b
BTFSS f,b
CALL k
GOTO k
MOVLW k
SLEEP
OPTION

14 Bit
ADDLW k
SUBLW k
RETFIE
RETURN

may be a constant (file number) or a simple variable
may be a constant (0 or 1) or W or F

may be a file (as above) and a constant (0-7) or it may be just a bit variable

reference.
may be a constant expression

Note that all expressions and comments are in C like syntax.

PIC 18
ADDWF
CLRF
CPFSGT
DECFSZ
INFSNZ
MOVFF
NEGF
RRCF
SUBFWB
SWAPF
BCF
BTFSS
BN
BNOV
BRA
CLRWDT
NOP
PUSH

f,d ADDWFCf,dANDWF f,d
f COMF fdCPFSEQf
f CPFSLT f DECF fd
f,d DCFSNZ f,dINCF f.d
fd IORWF fdMOVF fd
fs,dMOVWF f MULWF f
f RLCF f,dRLNCF f.d
f,d RRNCF fdSETF f
f,d SUBWF f,dSUBWFBf,d
fd TSTFSZ f XORWEF f,d
f,o BSF f,bBTFSC f,b
f,o BTG f,dBC n
n BNC n BNN n
n BNZ n BOV n

n BZ n CALL n,s
- DAW - GOTO n
- NOP - POP -

- RCALL n RESET -

Pre-Processor

85

RETFIE
SLEEP
IORLW
MOVLW
SUBLW
TBLRD
TBLWT
TBLWT

Pre-Processor

s RETLW k RETURNSs
- ADDLW k ANDLW k
k LFSR f,k MOVLB k
k MULLW k RETLW k
k XORLW k TBLRD *
*+ TBLRD *- TBLRD +*
* TBLWT *+ TBLWT *-

The compiler will set the access bit depending on the value of the file register.

If there is just a variable identifier in the #asm block then the

compiler inserts an & before it. And if it is an expression it must be
a valid C expression that evaluates to a constant (no & here). InC
an un-subscripted array name is a pointer and a constant (no need

for &).

#BIT

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#BIT id = x.y

id is a valid C identifier,
X is a constant or a C variable,
y is a constant 0-7

A new C variable (one bit) is created and is placed in memory at byte x and bit
y. This is useful to gain access in C directly to a bit in the processors special
function register map. It may also be used to easily access a bit of a standard C
variable.

#bit TOIF = 0x b.2

T1IF = 0; // Clear Timer 0 interrupt flag

int result;
#bit result odd = result.0

if (result odd)

ex_glint.c

#BYTE, #RESERVE, #LOCATE, #WORD

86

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#BUILD

Syntax: #BUILD(segment = address)
#BUILD(segment = address, segment = address)
#BUILD(segment = start:end)
#BUILD(segment = start: end, segment = start: end)
#BUILD(nosleep)

Elements: segment is one of the following memory segments which may be assigned a
location: MEMORY, RESET, or INTERRUPT

address is a ROM location memory address. Start and end are used to specify a
range in memory to be used.

start is the first ROM location and end is the last ROM location to be used.
nosleep is used to prevent the compiler from inserting a sleep at the end of main()
Bootload produces a bootloader-friendly hex file (in order, full block size).

NOSLEEP_LOCK is used instead of A sleep at the end of a main A infinite loop.

Purpose: PIC18XXX devices with external ROM or PIC18XXX devices with no internal ROM
can direct the compiler to utilize the ROM. When linking multiple compilation units,
this directive must appear exactly the same in each compilation unit.

Examples: #build (memory=0x20000:0x2FFFF) //Assigns memory space
#build (reset=0x200, interrupt=0x208) //Assigns start
//location
//of reset and
//interrupt
//vectors
#build (reset=0x200:0x207, interrupt=0x208:0x2ff)
//Assign limited space
//for reset and
//interrupt vectors.
#build (memory=0x20000:0x2FFFF) //Assigns memory space

Example None

Files:
Also See: #LOCATE, #RESERVE, #ROM, #ORG

87

Pre-Processor

#BYTE
Syntax: #BYTE id = x

Elements: id is a valid C identifier,
X is a C variable or a constant

Purpose: If theid is already known as a C variable then this will locate the variable at address
X. In this case the variable type does not change from the original definition. If the
id is not known a new C variable is created and placed at address x with the type
int (8 bit)

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable, then id
and x share the same memory location.

Examples: #byte status = 3
#byte b port = 6

struct {
short int r w;
short int c d;
int unused : 2;
int data : 4 ; } a port;
#byte a port = 5

a port.c d = 1;
Example ex_glint.c

Files:
Also See: #BIT, #LOCATE, #RESERVE, #WORD

88

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#CASE

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

DATE

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor

#CASE
None

Will cause the compiler to be case sensitive. By default the compiler is case
insensitive. When linking multiple compilation units, this directive must appear
exactly the same in each compilation unit.

Warning: Not all the CCS example programs, headers and drivers have been
tested with case sensitivity turned on.

#case
int STATUS;

void func () {
int status;

STATUS = status; // Copy local status to
//global
}

€Xx_Cust.c

None

__ DATE__
None

This pre-processor identifier is replaced at compile time with the date of the
compile in the form: "31-JAN-03"

printf ("Software was compiled on ");
printf(DATE);

None

None

89

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#DEFINE

Syntax: #DEFINE id text
or
#DEFINE id(x,y...) text

Elements: id is a preprocessor identifier, text is any text, x,y and so on are local preprocessor
identifiers, and in this form there may be one or more identifiers separated by
commas.

Purpose: Used to provide a simple string replacement of the ID with the given text from this
point of the program and on.

In the second form (a C macro) the local identifiers are matched up with similar
identifiers in the text and they are replaced with text passed to the macro where it is
used.

If the text contains a string of the form #idx then the result upon evaluation will be
the parameter id concatenated with the string x.

If the text contains a string of the form #idx#idy then parameter idx is concatenated
with parameter idy forming a new identifier.

Within the define text two special operators are supported:

#x is the stringize operator resulting in "x"
x##ty is the concatination operator resulting in xy

Examples: #define BITS 8

a=a+BITS; //same as a=a+8;

#define hi (x) (x<<4)

a=hi (a); //same as a=(a<<4) ;

#define isequal (a,b) (primary ##a[b]==backup_ ##a[b])
// usage iseaqual (names,5) 1is the same as

// (primary names[5]==backup names[5])

#define str(s) #s

#define part(device) #include str (device##.h)
// usage part(l6F887) is the same as
// #include "16F887.h"

Example ex stwt.c, ex macro.c
Files:

Also See: #UNDEF, #IFDEF, #IFNDEF

90

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Pre-Processor

#DEFINEDINC
Syntax: value = definedinc(variable);
Parameters: variable is the name of the variable, function, or type to be checked.
Returns: A C status for the type of id entered as follows:
0 — not known
1 — typedef or enum
2 — struct or union type
3 — typemod qualifier
4 — defined function
5 — function prototype
6 — compiler built-in function
7 — local variable
8 — global variable
Function: This function checks the type of the variable or function being passed in and returns a
specific C status based on the type.
Availability: ~ All devices
Requires: None.
Examples: intx,y=0; _ _ _
y = definedinc(x); // y will return 7 — x is a local variable
Example None
Files:
Also See: None

91

#DEVICE

Syntax:

Elements:

#DEVICE chip options

Pre-Processor

#DEVICE Compilation mode selection

Chip Options-

chip is the name of a specific processor (like: PIC16C74), To get a current list of

supported devices:

START | RUN | CCSC +Q

Options are qualifiers to the standard operation of the device. Valid options are:

*:5

*:8

*=16
ADC=x
ICD=TRUE
ICD=n

WRITE_EEPROM=ASYNC

WRITE_EEPROM = NOINT

HIGH_INTS=TRUE
%f=.
OVERLOAD=KEYWORD
OVERLOAD=AUTO
PASS_STRINGS=IN_RAM

CONST=READ_ONLY

CONST=ROM

Use 5 bit pointers (for all parts)
Use 8 bit pointers (14 and 16 bit parts)
Use 16 bit pointers (for 14 bit parts)

Where x is the number of bits read_adc() should
return

Generates code compatible with Microchips ICD
debugging hardware.

For chips with multiple ICSP ports specify the pol
number being used. The default is 1.

Prevents WRITE_EEPROM from hanging while
writing is taking place. When used, do not write 1
EEPROM from both ISR and outside ISR.

Allows interrupts to occur while the
write_eeprom() operations is polling the done bit
to check if the write operations has completed.
Can be used as long as no EEPROM operations
are performed during an ISR.

Use this option for high/low priority interrupts on
the PIC® 18.

No 0 before a decimal pint on %f numbers less
than 1.

Overloading of functions is now supported.
Requires the use of the keyword for overloading
Default mode for overloading.

A new way to pass constant strings to a function

by first copying the string to RAM and then
passing a pointer to RAM to the function.

Uses the ANSI keyword CONST definition,
making CONST variables read only, rather than
located in program memory.

Uses the CCS compiler traditional keyword
CONST definition, making CONST variables

92

Pre-Processor

located in program memory.

NESTED_INTERRUPTS=TRUE Enables interrupt nesting for PIC24, dsPIC30, and
dsPIC33 devices. Allows higher priority interrupts
to interrupt lower priority interrupts.

NORETFIE ISR functions (preceeded by a #int_xxx) will use a
RETURN opcode instead of the RETFIE opcode.
This is not a commonly used option; used rarely in
cases where the user is writing their own ISR
handler.

Both chip and options are optional, so multiple #DEVICE lines may be used to fully
define the device. Be warned that a #DEVICE with a chip identifier, will clear all
previous #DEVICE and #FUSE settings.

Compilation mode selection-

The #DEVICE directive supports compilation mode selection. The valid keywords are
CCS2, CCS3, CCS4 and ANSI. The default mode is CCS4. For the CCS4 and ANSI
mode, the compiler uses the default fuse settings NOLVP, PUT for chips with these
fuses. The NOWDT fuse is default if no call is made to restart_wdt().

CCs4 This is the default compilation mode. The pointer size in this mode for
PCM and PCH is set to *=16 if the part has RAM over OFF.

ANSI Default data type is SIGNED all other modes default is UNSIGNED.
Compilation is case sensitive, all other modes are case insensitive.
Pointer size is set to *=16 if the part has RAM over OFF.

CCs2 varlé = NegConst8 is compiled as: varl6 = NegConst8 & Oxff (no sign
CCss3 extension) Pointer size is set to *=8 for PCM and PCH and *=5 for PCB
. The overload keyword is required.

CCSs2 The default #DEVICE ADC is set to the resolution of the part, all other
only modes default to 8.

onebit = eightbits is compiled as onebit = (eightbits != 0)

All other modes compile as: onebit = (eightbits & 1)

Purpose: Chip Options -Defines the target processor. Every program must have exactly one
#DEVICE with a chip. When linking multiple compilation units, this directive must
appear exactly the same in each compilation unit.

Compilation mode selection - The compilation mode selection allows existing code
to be compiled without encountering errors created by compiler compliance. As CCS
discovers discrepancies in the way expressions are evaluated according to ANSI, the
change will generally be made only to the ANSI mode and the next major CCS
release.

93

Pre-Processor

Examples Chip Options-
: #device PICl6C74
#device PIC16C67 *=16
#device *=16 ICD=TRUE
#device PIC16F877 *=16 ADC=10
#device %$f=.
printf ("$£f",.5); //will print .5, without the directive it will print
0.5

Compilation mode selection-

#device CCS2 // This will set the ADC to the resolution of the
part
Example ex_mxram.c , ex _icd.c, 16c74.h,

Files:
Also See: read_adc()

DEVICE
Syntax: __ DEVICE__

Elements: None

Purpose: This pre-processor identifier is defined by the compiler with the base number of the
current device (from a #DEVICE). The base number is usually the number after the
C in the part number. For example the PIC16C622 has a base number of 622.

Examples: #if _ device_ ==71
SETUP_ADC PORTS (ALL DIGITAL);
#endif

Example None
Files:

Also See: #DEVICE

94

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink3.click()

Pre-Processor

#ERROR

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#ERROR text
#ERROR / warning text
#ERROR / information text

text is optional and may be any text

Forces the compiler to generate an error at the location this directive
appears in the file. The text may include macros that will be expanded for
the display. This may be used to see the macro expansion. The command
may also be used to alert the user to an invalid compile time situation.

#if BUFFER SIZE>16

#error Buffer size is too large
#endif

#error Macro test: min(x,y)

eX_pPsp.c

#WARNING

#EXPORT (options)

Syntax:

Elements:

#EXPORT (options)

FILE=filname

The filename which will be generated upon compile. If not given, the filname
will be the name of the file you are compiling, with a .0 or .hex extension
(depending on output format).

ONLY=symbol+symbol+.....+symbol

Only the listed symbols will be visible to modules that import or link this
relocatable object file. If neither ONLY or EXCEPT is used, all symbols are
exported.

EXCEPT=symbol+symbol+.....+symbol

All symbols except the listed symbols will be visible to modules that import or
link this relocatable object file. If neither ONLY or EXCEPT is used, all
symbols are exported.

RELOCATABLE
CCS relocatable object file format. Must be imported or linked before loading
into a PIC. This is the default format when the #EXPORT is used.

HEX

Intel HEX file format. Ready to be loaded into a PIC. This is the default format
when no #EXPORT is used.

95

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

RANGE-=start:stop
Only addresses in this range are included in the hex file.

OFFSET=address
Hex file address starts at this address (0 by default)

ODD
Only odd bytes place in hex file.

EVEN
Only even bytes placed in hex file.

Purpose: This directive will tell the compiler to either generate a relocatable object file or
a stand-alone HEX binary. A relocatable object file must be linked into your
application, while a stand-alone HEX binary can be programmed directly into
the PIC.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

Multiple #EXPORT directives may be used to generate multiple hex files. this
may be used for 8722 like devices with external memory.

Examples: #EXPORT (RELOCATABLE, ONLY=TimerTask)
void TimerFuncl (void) { /* some code */ }
vold TimerFunc?2 (void) { /* some code */ }
vold TimerFunc3 (void) { /* some code */ }
void TimerTask (void)
{
TimerFuncl () ;
TimerFunc?2 () ;
TimerFunc3 () ;
}
/*
This source will be compiled into a relocatable object, but the
object this is being linked to can only see TimerTask()

*/
Example Files: None

See Also: #IMPORT, #MODULE, Invoking the Command Line Compiler, Multiple
Compilation Unit

96

Pre-Processor

__FILENAME__
Syntax: __FILENAME__

Elements: None

Purpose: The pre-processor identifier is replaced at compile time with the filename of
the file being compiled.

Examples: if (index>MAX_ENTRIES)
printf ("Too many entries, source file: "

__FILENAME " at line " LINE "\r\n");
Example None

Files:

Also See: __line_

#FILL_ROM

Syntax: #fill_rom value

Elements: value is a constant 16-bit value

Purpose: This directive specifies the data to be used to fill

unused ROM locations. When linking multiple
compilation units, this directive must appear exactly the
same in each compilation unit.

Examples: #£i11 rom 0x36
Example Files: None

Also See: #ROM

97

#FUSES

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor

#FUSES options

options vary depending on the device. A list of all valid options has been put
at the top of each devices .h file in a comment for reference. The PCW device
edit utility can modify a particular devices fuses. The PCW pull down menu
VIEW | Valid fuses will show all fuses with their descriptions.

Some common options are:

e LP, XT, HS, RC

e WDT, NOWDT

PROTECT, NOPROTECT

PUT, NOPUT (Power Up Timer)
BROWNOUT, NOBROWNOUT

This directive defines what fuses should be set in the part when it is
programmed. This directive does not affect the compilation; however, the
information is put in the output files. If the fuses need to be in Parallax
format, add a PAR option. SWAP has the special function of swapping (from
the Microchip standard) the high and low BYTES of non-program data in the
Hex file. This is required for some device programmers.

Some fuses are set by the compiler based on other compiler directives. For
example, the oscillator fuses are set up by the #USE delay directive. The
debug, No debug and ICSPN Fuses are set by the #DEVICE ICD=directive.
Some processors allow different levels for certain fuses. To access these
levels, assign a value to the fuse. For example, on the 18F452, the fuse
PROTECT=6 would place the value 6 into CONFIG5L, protecting code
blocks 0 and 3.

When linking multiple compilation units be aware this directive applies to the
final object file. Later files in the import list may reverse settings in previous
files.

To eliminate all fuses in the output files use:
#FUSES none

To manually set the fuses in the output files use:
#FUSES 1 = 0xC200 // sets config word 1 to 0xC200

#fuses HS,NOWDT
ex _sgw.c

None

98

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#HEXCOMMENT

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#1D

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#HEXCOMMENT text comment for the top of the hex file
#HEXCOMMENT\ text comment for the end of the hex file

None

Puts a comment in the hex file

Some programmers (MPLAB in particular) do not like comments at the top of the
hex file.

#HEXCOMMENT Version 3.1 - requires 20MHz crystal
None

None

#ID number 16

#ID number, number, number, number
#1D "filename"

#ID CHECKSUM

Number 16 is a 16 bit number, number is a 4 bit number, filename is any
valid PC filename and checksum is a keyword.

This directive defines the ID word to be programmed into the part. This
directive does not affect the compilation but the information is put in the
output file.

The first syntax will take a 16 -bit number and put one nibble in each of the
four ID words in the traditional manner. The second syntax specifies the
exact value to be used in each of the four ID words .

When a filename is specified the ID is read from the file. The format must be

simple text with a CR/LF at the end. The keyword CHECKSUM indicates the
device checksum should be saved as the ID.

#id 0x1234
#id "serial.num"
#id CHECKSUM

ex_cust.c

99

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#IF exp #ELSE #ELIF #ENDIF

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#if expr
code

#elif expr //Optional, any number may be used
code

#else /[Optional
code

#endif

expr is an expression with constants, standard operators and/or
preprocessor identifiers. Code is any standard ¢ source code.

The pre-processor evaluates the constant expression and if it is non-zero will
process the lines up to the optional #ELSE or the #ENDIF.

Note: you may NOT use C variables in the #IF. Only preprocessor identifiers
created via #define can be used.

The preprocessor expression DEFINED(id) may be used to return 1 if the id
is defined and O if it is not.

== and != operators now accept a constant string as both operands. This
allows for compile time comparisons and can be used with GETENV() when
it returns a string result.

#if MAX VALUE > 255
long value;
#else
int value;
#endif
#if getenv (“DEVICE”)=="PIC16F877"
//do something special for the PIC16F877
#endif

ex_extee.c

#IFDEF, #IFNDEF, getenv()

100

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#IFDEF #IFNDEF #ELSE #ELIF #ENDIF

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

#IFDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

#IFNDEF id
code
#ELIF
code
#ELSE
code
#ENDIF

id is a preprocessor identifier, code is valid C source code.

This directive acts much like the #IF except that the preprocessor simply
checks to see if the specified ID is known to the preprocessor (created with a
#DEFINE). #IFDEF checks to see if defined and #IFNDEF checks to see if it
is not defined

#define debug // Comment line out for no debug

#ifdef DEBUG
printf ("debug point a");
#endif

ex_sqw.c

#IF

101

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#IGNORE_WARNINGS

Syntax: #ignore_warnings ALL
#IGNORE_WARNINGS NONE
#IGNORE_WARNINGS warnings

Elements: warnings is one or more warning numbers separated by commas

Purpose: This function will suppress warning messages from the compiler. ALL indicates no
warning will be generated. NONE indicates all warnings will be generated. If
numbers are listed then those warnings are suppressed.

Examples: #ignore_warnings 203
while (TRUE) {
#ignore warnings NONE

Example None
Files:

Also See: Warning messages

102

Pre-Processor

#IMPORT (options)

Syntax:

Elements:

Purpose:

Examples:

#IMPORT (options)

FILE=filname
The filename of the object you want to link with this compilation.

ONLY=symbol+symbol+.....+symbol
Only the listed symbols will imported from the specified relocatable object file. If
neither ONLY or EXCEPT is used, all symbols are imported.

EXCEPT=symbol+symbol+.....+symbol
The listed symbols will not be imported from the specified relocatable object file.
If neither ONLY or EXCEPT is used, all symbols are imported.

RELOCATABLE
CCS relocatable object file format. This is the default format when the
#IMPORT is used.

COFF
COFF file format from MPASM, C18 or C30.

HEX
Imported data is straight hex data.

RANGE-=start:stop
Only addresses in this range are read from the hex file.

LOCATION=id
The identifier is made a constant with the start address of the imported data.

SIZE=id
The identifier is made a constant with the size of the imported data.

This directive will tell the compiler to include (link) a relocatable object with this
unit during compilation. Normally all global symbols from the specified file will be
linked, but the EXCEPT and ONLY options can prevent certain symbols from
being linked.

The command line compiler and the PCW IDE Project Manager can also be
used to compile/link/build modules and/or projects.

#IMPORT (FILE=timer.o, ONLY=TimerTask)
void main (void)

{

while (TRUE)
TimerTask () ;
}
/*
timer.o is linked with this compilation, but only TimerTask() is
visible in scope from this object.
%

103

Example Files:

See Also:

#INCLUDE

Syntax:

Elements:

Purpose:

Examples:

Example Files:

Also See:

Pre-Processor

None

#EXPORT, #MODULE, Invoking the Command Line Compiler, Multiple

Compilation Unit

#INCLUDE <filename>
or
#INCLUDE "filename"

filename is a valid PC filename. It may include normal drive and path
information. A file with the extension ".encrypted" is a valid PC file. The
standard compiler #NCLUDE directive will accept files with this extension and
decrypt them as they are read. This allows include files to be distributed without
releasing the source code.

Text from the specified file is used at this point of the compilation. If a full path
is not specified the compiler will use the list of directories specified for the
project to search for the file. If the filename is in " then the directory with the
main source file is searched first. If the filename is in <> then the directory with
the main source file is searched last.

#include <16C54.H>

#include <C:\INCLUDES\COMLIB\MYRS232.C>
ex_sqw.c

None

104

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#INLINE

Syntax:

Elements:

Purpose:

Examples:

#INLINE

None

Tells the compiler that the function immediately following the directive is to be
implemented INLINE. This will cause a duplicate copy of the code to be placed
everywhere the function is called. This is useful to save stack space and to
increase speed. Without this directive the compiler will decide when it is best

Pre-Processor

to make procedures INLINE.

#inline

swapbyte (int &a, int &b) {

int t;
t=a;
a=b;
b=t;

Example Files: ex cust.c

Also See:

#SEPARATE

#INT XXXX

Syntax:

#INT_AD
#INT_ADOF
#INT_BUSCOL
#INT_BUSCOL2
#INT_BUTTON
#INT_CANERR
#INT_CANIRX
#INT_CANRXO
#INT_CANRX1
#INT_CANTXO
#INT_CANTX1
#INT_CANTX2
#INT_CANWAKE

Analog to digital conversion complete

Analog to digital conversion timeout

Bus collision

Bus collision 2 detected

Pushbutton

An error has occurred in the CAN module

An invalid message has occurred on the CAN bus
CAN Receive buffer 0 has received a new message
CAN Receive buffer 1 has received a new message
CAN Transmit buffer 0 has completed transmission
CAN Transmit buffer 0 has completed transmission
CAN Transmit buffer 0 has completed transmission

Bus Activity wake-up has occurred on the CAN bus

105

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#INT_CCP1
#INT_CCP2
#INT_CCP3
#INT_CCP4
#INT_CCP5
#INT_COMP
#INT_COMPO
#INT_COMP1
#INT_COMP2
#INT_CR
#INT_EEPROM
#INT_ETH
HINT_EXT
#INT_EXT1
#INT_EXT2
#INT_EXT3
#INT_12C
#INT_IC1
#INT_IC2QE]
#IC3DR
#INT_LCD
#INT_LOWVOLT
#INT_LVD
#INT_OSC_FAIL
#INT_OSCF
#INT_PMP
#INT_PSP
#INT_PWMTB
#INT_RA
#INT_RB
#INT_RC
#INT_RDA
#INT_RDAO
#INT_RDA1

Pre-Processor

Capture or Compare on unit 1
Capture or Compare on unit 2
Capture or Compare on unit 3
Capture or Compare on unit 4
Capture or Compare on unit 5
Comparator detect
Comparator O detect
Comparator 1 detect
Comparator 2 detect
Cryptographic activity complete
Write complete

Ethernet module interrupt
External interrupt

External interrupt #1

External interrupt #2

External interrupt #3

12C interrupt (only on 14000)
Input Capture #1

Input Capture 2 / QEI Interrupt
Input Capture 3 / Direction Change Interrupt
LCD activity

Low voltage detected

Low voltage detected

System oscillator failed
System oscillator failed
Parallel Master Port interrupt
Parallel Slave Port data in
PWM Time Base

Port A any change on AO_A5
Port B any change on B4-B7
Port C any change on C4-C7
RS232 receive data available
RS232 receive data available in buffer O

RS232 receive data available in buffer 1

106

Elements:

Purpose:

Pre-Processor

#INT_RDA2 RS232 receive data available in buffer 2
#INT_RTCC Timer 0 (RTCC) overflow
#INT_SPP Streaming Parallel Port Read/Write
#INT_SSP SPI or 12C activity

#INT_SSP2 SPI or 12C activity for Port 2
#INT_TBE RS232 transmit buffer empty
#INT_TBEO RS232 transmit buffer 0 empty
#INT_TBE1 RS232 transmit buffer 1 empty
#INT_TBE2 RS232 transmit buffer 2 empty
#INT_TIMERO Timer 0 (RTCC) overflow
#INT_TIMER1 Timer 1 overflow

#INT_TIMERZ2 Timer 2 overflow

#INT_TIMERS Timer 3 overflow

#INT_TIMER4 Timer 4 overflow

#INT_TIMERS Timer 5 overflow

#INT_ULPWU Ultra-low power wake up interrupt
#INT_USB Universal Serial Bus activity

Note many more #INT_ options are available on specific chips. Check the devices
.h file for a full list for a given chip.

None

These directives specify the following function is an interrupt function. Interrupt
functions may not have any parameters. Not all directives may be used with all
parts. See the devices .h file for all valid interrupts for the part or in PCW use the
pull down VIEW | Valid Ints

The compiler will generate code to jump to the function when the interrupt is
detected. It will generate code to save and restore the machine state, and will clear
the interrupt flag. To prevent the flag from being cleared add NOCLEAR after the
#INT_xxxx. The application program must call ENABLE_INTERRUPTS(INT_XxxxXx)
to initially activate the interrupt along with the ENABLE_INTERRUPTS(GLOBAL) to
enable interrupts.

The keywords HIGH and FAST may be used with the PCH compiler to mark an
interrupt as high priority. A high-priority interrupt can interrupt another interrupt
handler. An interrupt marked FAST is performed without saving or restoring any
registers. You should do as little as possible and save any registers that need to be
saved on your own. Interrupts marked HIGH can be used normally. See #DEVICE
for information on building with high-priority interrupts.

107

Pre-Processor

A summary of the different kinds of PIC18 interrupts:
#INT _XXXX
Normal (low priority) interrupt. Compiler saves/restores key registers.
This interrupt will not interrupt any interrupt in progress.
#INT_xxxx FAST
High priority interrupt. Compiler DOES NOT save/restore key registers.
This interrupt will interrupt any normal interrupt in progress.
Only one is allowed in a program.
#INT _xxxx HIGH
High priority interrupt. Compiler saves/restores key registers.
This interrupt will interrupt any normal interrupt in progress.
#INT_xxxx NOCLEAR
The compiler will not clear the interrupt.
The user code in the function should call clear_interrput() to
clear the interrupt in this case.
#INT_GLOBAL
Compiler generates no interrupt code. User function is located
at address 8 for user interrupt handling.

Some interrupts shown in the devices header file are only for the enable/disable
interrupts. For example, INT_RB3 may be used in enable/interrupts to enable pin
B3. However, the interrupt handler is #INT_RB.

Similarly INT_EXT_L2H sets the interrupt edge to falling and the handler is
#INT_EXT.

Examples: #int_ad
adc_handler () {
adc_active=FALSE;

}

#int rtcc noclear
isr() |

}

Example See ex sisr.c and ex_stwt.c for full example programs.

Files:

Also See: enable_interrupts(), disable_interrupts(), #INT_DEFAULT, #INT_GLOBAL,
#PRIORITY

108

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Pre-Processor

#INT_DEFAULT
Syntax: #INT_DEFAULT

Elements: None

Purpose: The following function will be called if the PIC® triggers an interrupt and none of the
interrupt flags are set. If an interrupt is flagged, but is not the one triggered, the
#INT_DEFAULT function will get called.

Examples: #int default
default isr() {
printf ("Unexplained interrupt\r\n");

}

Example None
Files:

Also See: #INT_xxxx, #INT_global

#INT_GLOBAL
Syntax: #INT_GLOBAL

Elements: None

Purpose: This directive causes the following function to replace the compiler interrupt
dispatcher. The function is normally not required and should be used with great
caution. When used, the compiler does not generate start-up code or clean-up
code, and does not save the registers.

Examples: #int_global

isr () { // Will be located at location 4 for PICl6 chips.
#asm
bst isr flag
retfie
#endasm

Example ex glint.c
Files:

Also See: #INT_xxxx

109

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

__LINE__

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#LIST

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor

__line__
None

The pre-processor identifier is replaced at compile time with line number of the
file being compiled.

if (index>MAX ENTRIES)
printf ("Too many entries, source file: "
__FILE " at line " LINE "\r\n");

assert.h

__file_ _

#LIST
None

#LIST begins inserting or resumes inserting source lines into the .LST file after a
#NOLIST.

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

16c74.h

#NOLIST

110

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Pre-Processor

#LINE

Syntax: #LINE number file name
Elements: Number is non-negative decimal integer. File name is optional.

Purpose: The C pre-processor informs the C Compiler of the location in your source code.
This code is simply used to change the value of LINE_and FILE_ variables.

Examples: 1. void main () {
#line 10 // specifies the line number that
// should be reported for
// the following line of input

2. #line 7 "hello.c"
// line number in the source file
// hello.c and it sets the
// line 7 as current line
// and hello.c as current file
Example None
Files:

Also See: None

#LOCATE
Syntax: #LOCATE id=x

Elements: id is a C variable,
X is a constant memory address

Purpose: #LOCATE allocates a C variable to a specified address. If the C variable was not
previously defined, it will be defined as an INTS.

A special form of this directive may be used to locate all A functions local variables
starting at a fixed location.
Use: #LOCATE Auto = address

This directive will place the indirected C variable at the requested address.

Examples: // This will locate the float variable at 50-53
// and C will not use this memory for other
// variables automatically located.
float x;
#locate x=0x 50

Example ex glint.c
Files:

Also See:

111

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#MODULE
Syntax: #MODULE

Elements: None

Purpose: All global symbols created from the #MODULE to the end of the file will only be
visible within that same block of code (and files #INCLUDE within that block). This
may be used to limit the scope of global variables and functions within include files.
This directive also applies to pre-processor #defines.

Note: The extern and static data qualifiers can also be used to denote scope of
variables and functions as in the standard C methodology. #MODULE does add
some benefits in that pre-processor #DEFINE can be given scope, which cannot
normally be done in standard C methodology.

Exanuﬂes;int GetCount (void) ;
void SetCount (int newCount) ;
#MODULE
int g count;
#define G COUNT MAX 100
int GetCount (void) {return(g count);}
void SetCount (int newCount) {
if (newCount>G COUNT MAX)
newCount=G COUNT MAX;
g _count=newCount;
}
/*
the functions GetCount () and SetCount () have global scope, but the
variable g count and the #define G COUNT MAX only has scope to this
file.
=/

Example None

Files:
See Also: #EXPORT, Invoking the Command Line Compiler, Multiple Compilation Unit

112

#NOLIST

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#OCS
Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor

#NOLIST
None

Stops inserting source lines into the .LST file (until a #LIST)

#NOLIST // Don't clutter up the list file
#include <cdriver.h>
#LIST

16¢c74.h

#LIST

#OCS x
X is the clock's speed and can be 1 Hz to 100 MHz.

Used instead of the #use delay(clock = x)

#include <18F4520.h>
#device ICD=TRUE
#0CS 20 MHz

#use rs232 (debugger)

void main () {

None

#USE DELAY

113

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#OPT

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

#ORG

Syntax:

Elements:

Purpose:

Pre-Processor

#OPT n

All Devices: n is the optimization level 1-11 or by using the word "compress" for
PIC18 and Enhanced PIC16 families.

The optimization level is set with this directive. This setting applies to the entire
program and may appear anywhere in the file. The PCW default is 9 for normal.
When Compress is specified the optimization is set to an extreme level that
causes a very tight rom image, the code is optimized for space, not speed.
Debugging with this level my be more difficult.

#opt 5
None

None

#ORG start, end
or
#ORG segment
or
#ORG start, end { }
or
#ORG start, end auto=0
#ORG start,end DEFAULT
or
#ORG DEFAULT

start is the first ROM location (word address) to use, end is the last ROM
location, segment is the start ROM location from a previous #ORG

This directive will fix the following function, constant or ROM declaration into
a specific ROM area. End may be omitted if a segment was previously defined

if you only want to add another function to the segment.

Follow the ORG with a { } to only reserve the area with nothing inserted by the

compiler.

The RAM for a ORG'd function may be reset to low memory so the local

variables and scratch variables are placed in low memory. This should only be

used if the ORG'd function will not return to the caller. The RAM used will
overlap the RAM of the main program. Add a AUTO=0 at the end of the
#ORG line.

114

Examples:

Example Files:

Also See:

Pre-Processor

If the keyword DEFAULT is used then this address range is used for all
functions user and compiler generated from this point in the file until a #ORG
DEFAULT is encountered (no address range). If a compiler function is called
from the generated code while DEFAULT is in effect the compiler generates a
new version of the function within the specified address range.

ROM. #ORG may be used to locate data in ROM. Because CONSTANT are
implemented as functions the #ORG should proceed the CONSTANT and
needs a start and end address. For a ROM declaration only the start address
should be specified.

When linking multiple compilation units be aware this directive applies to the
final object file. It is an error if any #ORG overlaps between files unless the
#ORG matches exactly.

#ORG 0x1EQ0, Ox1FFF
MyFunc () {
//This function located at 1E0O0

}

#ORG O0x1EO00
Anotherfunc () {
// This will be somewhere 1E00-1F00

}

#ORG 0x800, 0x820 {}
//Nothing will be at 800-820

#ORG 0x1B80
ROM int32 seridl N0=12345;

#ORG 0x1C00, Ox1COF

CHAR CONST ID[10}= {"123456789"};
//This ID will be at 1CO0O0

//Note some extra code will
//proceed the 123456789

#ORG 0x1F00, Ox1FFO
Void loader () {

loader.c

#ROM

115

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

#PIN_SELECT
Syntax:

Elements:

Pre-Processor

#PIN_SELECT function=pin_xx

function is the Microchip defined pin function name,
such as: U1RX (UART1 receive), INT1 (external
interrupt 1), T2CK (timer 2 clock), IC1 (input capture
1), OC1 (output capture 1).

INT1 External Interrupt 1

INT2 External Interrupt 2

INT3 External Interrupt 3

TOCK Timer0 External Clock

T3CK Timer3 External Clock

CCP1 Input Capture 1

CCP2 Input Capture 2

T1G Timerl Gate Input

T3G Timer3 Gate Input

U2RX EUSART2
Asynchronous
Receive/Synchronous
Receive (also named:
RX2)

U2CK EUSART?2
Asynchronous Clock
Input

SDI2 SPI2 Data Input

SCK2IN SPI2 Clock Input

SS2IN SPI2 Slave Select
Input

FLTO PWM Fault Input

TOCKI Timer0Q External Clock
Input

T3CKI Timer3 External Clock
Input

RX2 EUSART?2
Asynchronous
Transmit/Asynchronous
Clock Output (also
named: TX2)

NULL NULL

C10uUT Comparator 1 Output

116

Pre-Processor

C20UT Comparator 2 Output

u2TXx EUSART2
Asynchronous
Transmit/
Asynchronous Clock
Output (also named:
TX2)

u2DT EUSART2
Synchronous Transmit
(also named: DT2)

SDO2 SPI12 Data Output

SCK20UT SPIC2 Clock Output

SS20UT SPI2 Slave Select
Output

ULPOUT Ultra Low-Power
Wake-Up Event

P1A ECCP1 Compare or
PWM Output Channel
A

P1B ECCP1 Enhanced
PWM Output, Channel
B

P1C ECCP1 Enhanced
PWM Output, Channel
C

P1D ECCP1 Enhanced
PWM Output, Channel
D

P2A ECCP2 Compare or
PWM Output Channel
A

P2B ECCP2 Enhanced
PWM Output, Channel
B

pP2C ECCP2 Enhanced
PWM Output, Channel
C

P2D ECCP1 Enhanced
PWM Output, Channel
D

TX2 EUSART2
Asynchronous
Transmit/Asynchronous
Clock Output (also
named: TX2)

117

Pre-Processor

DT2 EUSART2
Synchronous Transmit
(also named: U2DT)

SCK2 SPI2 Clock Output
SSDMA SPI DMA Slave Select

pin_xx is the CCS provided pin definition. For
example: PIN_C7, PIN_BO, PIN_D3, etc.

Purpose: When using PPS chips a #PIN_SELECT must be
appear before these peripherals can be used or
referenced.

Examples: #pin select UITX=PIN C6

#pin select ULRX=PIN C7
#pin select INT1=PIN BO

Example None
Files:

Also See: None
__PCB__

Syntax: __PCB__

Elements: None

Purpose: The PCB compiler defines this pre-processor identifier. It may be used to
determine if the PCB compiler is doing the compilation.

Examples: #ifdef _ pcb
ffdevice PIC1l6c54
fendif

Example eX_Sgw.c
Files:

AlsoSee: PCM_, PCH

118

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

PCM

Syntax: __PCM

Elements: None

Purpose: The PCM compiler defines this pre-processor identifier. It may be used to
determine if the PCM compiler is doing the compilation.

Examples: #ifdef _ pcm__
#device PIClé6c71l
#endif

Example ex_sqgw.c

Files:

Also See: __ PCB__,_PCH__
__PCH__

Syntax: __PCH__

Elements: None

Purpose: The PCH compiler defines this pre-processor identifier. It may be used to
determine if the PCH compiler is doing the compilation.

Examples: #ifdef __ PCH _ _
#device PIC18C452
fendif

Example eX_Sgw.c
Files:

AlsoSee: PCB_, PCM

119

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#PRAGMA

Syntax:
Elements:

Purpose:

#PRAGMA cmd
cmd is any valid preprocessor directive.

This directive is used to maintain compatibility between C compilers. This
compiler will accept this directive before any other pre-processor command. In
no case does this compiler require this directive.

Examples: #pragma device PIC16C54

Example ex_cust.c

Files:

Also See: None

#PRIORITY

Syntax: #PRIORITY ints

Elements: ints is a list of one or more interrupts separated by commas.
export makes the functions generated from this directive available to other
compilation units within the link.

Purpose: The priority directive may be used to set the interrupt priority. The highest
priority items are first in the list. If an interrupt is active it is never interrupted. If
two interrupts occur at around the same time then the higher one in this list will
be serviced first. When linking multiple compilation units be aware only the one
in the last compilation unit is used.

Examples: #priority rtcc,rb

Example None

Files:

Also See: #INT_xxxx

120

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#PROFILE

Syntax: #profile options

Element options may be one of the following:
s:

functions ‘ Profiles the start/end of functions and all profileout() me

. Profiles the start/end of functions, parameters sent to functiol
functions, parameters

profileout() messages.

profileout ‘ Only profile profilout() messages.
paths ‘ Profiles every branch in the code.
off ‘ Disable all code profiling.
Re-enables the code profiling that was previously disabled w
on off command. This will use the last options before disabled
command.

Purpose: Large programs on the microcontroller may generate lots of profile data, which may
make it difficult to debug or follow. By using #profile the user can dynamically control
which points of the program are being profiled, and limit data to what is relevant to the
user.

Example #profile off
S: void BigFunction (void)

// BigFunction code goes here.

// Since #profile off was called above,

// no profiling will happen even for other
// functions called by BigFunction() .

#profile on

Example ex_profile.c
Files:

Also #use profile(), profileout(), Code Profile overview
See:

121

Pre-Processor

#RESERVE
Syntax: #RESERVE address
or
#RESERVE address, address, address
or

#RESERVE start:end
Elements: address is a RAM address, start is the first address and end is the last address

Purpose: This directive allows RAM locations to be reserved from use by the
compiler. #RESERVE must appear after the #DEVICE otherwise it will have no
effect. When linking multiple compilation units be aware this directive applies to
the final object file.

Examples: #DEVICE PIC16C74
#RESERVE 0x60:0X6£f

Example ex_cust.c

Files:
Also See: #ORG

122

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#ROM

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Pre-Processor

#ROM address = {list}
#ROM type address = {list}

address is a ROM word address, list is a list of words separated by commas

Allows the insertion of data into the .HEX file. In particular, this may be used to
program the '84 data EEPROM, as shown in the following example.

Note that if the #ROM address is inside the program memory space, the directive
creates a segment for the data, resulting in an error if a #ORG is over the same
area. The #ROM data will also be counted as used program memory space.

The type option indicates the type of each item, the default is 16 bits. Using char
as the type treats each item as 7 bits packing 2 chars into every pcm 14-bit word.

When linking multiple compilation units be aware this directive applies to the final
object file.

Some special forms of this directive may be used for verifying program memory:

#ROM address = checksum
This will put a value at address such that the entire program memory will sum
to 0x1248

#ROM address = crcl6
This will put a value at address that is a crc16 of all the program memory
except the specified address

#ROM address = crc8
This will put a value at address that is a crc16 of all the program memory
except the specified address

#rom getnev ("EEPROM ADDRESS")={1,2,3,4,5,6,7,8}
#rom int8 0x1000={" (c)CCS, 2010"}
None

Also See: #ORG

123

Pre-Processor

#SEPARATE
Syntax: #SEPARATE
Elements: None
Purpose: Tells the compiler that the procedure IMMEDIATELY following
the directive is to be implemented SEPARATELY. This is
useful to prevent the compiler from automatically making a
procedure INLINE. This will save ROM space but it does use
more stack space. The compiler will make all procedures
marked SEPARATE, separate, as requested, even if there is
not enough stack space to execute.
Examples: #separate
swapbyte (int *a, int *b) {
int t;
t=*a;
*az*b;
*b=t;

Example Files: ex_cust.c

Also See: #INLINE

124

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#SERIALIZE
Syntax:

Elements:

Purpose:

Pre-Processor

#SERIALIZE(id=xxx, next="x" | file="filename.txt" " |

non

listfile="filename.txt", "prompt="text", log="filename.txt")
or

#SERIALIZE(dataee=x, binary=x, next="x" |
file="filename.txt" | listfile="filename.txt", prompt="text",
log="filename.txt")

id=xxx - Specify a C CONST identifier, may be int8, int16,
int32 or char array

Use in place of id parameter, when storing serial number to
EEPROM:

dataee=x - The address x is the start address in the data
EEPROM.

binary=x - The integer x is the number of bytes to be written
to address specified. -or-

string=x - The integer x is the number of bytes to be written
to address specified.

Use only one of the next three options:

file="filename.txt" - The file x is used to read the initial serial
number from, and this file is updated by the ICD programmer.
It is assumed this is a one line file with the serial number. The
programmer will increment the serial number.

listfile="filename.txt" - The file x is used to read the initial
serial number from, and this file is updated by the ICD
programmer. It is assumed this is a file one serial number per
line. The programmer will read the first line then delete that
line from the file.

next="x" - The serial number X is used for the first load, then
the hex file is updated to increment x by one.

Other optional parameters:

prompt="text" - If specified the user will be prompted for a
serial number on each load. If used with one of the above
three options then the default value the user may use is
picked according to the above rules.

log=xxx - A file may optionally be specified to keep a log of
the date, time, hex file name and serial number each time the
part is programmed. If no id=xxx is specified then this may be
used as a simple log of all loads of the hex file.

Assists in making serial numbers easier to implement when
working with CCS ICD units. Comments are inserted into the

125

Examples:

Example Files:

Also See:

Pre-Processor

hex file that the ICD software interprets.

//Prompt user for serial number to be placed

//at address of serialNumA

//Default serial number = 200int8int8 const
serialNumA=100;

#serialize (id=serialNumA, next="200",prompt="Enter
the serial number")

//Adds serial number log in seriallog.txt
#serialize (id=serialNumA,next="200",prompt="Enter
the serial number", log="seriallog.txt")

//Retrieves serial number from serials.txt
#serialize (id=serialNumA, listfile="serials.txt")

//Place serial number at EEPROM address 0,
reserving 1 byte

#serialize (dataee=0,binary=1,next="45", prompt="Put
in Serial number")

//Place string serial number at EEPROM address O,
reserving 2 bytes

#serialize (dataee=0,

string=2, next="AB",prompt="Put in Serial number")

None

None

126

#TASK

Pre-Processor

(The RTOS is only included with the PCW, PCWH, and PCWHD software packages.)

Each RTOS task is specified as a function that has no parameters and no return. The #TASK
directive is needed just before each RTOS task to enable the compiler to tell which functions are
RTOS tasks. An RTOS task cannot be called directly like a regular function can.

Syntax:

Elements:

Purpose:

Examples:

Also See:

#TASK (options)

options are separated by comma and may be:

rate=time

Where time is a number followed by s, ms, us, or ns. This specifies how often
the task will execute.

max=time
Where time is a number followed by s, ms, us, or ns. This specifies the
budgeted time for this task.

queue=bytes
Specifies how many bytes to allocate for this task's incoming messages. The
default value is 0.

enabled=value
Specifies whether a task is enabled or disabled by rtos_run().
True for enabled, false for disabled. The default value is enabled.

This directive tells the compiler that the following function is an RTOS task.

The rate option is used to specify how often the task should execute. This
must be a multiple of the minor_cycle option if one is specified in the #USE
RTOS directive.

The max option is used to specify how much processor time a task will use in
one execution of the task. The time specified in max must be equal to or less
than the time specified in the minor_cycle option of the #USE RTOS directive
before the project will compile successfully. The compiler does not have a
way to enforce this limit on processor time, so a programmer must be careful
with how much processor time a task uses for execution. This option does
not need to be specified.

The queue option is used to specify the number of bytes to be reserved
for the task to receive messages from other tasks or functions. The default
queue value is 0.

#task (rate=1ls, max=20ms, queue=5)

#USE RTOS

127

__TIME

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#TYPE

Syntax:

Elements:

Purpose:

Pre-Processor

__TIME__
None

This pre-processor identifier is replaced at compile time with the time of the
compile in the form: "hh:mm:ss"

printf ("Software was compiled on ");
printf(TIME);

None

None

#TYPE standard-type=size
#TYPE default=area
#TYPE unsigned

#TYPE signed

standard-type is one of the C keywords short, int, long, or default

size is 1,8,16, or 32

area is a memory region defined before the #TYPE using the addressmod
directive

By default the compiler treats SHORT as one bit , INT as 8 bits, and LONG as 16
bits. The traditional C convention is to have INT defined as the most efficient size
for the target processor. This is why it is 8 bits on the PIC ® . In order to help with
code compatibility a #TYPE directive may be used to allow these types to be
changed. #TYPE can redefine these keywords.

Note that the commas are optional. Since #TYPE may render some sizes
inaccessible (like a one bit int in the above) four keywords representing the four
ints may always be used: INT1, INT8, INT16, and INT32. Be warned CCS
example programs and include files may not work right if you use #TYPE in your
program.

This directive may also be used to change the default RAM area used for variable

storage. This is done by specifying default=area where area is a addressmod
address space.

128

Examples:

Example
Files:

Also See:

Pre-Processor

When linking multiple compilation units be aware this directive only applies to the

current compilation unit.

The #TYPE directive allows the keywords UNSIGNED and SIGNED to set the

default data type.

#TYPE SHORT= 8 , INT= 16 ,
#TYPE default=area
addressmod (user ram block,

#type default=user ram block

#type default=
#TYPE SIGNED

void main ()
{

int variablel;

}
ex_cust.c

None

0x100,

//
//
//

//
//

// variablel can

LONG= 32

O0x1FF) ;
all variable declarations
in this area will be in

0x100-0x1FF

restores memory allocation
back to normal

only take values from -128 to 127

129

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#UNDEF
Syntax: #UNDEF id
Elements: id is a pre-processor id defined via #DEFINE
Purpose: The specified pre-processor ID will no longer have meaning to the pre-
processor.
Examples: #if MAXSIZE<100
#undef MAXSIZE
#define MAXSIZE 100
fendif
Example None
Files:
Also See: #DEFINE

130

Pre-Processor

#USE CAPTURE

Syntax:
Elements:

#USE CAPTURE(options)

ICx/CCPx
Which CCP/Input Capture module to us.

INPUT = PIN_xx

Specifies which pin to use. Useful for device with remappable
pins, this will cause compiler to automatically assign pin to
peripheral.

TIMER=x

Specifies the timer to use with capture unit. If not specified
default to timer 1 for PCM and PCH compilers and timer 3 for
PCD compiler.

TICK=x

The tick time to setup the timer to. If not specified it will be set
to fastest as possible or if same timer was already setup by a
previous stream it will be set to that tick time. If using same
timer as previous stream and different tick time an error will be
generated.

FASTEST
Use instead of TICK=x to set tick time to fastest as possible.

SLOWEST
Use instead of TICK=x to set tick time to slowest as possible.

CAPTURE_RISING
Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_FALLING
Specifies the edge that timer value is captured on. Defaults to
CAPTURE_RISING.

CAPTURE_BOTH
PCD only. Specifies the edge that timer value is captured on.
Defaults to CAPTURE_RISING.

PRE=x

Specifies number of rising edges before capture event occurs.
Valid options are 1, 4 and 16, default to 1 if not specified.
Options 4 and 16 are only valid when using
CAPTURE_RISING, will generate an error is used with
CAPTURE_FALLING or CAPTURE_BOTH.

ISR=x

STREAM=id

131

Pre-Processor

Associates a stream identifier with the capture module. The
identifier may be used in functions like get_capture_time().

DEFINE=id

Creates a define named id which specifies the number of
capture per second. Default define name if not specified is
CAPTURES PER_SECOND. Define name must start with an
ASCI| letter 'A' to 'Z', an ASCII letter 'a’ to 'z' or an ASCI|
underscore (*_").

Purpose: This directive tells the compiler to setup an input capture on the
specified pin using the specified settings. The #USE DELAY
directive must appear before this directive can be used. This
directive enables use of built-in functions such as
get_capture_time() and get_capture_event().

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

Example None.

Files:

Also See: get_capture_time(), get_capture_event()

#USE DELAY

Syntax: #USE DELAY (options))

Elements: Options may be any of the following separated by commas:

clock=speed speed is a constant 1-100000000 (1 hz to 100 mhz).

This number can contains commas. This number also supports the following
denominations: M, MHZ, K, KHZ. This specifies the clock the CPU runs at.
Depending on the PIC this is 2 or 4 times the instruction rate. This directive is not
needed if the following type=speed is used and there is no frequency multiplication
or division.

type=speed type defines what kind of clock you are using, and the following values
are valid: oscillator, osc (same as oscillator), crystal, xtal (same as crystal), internal,
int (same as internal) or rc. The compiler will automatically set the oscillator
configuration bits based upon your defined type. If you specified internal, the
compiler will also automatically set the internal oscillator to the defined speed.
Configuration fuses are modified when this option is used. Speed is the input
frequency.

restart_wdt will restart the watchdog timer on every delay us() and delay_ms()
use.

clock_out when used with the internal or oscillator types this enables the clockout
pin to output the clock.

fast_start some chips allow the chip to begin execution using an internal clock until
the primary clock is stable.

lock some chips can prevent the oscillator type from being changed at run time by

132

Also See:

Pre-Processor

the software.

USB or USB_FULL for devices with a built-in USB peripheral. When used with the
type=speed option the compiler will set the correct configuration bits for the USB
peripheral to operate at Full-Speed.

USB_LOW for devices with a built-in USB peripheral. When used with the

type=speed option the compiler will set the correct configuration bits for the USB
peripheral to operate at Low-Speed.

delay_ms(), delay_us()

#USE DYNAMIC_MEMORY

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#USE DYNAMIC_MEMORY
None

This pre-processor directive instructs the compiler to create the
_DYNAMIC_HEAD object. _DYNAMIC_HEAD is the location where the first
free space is allocated.

#USE DYNAMIC MEMORY
void main () {

}
ex _malloc.c

None

133

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#USE FAST_IO

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#USE FAST_IO (port)
portisA,B,C,D, E, F, G, H,Jor ALL

Affects how the compiler will generate code for input and output instructions that
follow. This directive takes effect until another #use xxxx_10O directive is
encountered. The fast method of doing 1/O will cause the compiler to perform 1/0
without programming of the direction register. The compiler's default operation is
the opposite of this command, the direction 1/O will be set/cleared on each I/O
operation. The user must ensure the direction register is set correctly via
set_tris_X(). When linking multiple compilation units be aware this directive only
applies to the current compilation unit.

#use fast io(A)
ex cust.c

#USE FIXED_|O, #USE STANDARD _|O, set_tris_X() , General Purpose I/O

#USE FIXED_IO

Syntax:
Elements:

Purpose:

Examples:

Example
Files:

Also See:

#USE FIXED_IO (port_outputs=pin, pin?)
port is A-G, pin is one of the pin constants defined in the devices .h file.

This directive affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #USE XXX_10O
directive is encountered. The fixed method of doing 1/O will cause the compiler to
generate code to make an I/O pin either input or output every time it is used. The
pins are programmed according to the information in this directive (not the
operations actually performed). This saves a byte of RAM used in standard I/0.
When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

#use fixed io(a outputs=PIN A2, PIN A3)
None

#USE FAST_IO, #USE STANDARD_IO, General Purpose /O

134

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

#USE 12C

Syntax: #USE 12C (options)

Elements: Options are separated by commas and may be:

MASTER
MULTI_MASTER
SLAVE

Sets to the master mode
Set the multi_master mode

Set the slave mode

SCL=pin Specifies the SCL pin (pin is a bit address)
SDA=pin Specifies the SDA pin

ADDRESS=nn Specifies the slave mode address

FAST Use the fast 12C specification.
FAST=nnnnnn Sets the speed to nnnnnn hz

SLOW Use the slow [2C specification

RESTART_WDT

FORCE_HW
FORCE_SW
NOFLOAT_HIGH

Restart the WDT while waiting in 12C_READ

Use hardware |2C functions.
Use software 12C functions.

Does not allow signals to float high, signals
are driven from low to high

SMBUS Bus used is not I2C bus, but very similar

STREAM=id Associates a stream identifier with this 12C
port. The identifier may then be used in
functions like i2c_read or i2c_write.

NO_STRETCH Do not allow clock streaching

MASK=nn Set an address mask for parts that support it

12C1 Instead of SCL= and SDA= this sets the pins
to the first module

12C2 Instead of SCL= and SDA= this sets the pins
to the second module

NOINIT No initialization of the 12C peripheral is

performed. Use I2C_INIT() to initialize
peripheral at run time.

Only some chips allow the following:
DATA HOLD No ACK is sent until I2C_READ is called for data bytes
(slave only)

No ACK is sent until I2C_read is called for the address
byte (slave only)

Min of 300ns holdtime on SDA a from SCL goes low

ADDRESS _HOLD

SDA_HOLD

135

Pre-Processor

Purpose: CCS offers support for the hardware-based 12C™ and a software-based master
I2C™ device.(For more information on the hardware-based I12C module, please
consult the datasheet for your target device; not all PICs support 12C™.

The 12C library contains functions to implement an 12C bus. The #USE 12C
remains in effect for the I2C_START, [2C_STOP, I12C_READ, 12C_WRITE and
[2C_POLL functions until another USE 12C is encountered. Software functions are
generated unless the FORCE_HW is specified. The SLAVE mode should only be
used with the built-in SSP. The functions created with this directive are exported
when using multiple compilation units. To access the correct function use the
stream identifier.

Examples: #use I2C (master, sda=PIN BO, scl=PIN B1l)

#use I2C(slave,sda=PIN C4,scl=PIN C3
address=0xa0, FORCE HW)

#use I2C(master, scl=PIN BO, sda=PIN Bl, fast=450000)
//sets the target speed to 450 KBSP

Example ex_extee.c with 16c74.h
Files:

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state,
i2c_write, i2c_read, 12C Overview

#USE PROFILE()

Syntax: #use profile(options)

Elements: options may be any of the following, comma separated:

ICD ‘ Default — configures code profiler to use the ICD connection.

Optional. If specified, the code profiler run-time on the microcontroller
will use the Timerl peripheral as a timestamp for all profile events. If not
specified the code profiler tool will use the PC clock, which may not be
accurate for fast events.

TIMER1

Optional. If specified, will use a different baud rate between the
BAUD=x | microcontroller and the code profiler tool. This may be required on
slow microcontrollers to attempt to use a slower baud rate.

Purpose: Tell the compiler to add the code profiler run-time in the microcontroller and configure
the link and clock.

Examples #profile(ICD, TIMER1, baud=9600)

Example ex_profile.c
Files:

136

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink3.click()

#USE PWM
Syntax:

Elements:

PWMx or CCPx

OUTPUT=PIN_xx

TIMER=X

FREQUENCY=Xx

PERIOD=x

BITS=x

DUTY=x

STREAM=id

Pre-Processor

#USE PWM(options)

Options are separated by commas and may be:

Selects the CCP to use, x being the module number to use.

Selects the PWM pin to use, pin must be one of the CCP pins. If device has
remappable pins compiler will assign specified pin to specified CCP module. If
CCP module not specified it will assign remappable pin to first available module.
Selects timer to use with PWM module, default if not specified is
timer 2.

Sets the period of PWM based off specified value, should not be
used if PERIOD is already specified. If frequency can't be
achieved exactly compiler will generate a message specifying the
exact frequency and period of PWM. If neither FREQUENCY or
PERIOD is specified, the period defaults to maximum possible
period with maximum resolution and compiler will generate a
message specifying the frequency and period of PWM, or if using
same timer as previous stream instead of setting to maximum
possible it will be set to the same as previous stream. If using
same timer as previous stream and frequency is different compiler
will generate an error.

Sets the period of PWM, should not be used if FREQUENCY is
already specified. If period can't be achieved exactly compiler will
generate a message specifying the exact period and frequency of
PWM. If neither PERIOD or FREQUENCY is specified, the period
defaults to maximum possible period with maximum resolution and
compiler will generate a message specifying the frequency and
period of PWM, or if using same timer as previous stream instead
of setting to maximum possible it will be set to the same as
previous stream. If using same timer as previous stream and
period is different compiler will generate an error.

Sets the resolution of the the duty cycle, if period or frequency is
specified will adjust the period to meet set resolution and will
generate an message specifying the frequency and duty of PWM.
If period or frequency not specified will set period to maximum
possible for specified resolution and compiler will generate a
message specifying the frequency and period of PWM, unless
using same timer as previous then it will generate an error if
resolution is different then previous stream. If not specified then
frequency, period or previous stream using same timer sets the
resolution.

Selects the duty percentage of PWM, default if not specified is
50%.

Associates a stream identifier with the PWM signal. The identifier
may be used in functions like pwm_set_duty_percent().

137

Pre-Processor

This directive tells the compiler to setup a PWM on the specified
pin using the specified frequency, period, duty cycle and resolution.
The #USE DELAY directive must appear before this directive can

Purpose: be used. This directive enables use of built-in functions such as
set_pwm_duty percent(), set_pwm_frequency(),
set_pwm_period(), pwm_on() and pwm_off().

Example Files None

Also See:

#USE RS232

Syntax: #USE RS232 (options)

Elements: Options are separated by commas and may be:

STREAM=id Associates a stream identifier with this RS232 port.
The identifier may then be used in functions like
fputc.

BAUD=x Set baud rate to x

XMIT=pin Set transmit pin

RCV=pin Set receive pin

FORCE_SW Will generate software serial 1/0O routines even

when the UART pins are specified.

BRGH10K Allow bad baud rates on chips that have baud rate
problems.
ENABLE=pin The specified pin will be high during transmit. This

may be used to enable 485 transmit.

DEBUGGER Indicates this stream is used to send/receive data
though a CCS ICD unit. The default pin used in
B3, use XMIT=and RCV= to change the pin used.
Both should be the same pin.

RESTART_WDT Will cause GETC() to clear the WDT as it waits for
a character.

INVERT Invert the polarity of the serial pins (normally not
needed when level converter, such as the
MAX232). May not be used with the internal UART.

PARITY=X Where xis N, E, or O.

138

BITS =X

FLOAT_HIGH

ERRORS

SAMPLE_EARLY

RETURN=pin

MULTI_MASTER

LONG_DATA

DISABLE_INTS

STOP=X

TIMEOUT=X

Pre-Processor

Where x is 5-9 (5-7 may not be used with the SCI).

The line is not driven high. This is used for open
collector outputs. Bit 6 in RS232_ERRORS is set if
the pin is not high at the end of the bit time.

Used to cause the compiler to keep receive errors
in the variable RS232_ERRORS and to reset
errors when they occur.

A getc() normally samples data in the middle of a
bit time. This option causes the sample to be at the
start of a bit time. May not be used with the UART.

For FLOAT_HIGH and MULTI_MASTER this is the
pin used to read the signal back. The default for
FLOAT HIGH is the XMIT pin and for
MULTI_MASTER the RCV pin.

Uses the RETURN pin to determine if another
master on the bus is transmitting at the same time.
If a collision is detected bit 6 is set in

RS232 ERRORS and all future PUTC's are
ignored until bit 6 is cleared. The signal is checked
at the start and end of a bit time. May not be used
with the UART.

Makes getc() return an intl6 and putc accept an
intl6. This is for 9 bit data formats.

Will cause interrupts to be disabled when the
routines get or put a character. This prevents
character distortion for software implemented 1/O
and prevents interaction between I1/O in interrupt
handlers and the main program when using the
UART.

To set the number of stop bits (default is 1). This
works for both UART and
non-UART ports.

To set the time getc() waits for a byte in
milliseconds. If no character comes in within this
time the RS232_ERRORS is set to 0 as well as the
return value form getc(). This works for both UART
and non-UART ports.

139

SYNC_SLAVE

SYNC_MASTER

SYNC_MATER_CONT

UART1

UART2

NOINIT

Serial Buffer Options:
RECEIVE_BUFFER=x

TRANSMIT_BUFFER=x

TXISR

NOTXISR

Flow Control Options:
RTS = PIN_xx

Pre-Processor

Makes the RS232 line a synchronous slave,
making the receive pin a clock in, and the data pin
the data in/out.

Makes the RS232 line a synchronous master,
making the receive pin a clock out, and the data
pin the data in/out.

Makes the RS232 line a synchronous master mode
in continuous receive mode. The receive pin is set
as a clock out, and the data pin is set as the data
infout.

Sets the XMIT= and RCV= to the chips first
hardware UART.

Sets the XMIT= and RCV= to the chips second
hardware UART.

No initialization of the UART peripheral is
performed. Useful for dynamic control of the UART
baudrate or initializing the peripheral manually at a
later point in the program's run time. If this option is
used, then setup_uart() needs to be used to
initialize the peripheral. Using a serial routine (such
as getc() or putc()) before the UART is initialized
will cause undefined behavior.

Size in bytes of UART circular receive buffer,
default if not specified is zero. Uses an interrupt to
receive data, supports RDA interrupt or external
interrupts.

Size in bytes of UART circular transmit buffer,
default if not specified is zero.

If TRANSMIT_BUFFER is greater then zero
specifies using TBE interrupt for transmitting data.
Default is NOTXISR if TXISR or NOTXISR is not

specified. TXISR option can only be used when
using hardware UART.

If TRANSMIT_BUFFER is greater then zero
specifies to not use TBE interrupt for transmitting
data. Default is NOTXISR if TXISR or NOTXISR is
not specified and XMIT_BUFFER is greater then
zero

Pin to use for RTS flow control. When using
FLOW_CONTROL_MODE this pin is driven to the
active level when it is ready to receive more data.

140

Purpose:

Pre-Processor

In SIMPLEX_MODE the pin is driven to the active
level when it has data to transmit.
FLOW_CONTROL_MODE can only be use when
using RECEIVE_BUFFER

RTS LEVEL=x Specifies the active level of the RTS pin, HIGH is
active high and LOW is active low. Defaults to
LOW if not specified.

CTS = PIN_xx Pin to use for CTS flow control. In both
FLOW_CONTROL_MODE and SIMPLEX_MODE
this pin is sampled to see if it clear to send data. If
pin is at active level and there is data to send it will
send next data byte.

CTS_LEVEL=x Specifies the active level of the CTS pin, HIGH is
active high and LOW is active low. Default to LOW
if not specified

FLOW_CONTROL_MODE Specifies how the RTS pin is used. For
FLOW_CONTROL_MODE the RTS pin is driven to
the active level when ready to receive data.

Defaults to FLOW_CONTROL_MODE when
neither FLOW_CONTROL_MODE or
SIMPLEX_MODE is specified. If RTS pinisn't
specified then this option is not used.

SIMPLEX_MODE Specifies how the RTS pin is used. For
SIMPLEX_MODE the RTS pin is driven to the
active level when it has data to send. Defaults to
FLOW_CONTROL_MODE when neither
FLOW_CONTROL_ MODE or SIMPLEX_MODE is
specified. If RTS pin isn't specified then this option
is not used.

This directive tells the compiler the baud rate and pins used for serial I/O. This
directive takes effect until another RS232 directive is encountered. The #USE
DELAY directive must appear before this directive can be used. This directive
enables use of built-in functions such as GETC, PUTC, and PRINTF. The functions
created with this directive are exported when using multiple compilation units. To
access the correct function use the stream identifier.

When using parts with built-in SCI and the SCI pins are specified, the SCI will be
used. If a baud rate cannot be achieved within 3% of the desired value using the
current clock rate, an error will be generated. The definition of the RS232_ERRORS
is as follows:

No UART:
e Bit 7 is 9th bit for 9 bit data mode (get and put).
¢ Bit 6 set to one indicates a put failed in float high mode.

With a UART:
¢ Used only by get:

141

Pre-Processor

o Copy of RCSTA register except:
¢ Bit 0 is used to indicate a parity error.

Warning:

The PIC UART will shut down on overflow (3 characters received by the hardware
with a GETC() call). The "ERRORS" option prevents the shutdown by detecting the
condition and resetting the UART.

Examples: #use rs232 (baud=9600, xmit=PIN A2, rcv=PIN A3)

Example ex cust.c
Files:

Also See: getc(), putc(), printf(), setup_uart(), RS2332 I/O overview

#USE RTOS
(The RTOS is only included with the PCW and PCWH packages.)

The CCS Real Time Operating System (RTOS) allows a PIC
micro controller to run regularly scheduled tasks without the need
for interrupts. This is accomplished by a function (RTOS_RUN())
that acts as a dispatcher. When a task is scheduled to run, the
dispatch function gives control of the processor to that task.
When the task is done executing or does not need the processor
anymore, control of the processor is returned to the dispatch
function which then will give control of the processor to the next
task that is scheduled to execute at the appropriate time. This
process is called cooperative multi-tasking.

#USE RTOS (options)

Syntax:
options are separated by comma and may be:
timer=X Where x is 0-4 specifying the timer used by the
RTOS.
minor_cycle=time Where time is a number followed by s, ms, us, ns.
Elements: This is the longest time any task will run. Each
' task's execution rate must be a multiple of this time.
The compiler can calculate this if it is not specified.
statistics Maintain min, max, and total time used by each
task.
This directive tells the compiler which timer on the PIC to use for monitoring and
when to grant control to a task. Changes to the specified timer's prescaler will effect
. the rate at which tasks are executed.
Purpose:

This directive can also be used to specify the longest time that a task will ever take
to execute with the minor_cycle option. This simply forces all task execution rates to

142

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Pre-Processor

be a multiple of the minor_cycle before the project will compile successfully. If the
this option is not specified the compiler will use a minor_cycle value that is the
smallest possible factor of the execution rates of the RTOS tasks.

If the statistics option is specified then the compiler will keep track of the minimum
processor time taken by one execution of each task, the maximum processor time
taken by one execution of each task, and the total processor time used by each task.

When linking multiple compilation units, this directive must appear exactly the same
in each compilation unit.

#use rtos(timer=0, minor cycle=20ms)
Examples: -

Also See: #TASK

#USE SPI
Syntax: #USE SPI (options)

Elements: Options are separated by commas and may be:

MASTER Set the device as the master. (default)

SLAVE Set the device as the slave.

BAUD=n Target bits per second, default is as fast as possible.

CLOCK_HIGH=n High time of clock in us (not needed if BAUD= is
used). (default=0)

CLOCK_LOW=n Low time of clock in us (not needed if BAUD=is
used). (default=0)

DI=pin Optional pin for incoming data.

DO=pin Optional pin for outgoing data.

CLK=pin Clock pin.

MODE=n The mode to put the SPI bus.

ENABLE=pin Optional pin to be active during data transfer.

LOAD=pin Optional pin to be pulsed active after data is
transferred.

DIAGNOSTIC=pin Optional pin to the set high when data is sampled.

SAMPLE_RISE Sample on rising edge.

SAMPLE_FALL Sample on falling edge (default).

BITS=n Max number of bits in a transfer. (default=32)

SAMPLE_COUNT=n Number of samples to take (uses majority vote).
(default=1

LOAD_ACTIVE=n Active state for LOAD pin (0, 1).

ENABLE_ACTIVE=n Active state for ENABLE pin (0O, 1). (default=0)

IDLE=n Inactive state for CLK pin (0, 1). (default=0)

ENABLE DELAY=n Time in us to delay after ENABLE is activated.

143

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor

(default=0)
DATA_HOLD=n Time between data change and clock change
LSB_FIRST LSB is sent first.
MSB_FIRST MSB is sent first. (default)
STREAM=id Specify a stream name for this protocol.
SPI1 Use the hardware pins for SPI Port 1
SPI2 Use the hardware pins for SPI Port 2
FORCE_HW Use the pic hardware SPI.
NOINIT Don't initialize the hardware SPI Port

The SPI library contains functions to implement an SPI bus. After setting all of the
proper parameters in #USE SPI, the spi_xfer() function can be used to both transfer
and receive data on the SPI bus.

The SPI1 and SPI2 options will use the SPI hardware onboard the PIC. The most
common pins present on hardware SPI are: DI, DO, and CLK. These pins don’t
need to be assigned values through the options; the compiler will automatically
assign hardware-specific values to these pins. Consult your PIC’s data sheet as to
where the pins for hardware SPI are. If hardware SPI is not used, then software SPI
will be used. Software SPI is much slower than hardware SPI, but software SPI can
use any pins to transfer and receive data other than just the pins tied to the PIC’s
hardware SPI pins.

The MODE option is more or less a quick way to specify how the stream is going to
sample data. MODE=0 sets IDLE=0 and SAMPLE_RISE. MODE=1 sets IDLE=0
and SAMPLE_FALL. MODE=2 sets IDLE=1 and SAMPLE_FALL. MODE=3 sets
IDLE=1 and SAMPLE_RISE. There are only these 4 MODEs.

SPI cannot use the same pins for DI and DO. If needed, specify two streams: one to
send data and another to receive data.

The pins must be specified with DI, DO, CLK or SPIx, all other options are defaulted
as indicated above.

#use Spi(DI=PIN_Bl, DO=PIN_BO, CLK=PIN_B2, ENABLE=PIN_B4, BITS=16)
// uses software SPI

#use Spi(FORCE_HW, BITS=16, stream=SPI STREAM)
// uses hardware SPI and gives this stream the name SPI STREAM

None

spi_xfer()

144

Pre-Processor

#USE STANDARD_IO

Syntax: #USE STANDARD_10O (port)

Elements: portisA,B,C,D, E, F, G, H, Jor ALL

Purpose: This directive affects how the compiler will generate code for input and output
instructions that follow. This directive takes effect until another #USE XXX _10
directive is encountered. The standard method of doing 1/0 will cause the compiler
to generate code to make an 1/O pin either input or output every time it is used. On
the 5X processors this requires one byte of RAM for every port set to standard 1/O.
Standard_io is the default I/O method for all ports.
When linking multiple compilation units be aware this directive only applies to the
current compilation unit.

Examples: #use standard io (A)

Example ex_cust.c

Files:

Also See: #USE FAST IO, #USE FIXED_IO, General Purpose I/0

#USE TIMER

Syntax: #USE TIMER (options)

Elements: TIMER=x

Sets the timer to use as the tick timer. x is a valid timer that the PIC has. Default
value is 1 for Timer 1.

TICK=xx

Sets the desired time for 1 tick. xx can be used with ns(hanoseconds), us
(microseconds), ms (milliseconds), or s (seconds). If the desired tick time can't be
achieved it will set the time to closest achievable time and will generate a warning
specifying the exact tick time. The default value is 1us.

BITS=x

Sets the variable size used by the get_ticks() and set_ticks() functions for returning
and setting the tick time. x can be 8 for 8 bits, 16 for 16 bits or 32 for 32bits. The
default is 32 for 32 bits.

ISR
Uses the timer's interrupt to increment the upper bits of the tick timer. This mode
requires the the global interrupt be enabled in the main program.

NOISR

145

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Pre-Processor

The get_ticks() function increments the upper bits of the tick timer. This requires
that the get_ticks() function be called more often then the timer's overflow rate.
NOISR is the default mode of operation.

STREAM=id
Associates a stream identifier with the tick timer. The identifier may be used in
functions like get_ticks().

DEFINE=id

Creates a define named id which specifies the number of ticks that will occur in one
second. Default define name if not specified is TICKS_PER_SECOND. Define
name must start with an ASCII letter 'A' to 'Z', an ASCII letter 'a’ to 'z' or an ASCI|I
underscore ("_").

COUNTER or COUNTER=x

Sets up specified timer as a counter instead of timer. x specifies the prescallar to
setup counter with, default isl if x is not specified specified. The function get_ticks()
will return the current count and the function set_ticks() can be used to set count to
a specific starting value or to clear counter.

Purpose: This directive creates a tick timer using one of the PIC's timers. The tick timer is
initialized to zero at program start. This directive also creates the define
TICKS_PER_SECOND as a floating point number, which specifies that number of
ticks that will occur in one second.

Examples: #USE TIMER (TIMER=1, TICK=lms,BITS=16,NOISR)

unsigned intl6 tick difference (unsigned intl6é current, unsigned
intl6 previous) {
return (current - previous);

}

void main (void) {
unsigned intl6 current tick, previous tick;
current tick = previous tick = get ticks();
while (TRUE) {
current tick = get ticks();
if (tick difference (current tick, previous tick) > 1000) {
output toggle (PIN BO);
previous tick = current tick;

}

Example None
Files:

Also See: get_ticks(), set_ticks()

146

Pre-Processor

#USE TOUCHPAD

Syntax:

Elements:

Purpose:

Examples:

Example
Files:

#USE TOUCHPAD (options)

RANGE=x

Sets the oscillator charge/discharge current range. If x is L, current is nominally 0.1
microamps. If X is M, current is nominally 1.2 microamps. If X is H, current is
nominally 18 microamps. Default value is H (18 microamps).

THRESHOL D=x
x is a number between 1-100 and represents the percent reduction in the nominal
frequency that will generate a valid key press in software. Default value is 6%.

SCANTIME=xxMS

xx is the number of milliseconds used by the microprocessor to scan for one key
press. If utilizing multiple touch pads, each pad will use xx milliseconds to scan for
one key press. Default is 32ms.

PIN=char
If a valid key press is determined on “PIN”, the software will return the character
“char” in the function touchpad_getc(). (Example: PIN_BO="'A")

SOURCETIME=xxus (CTMU only)
xx is thenumber of microseconds each pin is sampled for by ADC during each scan
time period. Default is 10us.

This directive will tell the compiler to initialize and activate the Capacitive Sensing
Module (CSM)or Charge Time Measurement Unit (CTMU) on the microcontroller.
The compiler requires use of the TIMERO and TIMER1 modules for CSM and
Timerl ADC modules for CTMU, and global interrupts must still be activated in the
main program in order for the CSM or CTMU to begin normal operation. For most
applications, a higher RANGE, lower THRESHOLD, and higher SCANTIME will
result better key press detection. Multiple PIN's may be declared in “options”, but
they must be valid pins used by the CSM or CTMU. The user may also generate a
TIMERO ISR with TIMERQO's interrupt occuring every SCANTIME milliseconds. In
this case, the CSM's or CTMU's ISR will be executed first.

#USE TOUCHPAD (THRESHOLD=5, PIN D5='5', PIN B0O='C')
void main (void) {

char c;

enable interrupts (GLOBAL) ;

while (1) {
c = TOUCHPAD GETC(); //will wait until a pin is detected
} //if PIN BO is pressed, c will have 'C'
} //if PIN D5 is pressed, c will have '5'
None

147

Pre-Processor

#WARNING
Syntax: #WARNING text

Elements: text is optional and may be any text

Purpose: Forces the compiler to generate a warning at the location this directive appears in
the file. The text may include macros that will be expanded for the display. This may
be used to see the macro expansion. The command may also be used to alert the
user to an invalid compile time situation.

ExampleS: #if BUFFER SIZE < 32
#warning Buffer Overflow may occur
#endif

Example ex _psp.c

Files:
Also See: #ERROR

148

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

#WORD
Syntax:

Elements:

Purpose:

Examples:

Example
Files:

Also See:

Pre-Processor

#WORD id = x

id is a valid C identifier,

X is a C variable or a constant

If the id is already known as a C variable then this will locate the variable at address
X. In this case the variable type does not change from the original definition. If the id
is not known a new C variable is created and placed at address x with the type
int16

Warning: In both cases memory at x is not exclusive to this variable. Other
variables may be located at the same location. In fact when x is a variable, then id
and x share the same memory location.

#word data = 0x0800
struct {
int lowerByte : 8;
int upperByte : 8;
} control word;
#word control word = 0x85

control word.upperByte = 0x42;
None

#BIT, #BYTE, #LOCATE, #RESERVE

149

Pre-Processor

#ZERO_RAM
Syntax: #ZERO_RAM

Elements: None

Purpose: This directive zero's out all of the internal registers that may be used to hold
variables before program execution begins.

Examples: #zero_ram
void main () {

}
Example ex_cust.c

Files:
Also See: None

150

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

l ol-hel
A\

BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

The CCS compiler provides a lot of built-in functions to access and use the PIC microcontroller's
peripherals. This makes it very easy for the users to configure and use the peripherals without
going into in depth details of the registers associated with the functionality. The functions
categorized by the peripherals associated with them are listed on the next page. Click on the
function name to get a complete description and parameter and return value descriptions.

S0 11T T O T (T 151
BUILT-IN FUNGCTIONS . . ettt ittt ettt et e et e e e et e e e e e e et e e e et e e st e e st sestasesanessennaaes 151
P21 o1 () PRSP 157
sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()ccoeeevvrieririiieiiiineennn, 157
P2 o [o (o] 1= () USSP 158
P2 11T =) 1 () PP 159
L2 101 PSRRI 160
=100) () P 161
1 IS =Y (= o1 161
Lo T = (o [=N (o TS 72 (T 162
oLl (Y (S 163
LA ST=) () P 164
o] 1A (=) () PSSP 164
o]0)Y/ [o YW1 A=Y a = o] (=Y () 165
[0 RSY=Y= T (o 0 () I 165
(o= | oo () PSSP 166
(o7 1 PP 167
clcl setup gate() clc2 setup gate() clc3 setup gate() clc4 setup gate().....coeevvvenevvennnenn. 168
clcl setup input() clc2 setup input() clc3 setup input() clc4 setup iNPut()......ccceevvvenneenn. 169
(ol (ST L (=Y 0] o) ¥ () P 170
(011 o IS 1= 1] () O TSP PP 170
(o110 I (=11 1= L () OO PTRPPP 171
(o P Lo 1 (=T () P SSSUPPPRRRPN 171
(o 1S E NV oY/ o (ST (R 172
[0 == L 0TS () SRR 173
[0 == L U () SRR 173
(o [R¥= o] (ST T a1 (=Y 4 (0 o= () T 175
(o TN I o AV () USSP 176
(ST a1 o (ST a1 (=T A AU o) Y () T 177
STz Y SR =Y=1 01 (0] 1 0 () 178
STz IS = o1 (o To [=10 AN =Y=1 01 (o] 0 1 () 178
(22 O] () PP PPTRPPP 179
LSy 01 =T o T () 179
=10 F () 180
(o[(e @ N e T=] (o T @ Mo =] (o F= () T 0 [<Y (o () T 181
Jo T £ e = T () U 182
L Yo () 183
110010 T [() PP PP PPN UUPRRPR 183
LT I 0T 0 (T 184

151

Built-in Functions

o1 (o I 101 (o] F= U (1 0 10 o] () 186
T8 (I 011 1 (S 186
L1 (=T= () 187
L1204 () USSP 187
(e[S oz 010 (=TI =NY/=) 1) 188
(o o= o100 [(=Y 10 A1) () 189
(o[A oo JI= Vol o1 U [0 01| F= L () (R 189
(o[A (o T (oY z= 11U 1Y () 190
Lo T A (o3 (PSR 190
Lo T S (10 0= o (PR 191
Jo T A (10 0= o = (SRR 191
Lo T S (10 0= (PR 192
Lo T S L ST) PSR 192
getc() getch() getChar() fFOBIC() . vvun i e e e e e e e e eens 193
[0 =] 0 1Y/ (PSP 194
Jo T E=Y 0 = T () U PUR 198
(o [o) (o TF=To [0 [(=TT =Y () 199
[1[o | A Iy o TS HF= Vo (3o (o] 1Y () S 199
22 o | () 200
D2 1Y =Y 0= L (= () 201
D24 o Yo | (PSS 202
D24 (== Lo () PSSP 202
(D2 s) P2 AVL=Y= Vo [o | () 203
D2~ o1=T=To [() TSR 204
P2 v= (PP 204
D24 o= o] o () 205
D2 oY1= () P 206
1] 10 () PSSP 207
10 o101 el o F= Vg To [N 207
1] 10 L] = (=Y (P 208
1] 10 | () PP PSSPPP 209
1LY (0] A= Yo 1LY/ () P 209
isalnum(char) isalpha(char) isdigit(char) islower(char) isspace(char) isupper(char)

isxdigit(char) iscntrl(x) isgraph(X) iSprint(X) iISPUNCE(X)ccvuniernieieieeeiee e eeee e ee e e e eeeens 210
1T T a 1) oo | (PSSP 211
L0 = (T 211
180 0] o T (o T £ o () 213
(0] T (PSSP 213
P2 o = Vo [0 g =Y (T 214
F= 0L () PSPPSR 215
Fofo I o010 1= 1o\ { () PRSP 215
Too I (o= o [() PR 216
Fo =77 0101 0o [(R 217
10 20 o (T 217
oo () 218
LOGL0() et e et e ettt 219
Fo T 101 o () P 219
0= =T = () 220
0= LS G () 220
NAKE32() ceerteeiiiie ettt ettt e et e e ettt e e e et e e et et e e ee et e e ettt e eeeataearataaarataaaaeertaaeratans 221
110172 oo () 222

Built-in Functions

[001=T0aTe] o)V @ I aT=T 0010 0101 VL=T () 222
0] 100 ST () 223
11070 | () 224

TV PR SPPOPRRPRIN 224
=10 T () USSP 225
()i Y=Y (o) { @ 011 £Y=] o)1 o1 () 226
(o) 1Y) (o) {011 £Y= 0) 1 o1 () 227
[0 1011 01 | () USSP 228
Lo 1014 11 o () PPN 228
(o104 o 10 | Ao 477 = () PP 229
(o014 10 | (0= L (RSSO 230
Lo 1014 10 | S T (PPN 231
Lo 1014 11 | [0 (TSP 231
(o101 o U 1Al oo o | L= () 232
011 () () P 233
[0 10T DA 01U 111U 0TS () 233
0 T0 iYL I 011) SRS 234
T L I T (R 235
10 1110 11 237
psp_output full() psp input full() PSP OVEIIOW() ceuniieeiieiie e 238
11l 101 (o] F= U (1 01U o] () 238
O TU L (=YY o (o [() PSSP 239
1 010 (oY= o | () USSP 239
11l 101 (o] F= U (1 01U (o] () 240
LWL (I 01U 1€ (PSSP 241
1111 T i 241
X110 0 PRSP 242
[T TR Ao [0 11 242
000 A ISY= 0 (UL 0Ty (o7 =Y o 1 243
|01V A ISY= A LY LY oY/ 243
(o [STIR o T=Y A oTo 10 0| { () 244
(o [STIE=Y=) oo 10 1L () 244
o TS €= L0 1 (PR 245
[T () PP 245
7= 1o [TSP 246
(VA o105 (Y A o)V (=YY () T 246
(VA o105 (Y S (1 247
1= (o = Lo [() PRSP 247
(oY= To I 0= 1| () PSP 249
(Y= (o Iot= 111 o] =N 10T o () T 249
read _configuration MEMOIY(). .euuieeeiiei ettt e et e e e e e et e e et e e s s e e st e s saasasaneasens 250
2= (0 IR =Y 1) 0 1 () 251
(Y= (o Y A=Y Lo [<To I =Y 0 0T I 251
(=Y To I o1 To =0 0 M 0 T=1 0 aT0) Y/ () 252
read eXterNal MEMIOIY() cou e e e e e s s e s e s e s ebsea s enssnsenssnss 252
[£=Y= (o I a1Te | A NESY o Y=Y =To = o (o] () TP 252
(Y= (o I o1 To =10 aMISY=1 0 1) 0 01 () 254
(= (o I o1 Te =10 0 0 aT=1 0 aT0) Y/ () 255
read eXterNal MEMIOIY() cuu e e e e s s e s e s e s ebsen s eassneensenss 255
(Y1 [0 Yol () OO PP UPPUPP 255
(=] == 1T [P 256

Built-in Functions

[(=ET =] S o) 10 () USSP 257
(oY r= L o7 U 1Y = () 257
(=1 0= L LYo | () P 258
(162 LC= T (=Y (PSS 259
(0162 LC= T o | L) PSS 259
o= 1= U (Y= T [(T 260
o=V F= U LY 1Y () P 261
T (=T To () TSP 261
(O 1= () 262
[T VLY 7= UL () 262
(OIS o[5Sz o] = () PSP 263
QTSI =Y 0= o] [T () 263
[TS 0 ST T o Yo)| (T 264
[0 II 0 0 1Yo TR (Y= U [() 264
[T 00 1Yo TRESY=T 1o [() 265
[TSR 0NV /=Y o (U1 T (T 265
0 ST 1 () 266
LTI o [T= 1 () 266
(O STIESY = L £ (TN 267
[TSR (<Y1 0 A1 F= L= (T 268
0TI LY=L { () 268
0O TS/ 1=) (o [PSSP 269
Y1 M=o (oo =101 L= [() 269
Y A A ToTo N (o7 [V L= (T 270
Y A o Yo XY o1V 0 W0 VL =Y o o [() 271
SEt POWET PWIMIX TULY () tuieniiiniiiiie et ee et e e et e e e e e e e e e e e e s e e sae e s e e sasssn s snsssnsssnsesnernss 271
set pwml duty() set pwm?2 duty() set pwm3 duty() set pwm4 duty()

oY A o111V A FS T [V Y () 272
set rtcc() set timerO() set timerl() set timer2() set timer3() set timer4()

Y= B {10 41) (PSP 273
Y=L (10 () P USSUPPPRRPPN 274
Y=L (11 0 T=T A (TP USSUPPPRRPPN 274
Y= B 10 A1) o = () U 275
Y=L (11 1= 0 P USRUPPPRRPPN 275
set rtcc() set timerO() set timerl() set timer2() set timer3() set timer4()

Y= B {10 01) (PP 276
Y= B T () PSSP 277
Y O F= T) 01110 [() P 278
FSY =111 o (S SSSPPSP 278
Y =100| I Yo [of (010 Yo [279
Y=y (0 | o JE=To [o o Yo 1 €= () 279
setup _ccpl() setup ccp2() setup ccp3() setup ccpd() setup ccp5()

RT3 18| 6T o o] o1 () RSP UPPR 281
setup clcl() setup clc2() setup ClC3() SELUP CICA() vunivnieniieiieeeee et 283
oY= 00| o100 0] oY=V =1 (o] o () 283
Y100 | o101 U1 | (<Y £ () T 284
RT3 18| 6T o3 o | () RSP UPPR 285
RS2 (1 o o = Vo () PRSI 286
Y100 I =T AtV 0 0 1=Y 0 0 Y (T 287
Y=100| I aTTo | A ISy o T<Y=To = Vo [od () [P 287
SY=100| I oY | A ISy o T=T=To IF= Vo (o o F= 11 () 288

154

Built-in Functions

FSY =100 | o T (o] () PSSP 289
oY=y 00| oI (o VLYY o] | Ao (=Y (=Tt { () 290
1< 10| oI (o] () PP P PP PRSPPI 290
setup _opampl() SEtUP OPAMIPZ2() .euuiernieieiiieiee it e et et e e e e e e e et e et e s et e s st e s et e asaneanens 291
setup _opampl() SEtUP OPAMIPZ2() .uuuiernieieieieiee it e et et e e e e e e e e et eseaa e s st e s raaessaneaeens 291
oY=l 00| I 0 FoYoa 1| F= (o () 292
setup pmMP(oPtioN,addreSS MASK).....ciuun e e e e e et e et e e s e e e sa e eens 293
oY= (0 | I 1o LTV =T o)VLY] 0 1 (S 293
oY= 00| I oo V1YY G 0111V 0 T o0 Y () T 295
Y=100| I 015 o] (o] o) 1T = To [0 [(=YY SN 0 0= KoY L 295
setup_pwml() setup pwm2() setup pwm3() setup PWMA() ..cunirieniiiiiieiieeeeeee e, 296
RS =100 | o o (=1 PP 297
11 18] oI 1 (o] () [P PP PRSPPI 297
Y0 | (o= F= U 0T 298
Y| IS o [= (U] o I o112 () 299
Y100 | I 1T =) G () 299
oY= 00| I 1T g =) G = (T 300
oY= 00 | o I X1 =T SO (T 300
FoY=1 00| I 1100 =) G () 301
oY1 | I 110 0 =) G () 302
Y0 | o T AT =T T () 302
oYU | oI X1 =T S Y (T 303
oY= 00| I 1T =) G () 304
Y= 18] €Y = ¥ ()P 304
=10 | Y = (P SSSPPPRPPN 305
RS =1 (0 o TR/ 1 () SRR 306
) 1110 = 1 () P 306
Y 1L T |0 P SSRPPPRPPN 307
oY [SY=1 o1 () I 307
P [SY=] O I U 1| o T (T 308
S o JIe F=\ = W SN o U T o I o F= = N S 1 12 () [309
Y 0TI 11 P USSUPPPRRPON 309
1S LI 0TS\ (1 (=Y (o F= L = 310
S TI (=Y= Vo [I T (== Vo 12 (R 310
Y o TI (=Y= (o I T PSPPI 311
1o LI (Y= 10 P2 T () 311
1o LI (Y= 10 KT NG (T 311
Y T (=Y= Vo L T 311
1] 01T 81T o SRR 312
S TR C 1 S o TR 1 (=Y (P 312
Y O THD A=) { () I USSUPPPRRPPN 313
ST Ll o 1 T 314
Y 0 01 (RSSO 314
ST 1 { () O PP PP 315
ST 7= 11 [() P 315

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat() strchr()
strecmp() strcoll() strespn() strerror() stricmp() strlen() striwr() strncat()

strncmp() strncpy() strpbrk() strrchr() strspn() strstr() StXrm() coeeeveeeeeieieiieeeee e, 316
] (0 (P 317
SETEOK() e eeetti e et ettt et e e et e e e e et e e et e e e e et eeeett e e et et aeeeatateaeeataaerataaaeartaaaeerrans 318
] (0 () P 319

155

Built-in Functions

RS {1 (o 10 | () TSP 320
11122 o] () PP PP PP UPPRTP 321
(0] QXY I (e T U] o] o =T (R 321
(o] U Lo o] o= 1o I o (=] (o () 322
(o1 UTod o] 7= o [o 11 { () 323
(o1 U o]] o F=To IES) = (=Y () 323
10X o101 (=T o)V (=Y 324
10X o101 (=T A L 11 325
[VZ= = Lo | () PSP UPPPRTROPPIN 325
7= N =) 1o [() PPN 326
1=] €= 1 327
LV L C ST o=] (PPN 328
ig(sEeTo]alilo (U] r=uTo) M 0 T=10 0 T0) Y/ () 328
VYL (SIST=Y o 100) 1 o1 () T 329
WIEE eXEEINAL MEIMIOIY () ceuniiii it ee et et et e et e ettt e e e e e et s s e e e st e ssaasssbasesansesnnans 330
(S =Y Lo [=To I =Y 010 () T 331
V(ST oY Yo 1= Ua A=Y= o 1o) o 1 ()N 332
a1 (= oY Yo 1=V a a I 0 T=T 0 aT0) Y/ () T 333

156

Built-in Functions

abs()

Syntax: value = abs(x)

Parameters: x is a signed 8, 16, or 32 bit int or a float
Returns: Same type as the parameter.

Function: Computes the absolute value of a number.
Availability: All devices

Requires: #INCLUDE <stdlib.h>

Exanwﬂes; signed int target,actual;

error = abs(target-actual);
Example Files: None

Also See: labs()

sin() cos() tan() asin() acos() atan() sinh() cosh() tanh() atan2()

Syntax: val = sin (rad)
val = cos (rad)
val = tan (rad)
rad = asin (val)
radl = acos (val)
rad = atan (val)
rad2=atan2(val, val)
result=sinh(value)
result=cosh(value)
result=tanh(value)

Parameters: rad is a float representing an angle in Radians -2pi to 2pi.
val is a float with the range -1.0 to 1.0.
Value is a float

Returns: rad is a float representing an angle in Radians -pi/2 to pi/2
val is a float with the range -1.0 to 1.0.

radl is a float representing an angle in Radians 0 to pi

157

Built-in Functions

rad2 is a float representing an angle in Radians -pi to pi
Result is a float

Function: These functions perform basic Trigonometric functions.
sin returns the sine value of the parameter (measured in radians)
cos returns the cosine value of the parameter (measured in radians)
tan returns the tangent value of the parameter (measured in radians)
asin returns the arc sine value in the range [-pi/2,+pi/2] radians
acos returns the arc cosine value in the range[0,pi] radians
atan returns the arc tangent value in the range [-pi/2,+pi/2] radians
atan2returns the arc tangent of y/x in the range [-pi,+pi] radians
sinh returns the hyperbolic sine of x
cosh returns the hyperbolic cosine of x
tanh returns the hyperbolic tangent of x

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
asin: when the argument not in the range[-1,+1]
acos: when the argument not in the range[-1,+1]
atan2: when both arguments are zero

Range error occur in the following cases:

cosh: when the argument is too large
sinh: when the argument is too large

Availability: All devices
Requires: #INCLUDE <math.h>

Exan"ﬂes; float phase;
// Output one sine wave
for (phase=0; phase<2*3.141596; phase+=0.01)
set _analog voltage(sin(phase)+l);

Example ex_tank.c

Files:
Also See: log(), log10(), exp(), pow(), sqrt()

adc_done()

Syntax: value = adc_done();

Parameters: None

158

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Returns:

Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

assert()

Syntax:

Built-in Functions

A short int. TRUE if the A/D converter is done with conversion, FALSE
if it is still busy.

Can be polled to determine if the A/D has valid data.
Only available on devices with built in analog to digital converters

None

intleo value;

setup adc ports (sANO|sAN1l, VSS VDD) ;
setup_adc (ADC_CLOCK DIV 4 |ADC_TAD MUL 8);
set adc channel (0);

read adc (ADC_START ONLY) ;

intl done = adc_done();
while (!done) {

done = adc_done();
}
value = read adc(ADC_READ ONLY) ;
printf (YA/C value = $LX\n\r”, value);
}

None

setup_adc(), set_adc_channel(), setup_adc_ports(), read_adc(), ADC
Overview

assert (condition);

Parameters: condition is any relational expression

Returns:

Function:

Availability:

Nothing

This function tests the condition and if FALSE will generate an error
message on STDERR (by default the first USE RS232 in the

program). The error message will include the file and line of the
assert(). No code is generated for the assert() if you #define
NODEBUG. In this way you may include asserts in your code for testing
and quickly eliminate them from the final program.

All devices

159

Requires:

Examples:

Example
Files:

Also See:

atoe
Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

assert.h and #USE RS232

assert (number of entries<TABLE SIZE);

// If number of entries is >= TABLE SIZE then
// the following is output at the RS232:
// Assertion failed, file myfile.c, line 56

None

#USE RS232, RS232 I/O Overview

atoe(string);
string is a pointer to a null terminated string of characters.
Result is a floating point number

Converts the string passed to the function into a floating
point representation. If the result cannot be represented, the
behavior is undefined. This function also handles E format
numbers

All devices

#INCLUDE <stdlib.h>

char string [10];
float32 x;

strcpy (string, "12E3");
X = atoe(string);
// x is now 12000.00

None

atoi(), atol(), atoi32(), atof(), printf()

160

Built-in Functions

atof()

Syntax: result = atof (string)

Parameters: string is a pointer to a null terminated string of characters.

Returns: Result is a floating point number

Function: Converts the string passed to the function into a floating point
representation. If the result cannot be represented, the behavior is
undefined.

Availability: All devices
Requires: #INCLUDE <stdlib.h>

Examples: char string [10];
float x;

strcpy (string, "123.456");
x = atof (string);
// x 1is now 123.456

Example ex_tank.c
Files:

Also See: atoi(), atol(), atoi32(), printf()

pin_select()
Syntax: pin_select(peripheral_pin, pin, [unlock],[lock])

Parameters: peripheral_pin — a constant string specifying which peripheral pin to map the
specified pin to. Refer to #pin_select for all available strings. Using “NULL” for the
peripheral_pin parameter will unassign the output peripheral pin that is currently
assigned to the pin passed for the pin parameter.

pin — the pin to map to the specified peripheral pin. Refer to device's header file
for pin defines. If the peripheral_pin parameter is an input, passing FALSE for the
pin parameter will unassign the pin that is currently assigned to that peripheral pin.

unlock — optional parameter specifying whether to perform an unlock sequence
before writing the RPINRXx or RPORX register register determined by
peripheral_pin and pin options. Default is TRUE if not specified. The unlock
sequence must be performed to allow writes to the RPINRx and RPORX registers.
This option allows calling pin_select() multiple times without performing an unlock
sequence each time.

lock — optional parameter specifying whether to perform a lock sequence after

161

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Returns:

Availability:
Requires:
Examples:

Example
Files:

Also See:

Built-in Functions

writing the RPINRx or RPORX registers. Default is TRUE if not specified.
Although not necessary it is a good idea to lock the RPINRx and RPORX registers
from writes after all pins have been mapped. This option allows calling
pin_select() multiple times without performing a lock sequence each time.

Nothing.

On device with remappable peripheral pins.
Pin defines in device's header file.
pin_select(“U2TX”,PIN_BO0);

/IMaps PIN_BO to U2TX //peripheral pin, performs unlock //and lock
sequences.

pin_select(“U2TX",PIN_BO,TRUE,FALSE);

/IMaps PIN_BO to U2TX //peripheral pin and performs //unlock
sequence.

pin_select(“U2RX”,PIN_B1,FALSE, TRUE);

//Maps PIN_B1 to U2RX //peripheral pin and performs lock //sequence.
None.

#pin_select

atoi() atol() atoi32()

Syntax:

ivalue = atoi(string)
or
Ivalue = atol(string)
or
i32value = atoi32(string)

Parameters: string is a pointer to a null terminated string of characters.

Returns:

Function:

Availability:

ivalue is an 8 bit int.
Ivalue is a 16 bit int.
i32value is a 32 bit int.

Converts the string passed to the function into an int
representation. Accepts both decimal and hexadecimal argument. If the
result cannot be represented, the behavior is undefined.

All devices

162

Built-in Functions

(0-7, 0-15 or 0-31) in the given

variable. The least significant bit is 0. This function is the similar to: var

Requires: #INCLUDE <stdlib.h>
Examples: char string[10];
int x;
strcpy(string, "123");
x = atoi(string);
// x is now 123
Example input.c
Files:
Also See: printf()
bit_clear()
Syntax: bit_clear(var, bit)
Parameters: var may be a any bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least
significant bit.
Returns: undefined
Function: Simply clears the specified bit
&= ~(1<<bhit);
Availability: ~ All devices
Requires: Nothing
Examples: int x;
x=5;
bit clear(x,2);
// x is now 1
Example ex_patg.c
Files:
Also See: bit_set(), bit_test()

163

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

bit_set()
Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

bit_test()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Built-in Functions

bit_set(var, bit)

var may be a 8,16 or 32 bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least significant bit.

Undefined

Sets the specified bit (0-7, 0-15 or 0-31) in the given variable. The least significant
bit is 0. This function is the similar to: var |= (1<<bit);

All devices

Nothing

int x;

x=5;

bit set(x,3);
// x 1is now 13

ex_patg.c

bit_clear(), bit_test()

value = bit_test (var, bit)

var may be a 8,16 or 32 bit variable (any Ivalue)
bit is a number 0- 31 representing a bit number, 0 is the least significant bit.

Oor1l

Tests the specified bit (0-7,0-15 or 0-31) in the given variable. The least
significant bit is 0. This function is much more efficient than, but otherwise similar
to:

((var & (1<<bit)) I=0)

All devices

Nothing

if(bit test(x,3) || !bit test (x,1)){
//either bit 3 is 1 or bit 1 is O

164

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Example
Files:

Also See:

Built-in Functions

if (data!=0)

for (i=31;!bit test(data, 1i);i--) ;
// 1 now has the most significant bit in data
// that is set to a 1

ex_patg.c

bit_clear(), bit_set()

brownout_enable()

Syntax: brownout_enable (value)

Parameters: value — TRUE or FALSE

Returns: undefined

Function: Enable or disable the software controlled brownout. Brownout will cause the PIC
to reset if the power voltage goes below a specific set-point.

Availability: This function is only available on PICs with a software controlled brownout. This
may also require a specific configuration bit/fuse to be set for the brownout to be
software controlled.

Requires: Nothing

Exanuﬂes: brownout enable (TRUE) ;

Example None

Files:

Also See: restart_cause()

bsearch()

Syntax: ip = bsearch (&key, base, num, width, compare)

Parameters: key: Object to search for

base: Pointer to array of search data

num: Number of elements in search data

width: Width of elements in search data

compare: Function that compares two elements in search data

165

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Returns:

Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

calloc()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Built-in Functions

bsearch returns a pointer to an occurrence of key in the array pointed to by base.
If key is not found, the function returns NULL. If the array is not in order or
contains duplicate records with identical keys, the result is unpredictable.

Performs a binary search of a sorted array
All devices

#INCLUDE <stdlib.h>

int nums[5]={1,2,3,4,5};
int compar (const void *argl,const void *arg2);

void main () {
int *ip, key;
key = 3;
ip = bsearch (&key, nums, 5, sizeof(int), compar);

}

int compar (const void *argl,const void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1
else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

None

gsort()

ptr=calloc(nmem, size)

nmem is an integer representing the number of member objects
size is the number of bytes to be allocated for each one of them.

A pointer to the allocated memory, if any. Returns null otherwise.

The calloc function allocates space for an array of nmem objects whose size is
specified by size. The space is initialized to all bits zero.

All devices

#INCLUDE <stdlibm.h>

int * iptr;

166

Built-in Functions

iptr=calloc(5,10);
// iptr will point to a block of memory of
// 50 bytes all initialized to O.

Example None
Files:
Also See: realloc(), free(), malloc()

ceil()

Syntax: result = ceil (value)

Parameters: value is a float

Returns: A float
Function: Computes the smallest integer value greater than the argument. CEIL(12.67) is
13.00.

Availability: ~ All devices

Requires: #INCLUDE<math.h>

Exanuﬂes; // Calculate cost based on weight rounded
// up to the next pound
cost = ceil(weight) * DollarsPerPound;
Example None
Files:
Also See: floor()

167

Built-in Functions

clcl_setup_gate() clc2_setup_gate() clc3_setup_gate() clc4_setup_gate()

Syntax:

Parameters:

Returns:

Function:

Availability:
Returns:

Examples:

Example Files:

Also See:

clcl _setup_gate(gate, mode);
clc2_setup_gate(gate, mode);
clc3_setup_gate(gate, mode);
clc4_setup_gate(gate, mode);

gate — selects which data gate of the Configurable Logic Cell
(CLC) module to setup, value can be 1 to 4.

mode — the mode to setup the specified data gate of the CLC
module into. The options are:

CLC_GATE_AND
CLC_GATE_NAND
CLC_GATE_NOR
CLC_GATE_OR
CLC_GATE_CLEAR
CLC_GATE_SET

Undefined

Sets the logic function performed on the inputs for the specified
data gate.

On devices with a CLC module.

Undefined.

clcl setup gate

(1, CLC_GATE AND);
clcl setup gate (2

(3

(4

4
, CLC_GATE_NAND) ;
, CLC_GATE CLEAR) ;
, CLC_GATE_SET) ;

clcl setup gate
clcl setup gate

None

setup_clex(), clex_setup_input()

168

Built-in Functions

clcl setup_input() clc2_setup_input() clc3 _setup_input()
clc4_setup_input()

Syntax:

Parameters:

Returns:

Function:

Availability:
Returns:

Examples:

Example Files:

Also See:

clcl_setup_input(input, selection);
clc2_setup_input(input, selection);
clc3_setup_input(input, selection);
clcd_setup_input(input, selection);

input — selects which input of the Configurable Logic Cell (CLC)
module to setup, value can be 1 to 4.

selection — the actual input for the specified input that is actually
connected to the data gates of the CLC module. The options
are:

CLC_INPUT_O
CLC_INPUT 1
CLC_INPUT 2
CLC_INPUT 3
CLC_INPUT 4
CLC_INPUT 5
CLC_INPUT 6
CLC_INPUT _7

Undefined.

Sets the input for the specified input number that is actually
connected to all four data gates of the CLC module. Please
refer to the table CLCx DATA INPUT SELECTION in the
device's datasheet to determine which of the above selections
corresponds to actual input pin or peripheral of the device.

On devices with a CLC module.

Undefined.

clcl setup input (
clcl setup input(
clcl setup input(
clcl setup input(

, CLC_INPUT 0);
, CLC_INPUT 1);
, CLC_INPUT 2);
, CLC_INPUT 3);
None

setup_clcx(), clex_setup_gate()

169

Built-in Functions

clear_interrupt()

Syntax: clear_interrupt(level)
Parameters: level - a constant defined in the devices.h file
Returns: undefined

Function: Clears the interrupt flag for the given level. This function is designed for use with a
specific interrupt, thus eliminating the GLOBAL level as a possible parameter.
Some chips that have interrupt on change for individual pins allow the pin to be
specified like INT_RAL.

Availability: All devices

Requires: Nothing

Examples: clear_interrupt (int_timerl);
Example None

Files:

Also See: enable_interrupts() , #INT , Interrupts Overview
disable_interrupts(), interrupt_actvie()

cwg_status()

Syntax: value = cwg_status();

Parameters: None

Returns: the status of the CWG module

Function: To determine if a shutdown event occured causing the

module to auto-shutdown

Availability: On devices with a CWG module.

Examples: if (cwg status() == CWG_AUTO SHUTDOWN)
cwg restart();

Example None
Files:
Also See: setup_cwg(), cwg_restart()

170

Built-in Functions

cwg_restart()

Syntax: cwg_restart();
Parameters: None
Returns: Nothing
Function: To restart the CWG module after an auto-shutdown event
occurs, when not using auto-raster option of module.
Availability: On devices with a CWG module.
Exanuﬂes; if (cwg status() == CWG_AUTO_ SHUTDOWN)
cwg_restart();

Example None
Files:
Also See: setup_cwg(), cwg_status()
dac_write()
Syntax: dac_write (value)
Parameters: Value: 8-bit integer value to be written to the DAC module
Returns: undefined
Function: This function will write a 8-bit integer to the specified DAC channel.
Availability: ~ Only available on devices with built in digital to analog converters.
Requires: Nothing
Examples: int 1 = 0;

setup_dac (DAC VDD | DAC OUTPUT) ;

while (1) {

i++;
dac_write(1i);

}

Also See: setup_dac(), DAC Overview, see header file for device selected

171

Built-in Functions

delay cycles()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

delay_cycles (count)
count - a constant 1-255
undefined

Creates code to perform a delay of the specified number of instruction clocks (1-
255). An instruction clock is equal to four oscillator clocks.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

All devices

Nothing

delay cycles(1); // Same as a NOP

delay cycles(25); // At 20 mhz a 5us delay
ex_cust.c

delay_us(), delay_ms()

172

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

delay_ms()
Syntax: delay_ms (time)
Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an intl6, now the
upper byte affects the time.

Returns: undefined

Function: This function will create code to perform a delay of the specified length. Time is
specified in milliseconds. This function works by executing a precise number of
instructions to cause the requested delay. It does not use any timers. If interrupts
are enabled the time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices
Requires: #USE DELAY
Exanuﬂes: #use delay (clock=20000000)

delay ms(2);

void delay seconds (int n) {
for (;n!=0; n- -)
delay ms(1000);

}

Example ex_sgw.c

Files:
Also See: delay_us(), delay_cycles(), #USE DELAY

delay_us()

Syntax: delay_us (time)

Parameters: time - a variable 0-65535(int16) or a constant 0-65535

Note: Previous compiler versions ignored the upper byte of an int1l6, now the upper
byte affects the time.

Returns: undefined

173

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Function: Creates code to perform a delay of the specified length. Time is specified in
microseconds. Shorter delays will be INLINE code and longer delays and variable
delays are calls to a function. This function works by executing a precise number of
instructions to cause the requested delay. It does not use any timers. If interrupts
are enabled the time spent in an interrupt routine is not counted toward the time.

The delay time may be longer than requested if an interrupt is serviced during the
delay. The time spent in the ISR does not count toward the delay time.

Availability: All devices

Requires: #USE DELAY

Examples: #use delay(clock=20000000)

do {
output high (PIN BO);
delay us (duty);
output low (PIN BO);
delay us (period-duty) ;
} while (TRUE) ;

Example ex_sgw.c

Files:
Also See: delay_ms(), delay_cycles(), #USE DELAY

174

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

disable_interrupts()

Syntax:

disable_interrupts (level)

Parameters: level - a constant defined in the devices .h file

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

undefined

Disables the interrupt at the given level. The GLOBAL level will not disable any of
the specific interrupts but will prevent any of the specific interrupts, previously
enabled to be active. Valid specific levels are the same as are used in #INT_xxx
and are listed in the devices .h file. GLOBAL will also disable the peripheral
interrupts on devices that have it. Note that it is not necessary to disable interrupts
inside an interrupt service routine since interrupts are automatically disabled.
Some chips that have interrupt on change for individual pins allow the pin to be
specified like INT _RAL.

Device with interrupts (PCM and PCH)

Should have a #INT_xxxX, constants are defined in the devices .h file.

disable interrupts (GLOBAL); // all interrupts OFF
disable interrupts (INT RDA); // RS232 OFF

enable interrupts (ADC_DONE) ;

enable interrupts (RB _CHANGE) ;
// these enable the interrupts
// but since the GLOBAL is disabled they
// are not activated until the following
// statement:

enable interrupts (GLOBAL) ;

ex sisr.c, ex stwi.c

enable_interrupts(), clear_interrupt (), #INT_xxxx, Interrupts Overview,
interrupt_active()

175

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

div() Idiv()

Syntax: idiv=div(num, denom)
[div =Idiv(Inum, Idenom)

Parameters: num and denom are signed integers.
num is the numerator and denom is the denominator.
Inum and Idenom are signed longs
Inum is the numerator and Idenom is the denominator.

Returns: idiv is a structure of type div_t and lidiv is a structure of type Idiv_t. The div
function returns a structure of type div_t, comprising of both the quotient and the
remainder. The Idiv function returns a structure of type Idiv_t, comprising of both
the quotient and the remainder.

Function: The div and Idiv function computes the quotient and remainder of the division of
the numerator by the denominator. If the division is inexact, the resulting quotient
is the integer or long of lesser magnitude that is the nearest to the algebraic
guotient. If the result cannot be represented, the behavior is undefined; otherwise
guot*denom(ldenom)+rem shall equal num(lnum).

Availability: All devices.
Requires: #INCLUDE <STDLIB.H>

Examples: div_ t idiv;
ldiv_t lidiv;
idiv=div (3, 2);
//idiv will contain quot=1 and rem=1

lidiv=1div (300,250);
//1lidiv will contain lidiv.quot=1 and lidiv.rem=50

Example None
Files:

Also See: None

176

Built-in Functions

enable_interrupts()

Syntax:
Parameters:
Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

enable_interrupts (level)
level is a constant defined in the devices *.h file.
undefined.

This function enables the interrupt at the given level. An interrupt procedure should
have been defined for the indicated interrupt.

The GLOBAL level will not enable any of the specific interrupts, but will allow any
of the specified interrupts previously enabled to become active. Some chips that
have an interrupt on change for individual pins all the pin to be specified, such as
INT_RAL. For interrupts that use edge detection to trigger, it can be setup in the
enable_interrupts() function without making a separate call to the set_int_edge()
function.

Enabling interrupts does not clear the interrupt flag if there was a pending interrupt

prior to the call. Use the clear_interrupt() function to clear pending interrupts
before the call to enable_interrupts() to discard the prior interrupts.

Devices with interrupts.

Should have a #INT_XXXX to define the ISR, and constants are defined in the
devices *.h file.

enable interrupts (GLOBAL) ;
enable interrupts (INT TIMERO) ;
enable interrupts(INT EXT H2L);

ex sisr.c, ex stwi.c

disable interrupts(), clear_interrupt (), ext_int_edge(), #INT_xxxx, Interrupts
Overview, interrupt_active()

177

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

erase_eeprom()

Syntax: erase_eeprom (address);
Parameters: address is 8 bits on PCB patrts.
Returns: undefined

Function: This will erase a row of the EEPROM or Flash Data Memory.

Availability: ~ PCB devices with EEPROM like the 12F519
Requires: Nothing

Examples: erase eeprom(0); // erase the first row of the EEPROM (8 bytes)

Example Files: None

Also See: write program eeprom(), write program memory(), Program Eeprom Overview

erase_program_eeprom()

Syntax: erase_program_eeprom (address);

Parameters: address is 16 bits on PCM parts and 32 bits on PCH parts . The least significant
bits may be ignored.

Returns: undefined

Function: Erases FLASH ERASE_SIZE bytes to OXFFFF in program memory.
FLASH_ERASE_SIZE varies depending on the part. For example, if it is 64 bytes
then the least significant 6 bits of address is ignored.

See write_program_memory() for more information on program memory access.
Availability: Only devices that allow writes to program memory.

Requires: Nothing

Exanuﬂes; for (1=0x1000;i<=0x1fff;i+=getenv ("FLASH ERASE SIZE"))
erase_program memory (i) ;

Example None

Files:
Also See: write program eeprom(), write program memory(), Program Eeprom Overview

178

Built-in Functions

exp()

Syntax: result = exp (value)
Parameters: value is a float
Returns: A float

Function: Computes the exponential function of the argument. This is e to the power of value
where e is the base of natural logarithms. exp(1) is 2.7182818.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Range error occur in the following case:
e exp: when the argument is too large

Availability: ~ All devices
Requires: #INCLUDE <math.h>

Examples: // Calculate x to the power of y

x power y = exp(y * log(x));

Example None
Files:

Also See: pow(), log(), log10()

ext_int_edge()
Syntax: ext_int_edge (source, edge)
Parameters: source is a constant 0,1 or 2 for the PIC18XXX and O otherwise. Source is

optional and defaults to 0.
edgeis aconstant H_TO_L or L_TO_H representing "high to low" and "low to

high"
Returns: undefined
Function: Determines when the external interrupt is acted upon. The edge may be L_TO_H

or H_TO_L to specify the rising or falling edge.

179

Built-in Functions

Availability: ~ Only devices with interrupts (PCM and PCH)
Requires: Constants are in the devices .h file
Examples: ext int edge(2, L TO H); // Set up PIC18 EXT2
ext int edge(H TO L); // Sets up EXT
Example ex_wakup.c
Files:
Also See: #INT_EXT , enable_interrupts() , disable_interrupts() , Interrupts Overview
fabs()
Syntax: result=fabs (value)
Parameters: value is a float
Returns: result is a float
Function: The fabs function computes the absolute value of a float
Availability: All devices.
Requires: #INCLUDE <math.h>
Examples: float result;
result=fabs (-40.0)
// result is 40.0
Example Files: None
Also See: abs(), labs()

180

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

getc() getch() getchar() fgetc()

Syntax: value = getc()
value = fgetc(stream)
value=getch()
value=getchar()

Parameters: stream is a stream identifier (a constant byte)
Returns: An 8 bit character

Function: This function waits for a character to come in over the RS232 RCV pin and returns
the character. If you do not want to hang forever waiting for an incoming character
use kbhit() to test for a character available. If a built-in USART is used the
hardware can buffer 3 characters otherwise GETC must be active while the
character is being received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN
(the last USE RS232).

Availability: All devices

Requires: #USE RS232

Exanuﬂes; printf ("Continue (Y,N)?2");
do {
answer=getch () ;
}while (answer!='Y"' && answer!='N'");

#use rs232(baud=9600,xmit=pin_ c6,
rcv=pin c7, stream=HOSTPC)

#use rs232(baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)

#use rs232(baud=9600, xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc (c, HOSTPC) ;
1f (c==13)
fprintf (DEBUG, "Got a CR\r\n");

Example ex_stwt.c
Files:

Also See: putc(), kbhit(), printf(), #USE RS232, input.c, RS232 I/O Overview

181

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

gets() fgets()
Syntax: gets (string)
value = fgets (string, stream)

Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Reads characters (using getc()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more
versatile get_string function.

If fgets() is used then the specified stream is used where gets() defaults to STDIN
(the last USE RS232).

Availability: All devices
Requires: #USE RS232

Examples: char string[30];

printf ("Password: ");

gets (string) ;

if (strcmp(string, password))
printf ("OK") ;

Example None

Files:
Also See: getc(), get_string in input.c

182

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

floor()

Syntax: result = floor (value)

Parameters: value is a float

Returns: result is a float
Function: Computes the greatest integer value not greater than the argument. Floor (12.67)
is 12.00.

Availability: ~ All devices.

Requires: #INCLUDE <math.h>

Exanuﬂes; // Find the fractional part of a value
frac = value - floor(value);

Example None

Files:

Also See: ceil()

fmod()

Syntax: result= fmod (vall, val2)

Parameters: vall is a float
val2 is a float

Returns: result is a float

Function: Returns the floating point remainder of vall/val2. Returns the value vall - i*val2 for

some integer “i” such that, if val2 is nonzero, the result has the same sign as val1
and magnitude less than the magnitude of val2.

Availability: All devices.
Requires: #INCLUDE <math.h>

Exanuﬂes: float result;
result=fmod (3,2);
// result is 1

183

Example
Files:

Also See:

Built-in Functions

None

None

printf() fprintf()

Syntax:

Parameters:

Returns:

Function:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function name to be
used for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte). Note that format specifies do not
work in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first two forms)
or to a specified function. Formatting is in accordance with the string

argument. When variables are used this string must be a constant. The %
character is used within the string to indicate a variable value is to be formatted
and output. Longs in the printf may be 16 or 32 bit. A %% will output a single

%. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other
escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to
STDOUT (the last USE RS232).

Format:

The format takes the generic form %nt. n is optional and may be 1-9 to specify how

many characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to

9.9 for floating point and %w output. t is the type and may be one of the following:
C Character

S String or character
u Unsigned int

d Signed int

Lu Long unsigned int
Ld Long signed int

184

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

X Hex int (lower case)

X Hex int (upper case)

Lx Hexlong int (lower case)
LX Hexlong int (upper case)

f Float with truncated decimal
g Float with rounded decimal
e Float in exponential format
w

Unsigned int with decimal place inserted.
Specify two numbers for n. The first is a
total field width. The second is the desired
number of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 O00FE
%3.1w 1.8 25.4

* Result is undefined - Assume garbage.
All Devices

#USE RS232 (unless fname is used)

byte x,y,z;

printf ("HiThere");

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("%$2u $X %4X\n\r",x,v,2z);

printf (LCD_PUTC, "n=%u",n);

ex admm.c, ex Icdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

185

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

putc() putchar() fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)
Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: This function sends a character over the RS232 XMIT pin. A #USE RS232 must
appear before this call to determine the baud rate and pin used. The #USE RS232
remains in effect until another is encountered in the file.
If fputc() is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).
Availability: All devices
Requires: #USE RS232
Examples: putc('*");
for (i=0; 1i<10; i++)
putc (bufferf[il]);
putc(13);
Example ex_tgetc.c
Files:
Also See: getc(), printf(), #USE RS232, RS232 1/0O Overview
puts() fputs()
Syntax: puts (string).
fputs (string, stream)
Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)
Returns: undefined
Function: Sends each character in the string out the RS232 pin using putc(). After the string

is sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general
printf() is more useful than puts().

If fputs() is used then the specified stream is used where puts() defaults to

186

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

STDOUT (the last USE RS232)
Availability: ~ All devices
Requires: #USE RS232

Examp|eS putS (L ") ;
puts(" | HI | ") ;
putS (L ") ;

Example None
Files:

Also See: printf(), gets(), RS232 I/O Overview

free()
Syntax: free(ptr)

Parameters: ptr is a pointer earlier returned by the calloc, malloc or realloc.
Returns: No value

Function: The free function causes the space pointed to by the ptr to be deallocated, that is
made available for further allocation. If ptr is a null pointer, no action occurs. If the
ptr does not match a pointer earlier returned by the calloc, malloc or realloc, or if
the space has been deallocated by a call to free or realloc function, the behavior is
undefined.

Availability: All devices.
Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;
iptr=malloc (10);
free (iptr)
// iptr will be deallocated

Example None

Files:
Also See: realloc(), malloc(), calloc()

frexp()

Syntax: result=frexp (value, &exp);

187

Built-in Functions

Parameters: value is a float
exp is a signed int.

Returns: result is a float

Function: The frexp function breaks a floating point number into a normalized fraction and an
integral power of 2. It stores the integer in the signed int object exp. The result is
in the interval [1/2 tol) or zero, such that value is result times 2 raised to power
exp. If value is zero then both parts are zero.

Availability: All devices.
Requires: #INCLUDE <math.h>

Exanuﬂes; float result;
signed int exp;
result=frexp (.5, &exp) ;
// result is .5 and exp is 0

Example None

Files:
Also See: Idexp(), exp(), log(), log10(), modf()

get_capture_event()

Syntax: result = get_capture_event([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE CAPTURE.
Returns: TRUE if a capture event occurred, FALSE otherwise.

Function: To determine if a capture event occurred.

Availability: ~ All devices.

Requires: #USE CAPTURE

Examples: #USE CAPTURE(INPUT=PIN_C2,CAPTURE_RISING,TIMER=1,FASTEST)

if(get_capture_event())
result = get_capture_time();

Example Files: None
Also See: #use_capture, get_capture_time()

188

Built-in Functions

get_capture_time()

Syntax:

Parameters:
Returns:
Function:
Availability:
Requires:
Examples:

Example Files:

Also See:

result = get_capture_time([stream]);

stream — optional parameter specifying the stream defined in #USE CAPTURE.
An intl16 value representing the last capture time.

To get the last capture time.

All devices.

#USE CAPTURE

#USE CAPTURE (INPUT=PIN C2,CAPTURE RISING, TIMER=1, FASTEST)
result = get capture time();

None

#use_capture, get_capture_event()

get_nco_accumulator()

Syntax:
Parameters:
Returns:
Availability:

Examples:

Example Files:

Also See:

value =get_nco_accumulator();
none
current value of accumulator.

On devices with a NCO module.

value = get nco accumulator();
None

setup_nco(), set_nco_inc_value(), get_nco_inc_value()

189

Built-in Functions

get_nco_inc_value()

Syntax: value =get_nco_inc_value();

Parameters: None

Returns: - current value set in increment registers.

Availability: On devices with a NCO module.

Exanuﬂes; value = get nco_inc value();

Example None

Files:

Also See: setup_nco(), set_nco_inc_value(), get_nco_accumulator(
get_ticks()

Syntax: value = get_ticks([stream]);

Parameters: stream —optional parameter specifying the stream defined in #USE TIMER.
Returns: —a 8, 16 or 32 bit integer. (int8, intl6 or int32)

Returns the current tick value of the tick timer. The size returned depends on the
Function: size of the tick timer.

Availability: Al devices.
Requires: #USE TIMER(options)
#USE TIMER (TIMER=1,TICK=1ms,BITS=16,NOISR)
void main (void) {
. unsigned intl6 current tick;
Examples: -
current tick = get ticks();
}
E_xample None
Files:
Also See: #USE TIMER, set_ticks()

190

Built-in Functions

get_timerA()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

value=get_timerA();
none
The current value of the timer as an int8

Returns the current value of the timer. All timers count up. When a timer reaches
the maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2,

ce)-
This function is only available on devices with Timer A hardware.
Nothing

set _timerA(0);
while (timerA < 200);

none

set_timerA(), setup_timer_A(), TimerA Overview

get_timerB()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

value=get_timerB();
none
The current value of the timer as an int8

Returns the current value of the timer. All timers count up. When a timer reaches
the maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2,

o)
This function is only available on devices with Timer B hardware.
Nothing

set timerB(0);
while (timerB < 200);

none

set_timerB(), setup_timer_B(), TimerB Overview

191

Built-in Functions

get_timerx()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

value=get_timer0() Same as: value=get_rtcc()
value=get_timerl()
value=get_timer2()
value=get_timer3()
value=get_timer4()
value=get_timer5()
value=get_timer6()
value=get_timer7()
value=get_timer8()
value=get_timer10()
value=get_timer12()

None

Timers 1, 3, 5 and 7 return a 16 bit int.

Timers 2 ,4, 6, 8, 10 and 12 return an 8 bit int.

Timer 0 (AKA RTCC) returns a 8 bit int except on the PIC18XXX where it returns a
16 bit int.

Returns the count value of a real time clock/counter. RTCC and TimerO are the
same. All timers count up. When a timer reaches the maximum value it will flip
over to 0 and continue counting (254, 255, 0, 1, 2...).

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices

Timer 3, 5 and 7 - Some PIC18 and Enhanced PIC16 devices
Timer 4,6,8,10 and 12- Some PIC18 and Enhanced PIC16 devices

Nothing

set timer0(0);
while (get timerO() < 200) ;

ex_stwt.c

set_timerx(), Timer0O Overview , Timerl Overview , Timer2 Overview , Timer5
Overview

get _tris_x()

Syntax:

value = get_tris_A();
value = get_tris_B();
value = get_tris_C();
value = get_tris_D();

192

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Built-in Functions

value = get_tris_E();

value = get_tris_F();

value = get_tris_G();

value = get_tris_H();

value = get_tris_J();

value = get_tris_K()

None

int16, the value of TRIS register

Returns the value of the TRIS register of port A, B, C,D, E, F, G, H, J, or K.
All devices.

Nothing

tris a = GET TRIS A();

Example Files: None

Also See:

input(), output_low(), output_high()

getc() getch() getchar() fgetc()

Syntax:

Parameters:
Returns:

Function:

Availability:

Requires:

value = getc()

value = fgetc(stream)
value=getch()
value=getchar()

stream is a stream identifier (a constant byte)
An 8 bit character

This function waits for a character to come in over the RS232 RCV pin and returns
the character. If you do not want to hang forever waiting for an incoming character
use kbhit() to test for a character available. If a built-in USART is used the
hardware can buffer 3 characters otherwise GETC must be active while the
character is being received by the PIC®.

If fgetc() is used then the specified stream is used where getc() defaults to STDIN
(the last USE RS232).

All devices

#USE RS232

193

Examples:

Example
Files:

Also See:

getenv()

Syntax:
Parameters:
Returns:

Function:

Built-in Functions

printf ("Continue (Y,N)?2");
do {
answer=getch () ;
}while (answer!='Y' && answer!='N");

#use rs232(baud=9600, xmit=pin c6,
rcv=pin c7, stream=HOSTPC)

#use rs232 (baud=1200,xmit=pin bl,
rcv=pin b0, stream=GPS)

#use rs232(baud=9600,xmit=pin b3,
stream=DEBUG)

while (TRUE) {
c=fgetc (GPS) ;
fputc(c, HOSTPC) ;
1f (c==13)
fprintf (DEBUG, "Got a CR\r\n");

ex_stwt.c

putc(), kbhit(), printf(), #USE RS232, input.c, RS232 I/O Overview

value = getenv (cstring);
cstring is a constant string with a recognized keyword
A constant number, a constant string or O

This function obtains information about the execution environment. The following
are recognized keywords. This function returns a constant 0 if the keyword is not
understood.

FUSE_SET:fffff Returns 1 if fuse fffff is enabled

FUSE_VALID:fffff Returns 1 if fuse fffff is valid

INT :iiiii Returns 1 if the interrupt iiiii is
valid

ID Returns the device ID (set by
#ID)

DEVICE Returns the device name string

(like "PIC16C74")

194

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

CLOCK
VERSION

VERSION_STRING

PROGRAM_MEMORY

STACK
SCRATCH

DATA_EEPROM

EEPROM_ADDRESS

READ_PROGRAM
ADC_CHANNELS

ADC_RESOLUTION

ICD

SPI

USB

CAN
12C_SLAVE
I2C_MASTER
PSP

COMP
VREF

LCD

UART

Built-in Functions

Returns the MPU FOSC

Returns the compiler version as
a float

Returns the compiler version as
a string

Returns the size of memory for
code (in words)

Returns the stack size

Returns the start of the compiler
scratch area

Returns the number of bytes of
data EEPROM

Returns the address of the start
of EEPROM. 0 if not supported
by the device.

Returns a 1 if the code memory
can be read

Returns the number of A/D
channels

Returns the number of bits
returned from READ_ADC()

Returns a 1 if this is being
compiled for a ICD

Returns a 1 if the device has
SPI

Returns a 1 if the device has
USB

Returns a 1 if the device has
CAN

Returns a 1 if the device has
12C slave H/W

Returns a 1 if the device has
12C master H/W

Returns a 1 if the device has
PSP

Returns a 1 if the device has a
comparator

Returns a 1 if the device has a
voltage reference

Returns a 1 if the device has
direct LCD H/W

Returns the number of H/W
UARTS

195

AUART

CCPx

TIMERX

FLASH WRITE_SIZE
FLASH_ERASE_SIZE
BYTES_PER_ADDRESS
BITS_PER_INSTRUCTION
RAM

SFR:name

BIT:name

SFR_VALID:name

BIT_VALID:name

PIN:PB

Built-in Functions

Returns 1 if the device has an
ADV UART

Returns a 1 if the device has
CCP number x

Returns a 1 if the device has
TIMER number x

Smallest number of bytes that
can be written to FLASH

Smallest number of bytes that
can be erased in FLASH

Returns the number of bytes at
an address location

Returns the size of an
instruction in bits

Returns the number of RAM
bytes available for your device.

Returns the address of the
specified special file register.
The output format can be used
with the preprocessor command
#bit. name must match SFR
denomination of your target PIC
(example: STATUS, INTCON,
TXREG, RCREG, etc)

Returns the bit address of the
specified special file register bit.
The output format will be in
“address:bit”, which can be
used with the preprocessor
command #byte. name must
match SFR.bit denomination of
your target PIC (example: C, Z,
GIE, TMROIF, etc)

Returns TRUE if the specified
special file register name is
valid and exists for your target
PIC (example:
getenv("SFR_VALID:INTCON"))
Returns TRUE if the specified
special file register bit is valid
and exists for your target PIC
(example:
getenv("BIT_VALID:TMROIF"))
Returns 1 if PB is a valid I/O
PIN (like A2)

196

UARTX_RX
UARTX_TX

SPIx_DI
SPIXDO
SPIXCLK
ETHERNET

QEI
DAC

DSP
DClI
DMA
CRC
CWG
NCO
CLC
DSM
OPAMP
RTC

CAP_SENSE

EXTERNAL_MEMORY

Availability: All devices

Requires: Nothing

Built-in Functions

Returns UARTXPin (like
PINXC7)

Returns UARTXxPin (like
PINXC6)

Returns SPIxDI Pin
Returns SPIxXDO Pin
Returns SPIXCLK Pin

Returns 1 if device supports
Ethernet

Returns 1 if device has QEI
Returns 1 if device has a D/A
Converter

Returns 1 if device supports
DSP instructions

Returns 1 if device has a DCI
module

Returns 1 if device supports
DMA

Returns 1 if device has a CRC
module

Returns 1 if device has a CWG
module

Returns 1 if device has a NCO
module

Returns 1 if device has a CLC
module

Returns 1 if device has a DSM
module

Returns 1 if device has op
amps

Returns 1 if device has a Real
Time Clock

Returns 1 if device has a CSM
cap sense module and 2 if it
has a CTMU module

Returns 1 if device supports
external program memory

Examples: #IF getenv ("VERSION")<3.050
#ERROR Compiler version too old

197

Built-in Functions

#ENDIF

for (i=0;i<getenv ("DATA EEPROM") ;i++)
write eeprom(i,0);

#IF getenv ("FUSE VALID:BROWNOUT")
#FUSE BROWNOUT
#ENDIF

#byte status reg=GETENV (“SFR:STATUS")

#bit carry flag=GETENV (“BIT:C”)

Example None

Files:

Also See: None

gets() fgets()

Syntax: gets (string)
value = fgets (string, stream)

Parameters: string is a pointer to an array of characters.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Reads characters (using getc()) into the string until a RETURN (value 13) is
encountered. The string is terminated with a 0. Note that INPUT.C has a more
versatile get_string function.
If fgets() is used then the specified stream is used where gets() defaults to STDIN
(the last USE RS232).

Availability: All devices

Requires: #USE RS232

Examples: char string[30];

printf ("Password: ");

gets(string);

if (strcmp(string, password))
printf ("OK") ;

198

Built-in Functions

Example None
Files:

Also See: getc(), get_string in input.c

goto_address()

Syntax: goto_address(location);
Parameters: location is a ROM address, 16 or 32 bit int.
Returns: Nothing

Function: This function jumps to the address specified by location. Jumps outside of the
current function should be done only with great caution. This is not a normally
used function except in very special situations.

Availability: ~ All devices
Requires: Nothing

Examples: f#define LOAD REQUEST PIN_ Bl
#define LOADER 0x1f00

if (input (LOAD_REQUEST))
goto address (LOADER) ;

Example setimp.h
Files:

Also See: label_address()

high_speed adc_done()

Syntax: value = high_speed_adc_done([pair]);

Parameters: pair — Optional parameter that determines which ADC pair's ready flag to check. If
not used all ready flags are checked.

Returns: An intl16. If pair is used 1 will be return if ADC is done with conversion, 0 will be
return if still busy. If pair isn't use it will return a bit map of which conversion are
ready to be read. For example a return value of 0x0041 means that ADC pair 6,
AN12 and AN13, and ADC pair 0, ANO and AN1, are ready to be read.

Function: Can be polled to determine if the ADC has valid data to be read.

199

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability: Only on dsPIC33FJIxxGSxxx devices.
Requires: None

Exanuﬁes: intl6 result[2]
setup _high speed adc pair(l, INDIVIDUAL SOFTWARE TRIGGER)
setup high speed adc(ADC CLOCK DIV 4);

read high speed adc(l, ADC_START ONLY);

while ('high speed adc done(1l));

read high speed adc(l, ADC READ ONLY, result);

printf (YAN2 value = %LX, AN3 value = $LX\n\r”,result[0],result[1l]);

Example None
Files:

Also See: setup_high_speed_adc(), setup_high_speed_adc_pair(), read_high_speed_adc()

12c_init()

Syntax: i2c_init([stream],baud);

Parameters: stream — optional parameter specifying the stream defined in #USE 12C.
baud - if baud is 0, 12C peripheral will be disable. If baud is 1, 12C peripheral is initialized and
enabled with baud rate specified in #USE I12C directive. If baud is > 1 then I2C peripheral is
initialized and enabled to specified baud rate.

Returns: Nothing
Function: To initialize 12C peripheral at run time to specified baud rate.
Availability: All devices.
Requires: #USE I2C
Examples: #USE I2C(MASTER,I2C1, FAST,NOINIT)
i2c_init(TRUE); //initialize and enable 12C peripheral to baud rate
specified in /#USE 12C

i2¢_init(500000); //initialize and enable 12C peripheral to a baud rate of
500 //KBPS

Example None
Files:

Also See: 12C_POLL(), i2c_speed(), 12C_SlaveAddr(), 12C_ISR_STATE() ,]2C_WRITE(), 12C_READ(),
_USE_I2C(), 12C()

200

Built-in Functions

I12c_isr_state()

Syntax: state = iac_isr_state();
state = i2c_isr_state(stream);
Parameters: None

Returns: state is an 8 bit int
0 - Address match received with R/W bit clear, perform i2c_read() to read the 12C
address.
1-0x7F - Master has written data; i2c_read() will immediately return the data
0x80 - Address match received with R/W bit set; perform i2c_read() to read the
I12C address, and use i2c_write() to pre-load the transmit buffer for the next
transaction (next I12C read performed by master will read this byte).
0x81-0xFF - Transmission completed and acknowledged; respond with i2c_write()
to pre-load the transmit buffer for the next transation (the next 12C read performed
by master will read this byte).

Function: Returns the state of I2C communications in I2C slave mode after an SSP interrupt.
The return value increments with each byte received or sent.

If 0X00 or 0x80 is returned, an i2C_read() needs to be performed to read the 12C

address that was sent (it will match the address configured by #USE 12C so this
value can be ignored)

Availability: Devices with i2c hardware
Requires: #USE 12C

Examples: #INT_SSP

void i2c _isr() |
state = i2c _isr state();
if (state==) 1i2c_read();
iQc_read();
if (state == 0x80)

i2c_read(2);
if (state >= 0x80)

i2c_write(send buffer[state - 0x801]);
else if (state > 0)
rcv_buffer[state - 1] = i2c_read();

}

Example ex_slave.c
Files:

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_write, i2c_read, #USE
12C, 12C Overview

201

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

12c_poll()

Syntax:

Built-in Functions

i2c_poll()
i2c_poll(stream)

Parameters: stream (optional)- specify the stream defined in #USE 12C

Returns: 1 (TRUE) or O (FALSE)

Function: The 12C_POLL() function should only be used when the built-in SSP is used. This
function returns TRUE if the hardware has a received byte in the buffer. When a
TRUE is returned, a call to 12C_READ() will immediately return the byte that was
received.

Availability: Devices with built in [2C

Requires: #USE 12C

Examples: if(i2c-poll())
buffer [index]=i2c-read();//read data

Example None

Files:

Also See: i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read,
#USE 12C, 12C Overview

12c_read()

Syntax: data = i2c_read();
data = i2c_read(ack);
data = i2c_read(stream, ack);

Parameters: ack -Optional, defaults to 1.
0 indicates do not ack.
1 indicates to ack.
2 slave only, indicates to not release clock at end of read. Use when i2c_isr_state
0
returns 0x80.
stream - specify the stream defined in #USE 12C

Returns: data - 8 bit int

Function: Reads a byte over the 12C interface. In master mode this function will generate the

clock and in slave mode it will wait for the clock. There is no timeout for the slave,
use i2c_poll() to prevent a lockup. Use restart_wdt() in the #USE 12C to strobe the
watch-dog timer in the slave mode while waiting.

202

Built-in Functions

Availability: All devices.
Requires: #USE 12C

Examples: i2c_start();
i2c _write(Oxal);
datal = i2c read(TRUE);
data2 = i2c_read(FALSE) ;
i2c_stop();

Example ex_extee.c with 2416.c
Files:

Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write,
#USE 12C, 12C Overview

12c_slaveaddr()

Syntax: I2C_SlaveAddr(addr);
I2C_SlaveAddr(stream, addr);

Parameters: addr = 8 bit device address
stream(optional) - specifies the stream used in #USE 12C

Returns: Nothing

Function: This functions sets the address for the 12C interface in slave mode.
Availability: Devices with built in 12C

Requires: #USE 12C

Examples: i2c_SlaveAddr (0x08) ;
i2c_SlaveAddr (i2cStreaml, 0x08);

Example ex_slave.c
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_stop, i2c_isr_state, i2c_write, i2c_read, #USE

12C, 12C Overview

203

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

12c_speed()

Syntax:

i2c_speed (baud)
i2c_speed (stream, baud)

Parameters: baud is the number of bits per second.
stream - specify the stream defined in #USE [2C
Returns: Nothing.
Function: This function changes the I12c bit rate at run time. This only works if the hardware
I2C module is being used.
Availability: All devices.
Requires: #USE 12C
Examples; I2C _Speed (400000);
Example none
Files:
Also See: i2c_poll, i2c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read,
#USE 12C, 12C Overview
12c_start()
Syntax: i2c_start()
i2c_start(stream)
i2c_start(stream, restart)
Parameters: stream: specify the stream defined in #USE [2C
restart: 2 — new restart is forced instead of start
1 — normal start is performed
0 (or not specified) — restart is done only if the compiler last encountered a
[2C_START and no 12C_STOP
Returns: undefined
Function: Issues a start condition when in the 12C master mode. After the start condition the

clock is held low until I2C_WRITE() is called. If another 12C_start is called in the
same function before an i2c_stop is called, then a special restart condition is
issued. Note that specific 12C protocol depends on the slave device. The
I2C_START function will now accept an optional parameter. If 1 the compiler
assumes the bus is in the stopped state. If 2 the compiler treats this I2C_START
as a restart. If no parameter is passed a 2 is used only if the compiler compiled a

204

Built-in Functions

12C_START last with no 1I2C_STOP since.
Availability: All devices.
Requires: #USE I12C

Examples: 1i2c_start

()
i2c write (0xa0) ; // Device address
i2c write(address); // Data to device
i2c¢c start(); // Restart
i2c_write(Oxal); // to change data direction
data=i2c_read(0); // Now read from slave

i2c_stop();

Example ex_extee.c with 2416.c

Files:

Also See: i2c_poll, i2c_speed, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read,
#USE 12C, 12C Overview

12c_stop()

Syntax: i2c_stop()

i2c_stop(stream)
Parameters: stream: (optional) specify stream defined in #USE [2C
Returns: undefined
Function: Issues a stop condition when in the [2C master mode.
Availability: All devices.

Requires: #USE 12C

Examples: i2c start(); // Start condition
i2c write(0xa0); // Device address
i2c _write(5); // Device command
i2c write(12); // Device data
i2¢ _stop(); // Stop condition
Example ex_extee.c with 2416.c
Files:
Also See: i2c_poll, i2c_speed, i2c_start, i2c_slaveaddr, i2c_isr_state, i2c_write, i2c_read,

#USE I12C, 12C Overview

205

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

12c_write()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

i2c_write (data)
i2c_write (stream, data)

data is an 8 bit int
stream - specify the stream defined in #USE [2C

This function returns the ACK Bit.

0 means ACK, 1 means NO ACK, 2 means there was a collision if in Multi_Master
Mode.

This does not return an ACK if using i2c in slave mode.

Sends a single byte over the 12C interface. In master mode this function will
generate a clock with the data and in slave mode it will wait for the clock from the
master. No automatic timeout is provided in this function. This function returns the
ACK bit. The LSB of the first write after a start determines the direction of data
transfer (0 is master to slave). Note that specific 12C protocol depends on the slave
device.

All devices.

#USE 12C

long cmd;

i2¢c start(); // Start condition
i2c_write(0xa0);// Device address

i2c _write(cmd);// Low byte of command

i2c write(cmd>>8);// High byte of command
i2c_stop(); // Stop condition

ex extee.c with 2416.c

i2c_poll, i2c_speed, i2¢c_start, i2c_stop, i2c_slaveaddr, i2c_isr_state, i2c_read,
#USE 12C, 12C Overview

206

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

input()
Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

value = input (pin)

Pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43
. This is defined as follows: #define PIN_A3 43 .

The PIN could also be a variable. The variable must have a value equal to one of
the constants (like PIN_A1) to work properly. The tristate register is updated
unless the FAST IO mode is set on port A. note that doing I/0 with a variable
instead of a constant will take much longer time.

0 (or FALSE) if the pin is low,
1 (or TRUE) if the pin is high

This function returns the state of the indicated pin. The method of I/O is dependent
on the last USE *_|O directive. By default with standard 1/O before the input is
done the data direction is set to input.

All devices.

Pin constants are defined in the devices .h file

while (!input (PIN Bl));
// waits for Bl to go high

if (input (PIN_A0))
printf ("AO0 is now high\r\n");

intl6é i=PIN BI1;

while (!1i);
//waits for Bl to go high

ex_pulse.c

input_x(), output_low(), output_high(), #USE FIXED_IO, #USE FAST_IlO, #USE
STANDARD_ IO, General Purpose I/O

input_change_x()

Syntax:

value = input_change_a();
value = input_change_b();
value = input_change_c();
value = input_change_d();
value = input_change_e();
value = input_change_f();
value = input_change_g();
value = input_change_h();

207

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

value = input_change_j();
value = input_change_k();

None
An 8-bit or 16-bit int representing the changes on the port.

This function reads the level of the pins on the port and compares them to the
results the last time the input_change_x() function was called. A 1 is returned if
the value has changed, 0 if the value is unchanged.

All devices

None

pin check = input change b();
None

input(), input_x(), output_x(), #USE FIXED_Il0O, #USE FAST _10, #USE
STANDARD _|O, General Purpose I/0

input_state()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

value = input_state(pin)

pin to read. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43
. This is defined as follows: #define PIN_A3 43 .

Bit specifying whether pin is high or low. A 1 indicates the pin is high and a 0
indicates it is low.

This function reads the level of a pin without changing the direction of the pin as
INPUT() does.

All devices.

Nothing

level = input state(pin A3);
printf ("level: %d",level);

None

input(), set_tris_x(), output_low(), output_high(), General Purpose 1/0O

208

input_x()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

interrupt_

Syntax:
Parameters:
Returns:

Function:

Availability:

Built-in Functions

value = input_a()
value = input_b()
value = input_c()
value = input_d()
value = input_e()
value = input_f()
value = input_g()
value = input_h()
value = input_j()
value = input_k()
None

An 8 bit int representing the port input data.

Inputs an entire byte from a port. The direction register is changed in accordance
with the last specified #USE * _|O directive. By default with standard 1/0O before the
input is done the data direction is set to input.

All devices.

Nothing

data = input b();
ex_psp.c

input(), output_x(), #USE FIXED_|O, #USE FAST_IO, #USE STANDARD_|O

active()

interrupt_active (interrupt)
Interrupt — constant specifying the interrupt
Boolean value

The function checks the interrupt flag of the specified interrupt and returns true in
case the flag is set.

Device with interrupts

209

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Requires: Should have a #INT_xxxx, Constants are defined in the devices .h file.

Examples; interrupt active (INT TIMERO) ;
interrupt active (INT TIMERI) ;

Example None
Files:
Also See: disable_interrupts() , #INT , Interrupts Overview

clear_interrupt, enable_interrupts()

Isalnum(char) isalpha(char) isdigit(char) islower(char) isspace(char)
iIsupper(char) isxdigit(char) iscntrl(x) isgraph(x) isprint(x) ispunct(x)

Syntax: value = isalnum(datac)
value = isalpha(datac)
value = isdigit(datac)
value = islower(datac)
value = isspace(datac)
value = isupper(datac)
value = isxdigit(datac)
value = iscntrl(datac)
value = isgraph(datac)
value = isprint(datac)
value = punct(datac)

Parameters: datac is a 8 bit character

Returns: 0 (or FALSE) if datac dose not match the criteria, 1 (or TRUE) if datac does
match the criteria.

Function: Tests a character to see if it meets specific criteria as follows:
isalnum(x) Xis0.9,'A'..'Z", or'a'..'z'
isalpha(x) Xis'A'..'Z' or'a'..'z

isdigit(x) Xis'0..'9'

islower(x) Xis'a'..'z'

isupper(x) Xis'A'..'Z

isspace(x) X is a space

isxdigit(x) Xis'0..'9', 'A'..'F, or 'a'..'f

iscntrl(x) X'is less than a space

isgraph(x) X is greater than a space

isprint(x) X is greater than or equal to a space
ispunct(x) X is greater than a space and not a

letter or number

210

Built-in Functions

Availability: All devices.
Requires: #INCLUDE <ctype.h>

Examples: char 1d[20];

if (isalpha (id[0])) {
valid id=TRUE;
for(i=1;i<strlen (id) ;i++)
valid id=valid id && isalnum(id[i]);
} else
valid id=FALSE;

Example ex_str.c

Files:

Also See: isamong()

iIsamong()

Syntax: result = isamong (value, cstring)

Parameters: value is a character
cstring is a constant sting

Returns: 0 (or FALSE) if value is not in cstring
1 (or TRUE) if value is in cstring

Function: Returns TRUE if a character is one of the characters in a constant string.
Availability: ~ All devices
Requires: Nothing

Examples: char x= 'x';

if (isamong (x,
"0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"))
printf ("The character is valid");

Example Files: #INCLUDE <ctype.h>

Also See: isalnum(), isalpha(), isdiqit(), isspace(), islower(), isupper(), isxdigit()

itoa()

211

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

string = itoa(i32value, i8base, string)

i32value is a 32 bit int

i8base is a 8 bit int

string is a pointer to a null terminated string of characters

string is a pointer to a null terminated string of characters

Converts the signed int32 to a string according to the provided base and returns
the converted value if any. If the result cannot be represented, the function will
return O.

All devices

#INCLUDE <stdlib.h>

int32 x=1234;
char string[5];

itoa(x,10, string);
// string is now “1234”

None

None

212

jump_to

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

kbhit()

Syntax:

Parameters:

Returns:

Function:

Built-in Functions

isr()

jump_to_isr (address)
address is a valid program memory address
No value

The jump_to_isr function is used when the location of the interrupt service routines
are not at the default location in program memory. When an interrupt occurs,
program execution will jump to the default location and then jump to the specified
address.

All devices

Nothing

int global
void global isr(void) {
jump to isr(isr address);

}

ex_bootloader.c

#BUILD

value = kbhit()
value = kbhit (stream)

stream is the stream id assigned to an available RS232 port. If the stream
parameter is not included, the function uses the primary stream used by getc().

0 (or FALSE) if getc() will need to wait for a character to come in, 1 (or TRUE) if a
character is ready for getc()

If the RS232 is under software control this function returns TRUE if the start bit of a
character is being sent on the RS232 RCV pin. If the RS232 is hardware this
function returns TRUE if a character has been received and is waiting in the
hardware buffer for getc() to read. This function may be used to poll for data
without stopping and waiting for the data to appear. Note that in the case of
software RS232 this function should be called at least 10 times the bit rate to
ensure incoming data is not lost.

213

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

All devices.

#USE RS232

char timed getc() {
long timeout;

timeout error=FALSE;
timeout=0;
while (!kbhit () && (++timeout<50000)) // 1/2
// second
delay us(10);
if (kbhit ())
return (getc());
else {
timeout error=TRUE;
return (0) ;

ex_tgetc.c

getc(), #USE RS232, RS232 I/0 Overview

label address()

Syntax:

value = label_address(label);

Parameters: label is a C label anywhere in the function

Returns:

Function:

Availability:
Requires:

Examples:

A 16 bit int in PCB,PCM and a 32 bit int for PCH, PCD

This function obtains the address in ROM of the next instruction after the
label. This is not a normally used function except in very special situations.

All devices.

Nothing

start:
a = (b+c)<k2;
end:

214

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

printf ("It takes %$1lu ROM locations.\r\n",
label address(end)-label address(start));

Example setimp.h
Files:

Also See: goto_address()

labs()

Syntax: result = labs (value)

Parameters: value is a 16 bit signed long int

Returns: A 16 bit signed long int

Function: Computes the absolute value of a long integer.

Availability: All devices.

Requires: #INCLUDE <stdlib.h>

Examples: if (labs(target value - actual value) > 500)
printf ("Error is over 500 points\r\n");

Example Files: None

Also See: abs()

lcd_contrast()

Syntax: lcd_contrast (contrast)
Parameters: contrast is used to set the internal contrast control resistance ladder.
Returns: undefined.

Function: This function controls the contrast of the LCD segments with a value passed in
between 0 and 7. A value of O will produce the minimum contrast, 7 will produce
the maximum contrast.

Availability: Only on select devices with built-in LCD Driver Module hardware.

Requires: None.

215

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples: lcd contrast(0); // Minimum Contrast
lcd contrast(7); // Maximum Contrast

Example None.

Files:

Also See: lcd_load(), lcd_symbol(), setup_lcd(), Internal LCD Overview

lcd load()

Syntax: Icd_load (buffer_pointer, offset, length);

Parameters: buffer_pointer points to the user data to send to the LCD, offset is the offset into
the LCD segment memory to write the data, length is the number of bytes to
transfer to the LCD segment memory.

Returns: undefined.

Function: This function will load length bytes from buffer_pointer into the LCD segment
memory beginning at offset. The lcd_symbol() function provides as easier way to
write data to the segment memory.

Availability: Only on devices with built-in LCD Driver Module hardware.

Requires Constants are defined in the devices *.h file.

Examples; lcd load(buffer, 0, 16);

Example ex_92lcd.c

Files:

Also See: lcd_symbol(), setup_lcd(), Icd_contrast(), Internal LCD Overview

216

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

lcd_symbol()

Syntax: lcd_symbol (symbol, bX_addr);

Parameters: symbol is a 8 bit or 16 bit constant.
bX_addr is a bit address representing the segment location to be used for bit X of
the specified symbol.

1-16 segments could be specified.

Returns: undefined

Function: This function loads the bits for the symbol into the segment data registers for the
LCD with each bit address specified. If bit X in symbol is set, the segment at
bX addr is set, otherwise it is cleared. The bX_addr is a bit address into the LCD
RAM.

Availability: Only on devices with built-in LCD Driver Module hardware.

Requires Constants are defined in the devices *.h file.

EX&mpIes: byte CONST DIGIT MAP[10] = {0xFC, 0x60, OxDA, OxF2, 0x66, OxB6, OxBE, OxEO, OxFE, OxE6};
#define DIGITL COM1+20, COM1+18, COM2+18, COM3+20, COM2+28, COM1+28, COM2+20, COM3+18
for(i = 0; 1 <= 9; i++) {

lcd symbol(DIGIT MAP[i], DIGIT1);
delay ms(1000);
}
Example ex 92lcd.c
Files:
Also See: setup_lcd(), lcd_load(), lcd_contrast(), Internal LCD Overview
Idexp()
Syntax: result= Idexp (value, exp);
Parameters: value is float
exp is a signed int.

Returns: result is a float with value result times 2 raised to power exp.

Function: The Idexp function multiplies a floating-point number by an integral power of
2.

Availability: All devices.

217

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Requires: #INCLUDE <math.h>

Examples: float result;
result=ldexp(.5,0);
// result is .5

Example None
Files:

Also See: frexp(), exp(), log(), log10(), modf()

log()

Syntax: result = log (value)
Parameters: value is a float
Returns: A float

Function: Computes the natural logarithm of the float x. If the argument is less than or equal
to zero or too large, the behavior is undefined.

Note on error handling:

"errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print
the error using the perror function.

Domain error occurs in the following cases:
¢ log: when the argument is negative

Availability: ~ All devices

Requires: #INCLUDE <math.h>
Examples: Inx = log(x);

Example None

Files:
Also See: log10(), exp(), pow()

218

Built-in Functions

log10()

Syntax: result = log10 (value)

Parameters: value is a float

Returns: A float

Function: Computes the base-ten logarithm of the float x. If the argument is less than or
equal to zero or too large, the behavior is undefined.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.
Domain error occurs in the following cases:
¢ log10: when the argument is negative

Availability: All devices

Requires: #INCLUDE <math.h>

Examples; db = loglO(read adc()*(5.0/255))*10;

Example None

Files:

Also See: log(), exp(), pow()

longjmp()

Syntax: longjmp (env, val)

Parameters: env: The data object that will be restored by this function
val: The value that the function setjmp will return. If val is O then the function
setjmp will return 1 instead.

Returns: After longjmp is completed, program execution continues as if the corresponding
invocation of the setjmp function had just returned the value specified by val.

Function: Performs the non-local transfer of control.

Availability: All devices

Requires: #INCLUDE <setjmp.h>

219

Built-in Functions

Examples: longjmp (jmpbuf, 1);

Example None
Files:

Also See: setimp()

make8()
Syntax: i8 = MAKES8(var, offset)

Parameters: var is a 16 or 32 bit integer.
offset is a byte offset of 0,1,2 or 3.

Returns: An 8 bit integer

Function: Extracts the byte at offset from var. Same as: i8 = (((var >> (offset*8)) & Oxff)
except it is done with a single byte move.

Availability: ~ All devices
Requires: Nothing
Examples: int32 x;
int y;
y = make8(x,3); // Gets MSB of x
Example None

Files:
Also See: make16(), make32()

makel6()
Syntax: i16 = MAKE16(varhigh, varlow)

Parameters: varhigh and varlow are 8 bit integers.
Returns: A 16 bit integer

Function: Makes a 16 bit number out of two 8 bit numbers. If either parameter is 16 or 32 bits
only the Isb is used. Same as: i16 = (int16)(varhigh&0xff)*0x100+(varlow&O0xff)
except it is done with two byte moves.

Availability: All devices

220

Built-in Functions

Requires: Nothing
Examples: long x;

int hi,lo;

X = makel6 (hi, lo);
Example [tc1298.c

Files:
Also See: make8(), make32()

make32()
Syntax: i32 = MAKE32(varl, var2, var3, var4)

Parameters: varl-4 are a 8 or 16 bit integers. var2-4 are optional.
Returns: A 32 bit integer

Function: Makes a 32 bit number out of any combination of 8 and 16 bit numbers. Note that
the number of parameters may be 1 to 4. The msb is first. If the total bits provided
is less than 32 then zeros are added at the msb.

Availability: All devices
Requires: Nothing

Examples: int32 x;

int y;

long z;

x = make32(1,2,3,4); // x is 0x01020304
y=0x12;

z=0x4321;

x = make32(y,z); // x is 0x00124321

x = make32(y,y,z); // x is 0x12124321

Example ex_freqc.c
Files:

Also See: make8(), makel6()

221

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

malloc()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

ptr=malloc(size)
size is an integer representing the number of byes to be allocated.
A pointer to the allocated memory, if any. Returns null otherwise.

The malloc function allocates space for an object whose size is specified by size
and whose value is indeterminate.

All devices

#INCLUDE <stdlibm.h>

int * iptr;
iptr=malloc (10);
// iptr will point to a block of memory of 10 bytes.

None

realloc(), free(), calloc()

memcpy() memmove()

Syntax:

Parameters:

Returns:

Function:

Availability:

memcpy (destination, source, n)
memmove(destination, source, n)

destination is a pointer to the destination memory.
source is a pointer to the source memory,.
n is the number of bytes to transfer

undefined

Copies n bytes from source to destination in RAM. Be aware that array names are
pointers where other variable names and structure names are not (and therefore
need a & before them).

Memmove performs a safe copy (overlapping objects doesn't cause a problem).
Copying takes place as if the n characters from the source are first copied into a

temporary array of n characters that doesn't overlap the destination and source
objects. Then the n characters from the temporary array are copied to destination.

All devices

222

Requires: Nothing
Exanuﬁes; memcpy (&structhA, &structB, sizeof (structh));
memcpy (arrayA, arrayB, sizeof (arrayh));
memcpy (&structA, &databyte, 1);
char a[20]="hello";
memmove (a,a+2,5);
// a is now "1lo"
Example None
Files:
Also See: strcpy(), memset()
memset()
Syntax: memset (destination, value, n)
Parameters: destination is a pointer to memory.
value is a 8 bit int
nis a 16 bit int.
On PCB and PCM parts n can only be 1-255.
Returns: undefined
Function: Sets n number of bytes, starting at destination, to value. Be aware that array
names are pointers where other variable names and structure names are not (and
therefore need a & before them).
Availability: ~ All devices
Requires: Nothing
Exanuﬂes; memset (arrayhA, 0, sizeof (arrayA));
memset (arrayB, '?', sizeof (arrayB));
memset (&structhA, OxFF, sizeof (structhA));
Example None
Files:
Also See: memcpy()

Built-in Functions

223

Built-in Functions

modf()

Syntax: result= modf (value, & integral)

Parameters: value is a float
integral is a float

Returns: result is a float

Function: The modf function breaks the argument value into integral and fractional parts,
each of which has the same sign as the argument. It stores the integral part as a
float in the object integral.

Availability: All devices
Requires: #INCLUDE <math.h>

Exanuﬂes; float result, integral;
result=modf (123.987, &integral) ;
// result is .987 and integral is 123.0000

Example None
Files:

Also See: None

_mul()

Syntax: prod=_mul(vall, val2);

Parameters: vall and val2 are both 8-bit or 16-bit integers

Returns: A 16-bit integer if both parameters are 8-bit integers, or a 32-bit
integer if both parameters are 16-bit integers.

Function: Performs an optimized multiplication. By accepting a different type
than it returns, this function avoids the overhead of converting the
parameters to a larger type.

Availability: All devices

Requires: Nothing

224

Examples:

Example
Files:

Also See:

nargs()
Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example

Built-in Functions

int a=50, b=100;
long int c;
c = mul(a, b); //c holds 5000

None

None

void foo(char * str, int count, ...)

The function can take variable parameters. The user can use stdarg library to
create functions that take variable parameters.

Function dependent.

The stdarg library allows the user to create functions that supports variable
arguments.

The function that will accept a variable number of arguments must have at least
one actual, known parameters, and it may have more. The number of arguments
is often passed to the function in one of its actual parameters. If the variable-length
argument list can involve more that one type, the type information is generally
passed as well. Before processing can begin, the function creates a special
argument pointer of type va_list.

All devices

#INCLUDE <stdarg.h>

int foo(int num, ...)

{

int sum = 0;
int i;
va_list argptr; // create special argument pointer
va_start(argptr,num); // initialize argptr
for (1=0; i<num; 1i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing

return sum;

void main ()

{

int total;

total = foo(2,4,6,9,10,2);
}

None

225

Built-in Functions

Files:
Also See: va_start(), va_end(), va_arg()

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);

Parameters: stype is a structure type name.
Field is a field from the above structure

Returns: An 8 bit byte

Function: These functions return an offset into a structure for the indicated field.
offsetof returns the offset in bytes and offsetofbit returns the offset in bits.

Availability: ~ All devices

Requires: #INCLUDE <stddef.h>

Exanuﬂes: struct time structure ({
int hour, min, sec;
int zone : 4;

intl daylight savings;

x = offsetof (time_ structure, sec);
// x will be 2
x = offsetofbit (time structure, sec);
// x will be 16
x = offsetof (time structure,
daylight savings);
// x will be 3
x = offsetofbit (time_ structure,
daylight savings);
// x will be 28

Example Files: None

Also See: None

226

Built-in Functions

offsetof() offsetofbit()

Syntax: value = offsetof(stype, field);
value = offsetofbit(stype, field);

Parameters: stype is a structure type name.
Field is a field from the above structure

Returns: An 8 bit byte

Function: These functions return an offset into a structure for the indicated field.
offsetof returns the offset in bytes and offsetofbit returns the offset in bits.

Availability: ~ All devices

Requires: #INCLUDE <stddef.h>

Exanuﬂes; struct time structure {
int hour, min, sec;
int zone : 4;

intl daylight savings;

x = offsetof (time_ structure, sec);
// x will be 2
x = offsetofbit(time structure, sec);

// x will be 16
x = offsetof (time structure,
daylight savings);
// x will be 3
x = offsetofbit (time structure,
daylight savings);
// x will be 28

Example Files: None

Also See: None

227

Built-in Functions

output_x()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

output_a (value)
output_b (value)
output_c (value)
output_d (value)
output_e (value)
output_f (value)

output_g (value)
output_h (value)
output_j (value)

output_k (value)

value is a 8 bit int
undefined

Output an entire byte to a port. The direction register is changed in accordance
with the last specified #USE *_|O directive.

All devices, however not all devices have all ports (A-E)
Nothing

OUTPUT B (0xf0) ;

ex_patg.c

input(), output_low(), output_high(), output_float(), output_bit(), #USE FIXED_IO,
#USE FAST IO, #USE STANDARD 10O, General Purpose 1/0

output_bit()

Syntax:

output_bit (pin, value)

Parameters: Pins are defined in the devices .h file. The actual number is a bit address. For

Returns:

Function:

example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined
as follows: #define PIN_A3 43 . The PIN could also be a variable. The variable
must have a value equal to one of the constants (like PIN_A1) to work properly.
The tristate register is updated unless the FAST_IO mode is set on port A. Note
that doing 1/O with a variable instead of a constant will take much longer time.
Valueisalora0.

undefined

Outputs the specified value (0 or 1) to the specified I/O pin. The

228

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

method of setting the direction register is determined by the last
#USE * 10 directive.

Availability: All devices.

Requires: Pin constants are defined in the devices .h file

Exanuﬂes; output bit(PIN BO, 0);
// Same as output low(pin BO);

output bit(PIN BO,input(PIN Bl));
// Make pin BO the same as Bl

output bit(PIN BO,shift left(&data,l,input (PIN Bl)));
// Output the MSB of data to

// B0 and at the same time

// shift Bl into the LSB of data

intl6é i=PIN BO;

ouput bit (i,shift left(&data,l,input (PIN Bl)));
//same as above example, but

//uses a variable instead of a constant

Example ex_extee.c with 9356.c
Files:

Also See: input(), output_low(), output_high(), output_float(), output_x(), #USE FIXED_IO,
#USE FAST IO, #USE STANDARD |0, General Purpose 1/0

output_drive()
Syntax: output_drive(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined
as follows: #DEFINE PIN_A3 43 .

Returns: undefined
Function: Sets the specified pin to the output mode.
Availability: All devices.

Requires: Pin constants are defined in the devices.h file.

Examples: output drive(pin A0); // sets pin A0 to output its value
output bit (pin BO, input(pin AO)) // makes BO the same as A0

229

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Example
Files:

Also See:

Built-in Functions

None

input(), output_low(), output_high(), output_bit(), output_x(), output_float()

output_float()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

output_float (pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined
as follows: #DEFINE PIN_A3 43 . The PIN could also be a variable to identify the
pin. The variable must have a value equal to one of the constants (like PIN_A1l) to
work properly. Note that doing I/O with a variable instead of a constant will take
much longer time.

undefined

Sets the specified pin to the input mode. This will allow the pin to float high to
represent a high on an open collector type of connection.

All devices.

Pin constants are defined in the devices .h file

if((data & 0x80)==0)
output low(pin AO);

else
output float (pin_ AO);

None

input(), output_low(), output_high(), output_bit(), output_x(), output_drive(), #USE
FIXED_IO, #USE FAST |10, #USE STANDARD _I0O, General Purpose I/O

230

Built-in Functions

output_high()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

output_high (pin)

Pin to write to. Pins are defined in the devices .h file. The actual value is a bit
address. For example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43

. This is defined as follows: #DEFINE PIN_A3 43 . The PIN could also be a
variable. The variable must have a value equal to one of the constants (like
PIN_A1) to work properly. The tristate register is updated unless the FAST_IO
mode is set on port A. Note that doing I/0O with a variable instead of a constant will
take much longer time.

undefined

Sets a given pin to the high state. The method of 1/0O used is dependent on the last
USE * 10 directive.

All devices.

Pin constants are defined in the devices .h file

output high(PIN AQ);

Intl6 i=PIN Al;
output low (PIN Al);

ex_sgw.c

input(), output_low(), output_float(), output_bit(), output_x(), #USE FIXED_lO,
#USE FAST |0, #USE STANDARD_IO, General Purpose /O

output_low()

Syntax:

Parameters:

Returns:

Function:

output_low (pin)

Pins are defined in the devices .h file. The actual value is a bit address. For
example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined
as follows: #DEFINE PIN_A3 43 . The PIN could also be a variable. The variable
must have a value equal to one of the constants (like PIN_A1) to work properly.
The tristate register is updated unless the FAST_IO mode is set on port A. Note
that doing I/O with a variable instead of a constant will take much longer time.

undefined

Sets a given pin to the ground state. The method of I/O used is dependent on the
last USE *_10 directive.

231

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

All devices.

Pin constants are defined in the devices .h file

output low (PIN AO0);

Int16i=PIN Al;
output low (PIN Al);

ex_sgw.c

input(), output_high(), output_float(), output_bit(), output_x(), #USE FIXED_IO,
#USE FAST_IO, #USE STANDARD_I10O, General Purpose 1/0

output_toggle()

Syntax:

output_toggle(pin)

Parameters: Pins are defined in the devices .h file. The actual value is a bit address. For

Returns:
Function:
Availability:
Requires:
Examples:

Example
Files:

Also See:

example, port a (byte 5) bit 3 would have a value of 5*8+3 or 43 . This is defined
as follows: #DEFINE PIN_A3 43 .

Undefined

Toggles the high/low state of the specified pin.
All devices.

Pin constants are defined in the devices .h file
output toggle (PIN B4);

None

Input(), output_high(), output_low(), output_bit(), output_x()

232

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

perror()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

perror(string);
string is a constant string or array of characters (null terminated).
Nothing

This function prints out to STDERR the supplied string and a description of the
last system error (usually a math error).

All devices.
#USE RS232, #INCLUDE <errno.h>

x = sin(y);

if (errno!=0)
perror ("Problem in find area");

None

RS232 1/0 Overview

port_x_pullups ()

Syntax:

Parameters:

Returns:
Function:

Availability:

port_a_pullups (value)

port_b_pullups (value)

port_d_pullups (value)

port_e_ pullups (value)

port_j_pullups (value)

port_x_pullups (upmask)
port_x_pullups (upmask, downmask)

value is TRUE or FALSE on most parts, some parts that allow pullups to be
specified on individual pins permit an 8 bit int here, one bit for each port pin.
upmask for ports that permit pullups to be specified on a pin basis. This mask
indicates what pins should have pullups activated. A 1 indicates the pullups is on.
downmask for ports that permit pulldowns to be specified on a pin basis. This
mask indicates what pins should have pulldowns activated. A 1 indicates the
pulldowns is on.

undefined
Sets the input pullups. TRUE will activate, and a FALSE will deactivate.

Only 14 and 16 bit devices (PCM and PCH). (Note: use SETUP_COUNTERS on

233

Built-in Functions

PCB parts).
Requires: Nothing
Examples: port_a_pullups (FALSE) ;
Example ex_lcdkb.c, kbd.c

Files:
Also See: input(), input_x(), output_float()

pow() pwr()

Syntax: f = pow (x,y)
f=pwr (X,y)

Parameters: x and y are of type float
Returns: A float

Function: Calculates X to the Y power.
Note on error handling:
If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Range error occurs in the following case:
¢ pow: when the argument X is negative

Availability: ~ All Devices

Requires: #INCLUDE <math.h>
Examples: area = pow (size,3.0);
Example None

Files:
Also See: None

234

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

printf() fprintf()

Syntax:

Parameters:

Returns:

Function:

printf (string)
or
printf (cstring, values...)
or
printf (fname, cstring, values...)
fprintf (stream, cstring, values...)

String is a constant string or an array of characters null terminated.

Values is a list of variables separated by commas, fname is a function name to be
used for outputting (default is putc is none is specified.

Stream is a stream identifier (a constant byte). Note that format specifies do not
work in ram band strings.

undefined

Outputs a string of characters to either the standard RS-232 pins (first two forms)
or to a specified function. Formatting is in accordance with the string

argument. When variables are used this string must be a constant. The %
character is used within the string to indicate a variable value is to be formatted
and output. Longs in the printf may be 16 or 32 bit. A %% will output a single

%. Formatting rules for the % follows.

See the Expressions > Constants and Trigraph sections of this manual for other
escape character that may be part of the string.

If fprintf() is used then the specified stream is used where printf() defaults to
STDOUT (the last USE RS232).

Format:
The format takes the generic form %nt. n is optional and may be 1-9 to specify how
many characters are to be outputted, or 01-09 to indicate leading zeros, or 1.1 to
9.9 for floating point and %w output. t is the type and may be one of the following:

c Character

S String or character
u Unsigned int
d Signed int

Lu Long unsigned int

Ld Long signed int

X Hex int (lower case)

X Hex int (upper case)

Lx Hexlong int (lower case)
LX Hexlong int (upper case)

f Float with truncated decimal

235

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

g Float with rounded decimal
e Float in exponential format

w Unsigned int with decimal place inserted.
Specify two numbers for n. The first is a
total field width. The second is the desired
number of decimal places.

Example formats:

Specifier Value=0x12 Value=0xfe
%03u 018 254

%u 18 254

%2u 18 *

%5 18 254

%d 18 -2

%X 12 fe

%X 12 FE

%4X 0012 O00FE
%3.1w 1.8 25.4

* Result is undefined - Assume garbage.
All Devices

#USE RS232 (unless fname is used)

byte x,y,z;

printf ("HiThere");

printf ("RTCCValue=>%2x\n\r",get rtcc());
printf ("%$2u $X %4X\n\r",x,v,2z);

printf (LCD_PUTC, "n=%u",n);

ex admm.c, ex Icdkb.c

atoi(), puts(), putc(), getc() (for a stream example), RS232 I/O Overview

236

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

profileout()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

profileout(string);
profileout(string, value);
profileout(value);

string is any constant string, and value can be any constant or variable integer.
Despite the length of string the user specifies here, the code profile run-time
will actually only send a one or two byte identifier tag to the code profile tool to
keep transmission and execution time to a minimum.

Undefined

Typically the code profiler will log and display function entry and exits, to show
the call sequence and profile the execution time of the functions. By using
profileout(), the user can add any message or display any variable in the code
profile tool. Most messages sent by profileout() are displayed in the 'Data
Messages' and 'Call Sequence' screens of the code profile tool.

If a profileout(string) is used and the first word of string is "START", the code
profile tool will then measure the time it takes until it sees the same
profileout(string) where the "START" is replaced with "STOP". This
measurement is then displayed in the 'Statistics' screen of the code profile tool,
using string as the name (without "START" or "STOP")

Any device.

#use profile() used somewhere in the project source code.

/l send a simple string.

profileout("This is a text string");

/I send a variable with a string identifier.
profileout("RemoteSensor=", adc);

/I just send a variable.

profileout(adc);

[/l time how long a block of code takes to execute.
/I this will be displayed in the 'Statistics' of the
/I Code Profile tool.

profileout("start my algorithm");

[* code goes here */

profileout("stop my algorithm™);

ex_profile.c

#use profile(), #profile, Code Profile overview

237

Built-in Functions

psp_output_full() psp_input_full() psp_overflow()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

result = psp_output_full()
result = psp_input_full()
result = psp_overflow()

result = psp_error(); /[EPMP only
result = psp_timeout(); /[EPMP only
None

A0 (FALSE) or 1 (TRUE)

These functions check the Parallel Slave Port (PSP) for the indicated conditions
and return TRUE or FALSE.

This function is only available on devices with PSP hardware on chips.

Nothing

while (psp_output full()) ;
psp_data = command;
while (!psp input full()) ;
if (psp_overflow())

error = TRUE;
else

data = psp_data;

ex_psp.c

setup_psp(), PSP Overview

putc() putchar() fputc()

Syntax:

Parameters:

Returns:

Function:

putc (cdata)
putchar (cdata)
fputc(cdata, stream)

cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

undefined

This function sends a character over the RS232 XMIT pin. A #USE RS232 must
appear before this call to determine the baud rate and pin used. The #USE RS232
remains in effect until another is encountered in the file.

238

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

If fputc() is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).

Availability: ~ All devices
Requires: #USE RS232

Examples: putc('*");
for (1i=0; i<10; i++)
putc (buffer[il]);

putc(13);

Example ex_tgetc.c
Files:

Also See: getc(), printf(), #USE RS232, RS232 I/O Overview

putc_send();
fputc_send();

Syntax: putc_send();
fputc_send(stream);

Parameters: stream — parameter specifying the stream defined in #USE RS232.
Returns: Nothing

Function: Function used to transmit bytes loaded in transmit buffer over RS232. Depending
on the options used in #USE RS232 controls if function is available and how it
works.

If using hardware UARTx with NOTXISR option it will check if currently
transmitting. If not transmitting it will then check for data in transmit buffer. If there
is data in transmit buffer it will load next byte from transmit buffer into the hardware
TX buffer, unless using CTS flow control option. In that case it will first check to
see if CTS line is at its active state before loading next byte from transmit buffer
into the hardware TX buffer.

If using hardware UARTXx with TXISR option, function only available if using CTS
flow control option, it will test to see if the TBEX interrupt is enabled. If not enabled
it will then test for data in transmit buffer to send. If there is data to send it will then
test the CTS flow control line and if at its active state it will enable the TBEXx
interrupt. When using the TXISR mode the TBEX interrupt takes care off moving
data from the transmit buffer into the hardware TX buffer.

If using software RS232, only useful if using CTS flow control, it will check if there
is data in transmit buffer to send. If there is data it will then check the CTS flow

239

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

control line, and if at its active state it will clock out the next data byte.
Availability: All devices

Requires: #USE RS232

Examples: #USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50,NOTXISR)
printf(“Testing Transmit Buffer”);
while(TRUE)

putc_send();

}

Example None

Files:

Also See: _USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(),
TX_BUFFER_BYTES(), GET(), PUTC() RINTF(), SETUP_UART(),
PUTC()_SEND

putc() putchar() fputc()

Syntax: putc (cdata)
putchar (cdata)
fputc(cdata, stream)

Parameters: cdata is a 8 bit character.
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: This function sends a character over the RS232 XMIT pin. A #USE RS232 must
appear before this call to determine the baud rate and pin used. The #USE RS232
remains in effect until another is encountered in the file.

If fputc() is used then the specified stream is used where putc() defaults to
STDOUT (the last USE RS232).

Availability: All devices
Requires: #USE RS232

Examples: putc('*");
for (1=0; 1<10; i++)
putc (bufferf[il]);

putc(13);

Example ex_tgetc.c
Files:

Also See: getc(), printf(), #USE RS232, RS232 1/O Overview

240

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

puts() fputs()
Syntax: puts (string).
fputs (string, stream)

Parameters: string is a constant string or a character array (null-terminated).
Stream is a stream identifier (a constant byte)

Returns: undefined

Function: Sends each character in the string out the RS232 pin using putc(). After the string
is sent a CARRIAGE-RETURN (13) and LINE-FEED (10) are sent. In general
printf() is more useful than puts().

If fputs() is used then the specified stream is used where puts() defaults to
STDOUT (the last USE RS232)

Availability: ~ All devices
Requires: #USE RS232

Examples: puts(" ----------- ")
puts(" | HI ")
puts(" ——mmmm————— ")

Example None
Files:

Also See: printf(), gets(), RS232 I/O Overview

pwm_off()

Syntax: pwm_off([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE
PWM.

Returns: Nothing.

Function: To turn off the PWM signal.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM(OUTPUT=PIN_C2, FREQUENCY=10kHz, DUTY=25)
while(TRUE){
if(kbhit()){
¢ = getc();

241

Built-in Functions

if(c=="F")

pwm_ off();
}
}
Example None
Files:
Also See: #use_pwm, pwm_on(), pwm_set_duty percent(), pwm_set_duty(),
pwm_set_frequency()
pwm_on()
Syntax: pwm_on([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE
PWM.
Returns: Nothing.
Function: To turn on the PWM signal.

Availability: All devices.

Requires: #USE PWM

Examples: #USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
while (TRUE) {

1f (kbhit ()) {

(

c = getc();
if (c=='0")
pwm_on () ;
}
}
Example None
Files:
Also See: #use_pwm, pwm_off(), pwm_set_duty percent(), pwm_set_duty,

pwm_set frequency()

pwm_set_duty()

Syntax: pwm_set_duty([stream],duty);
Parameters: stream — optional parameter specifying the stream defined in #USE
PWM.

duty — an int16 constant or variable specifying the new PWM high time.
Returns: Nothing.

Function: To change the duty cycle of the PWM signal. The duty cycle
percentage depends on the period of the PWM signal. This function is
faster than pwm_set_duty_percent(), but requires you to know what the
period of the PWM signal is.

Availability: All devices.

242

Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

#USE PWM
#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
None

#use_pwm, pwm_on, pwm_off(), pwm_set_frequency(),
pwm_set duty percent()

pwm_set duty percent

Syntax:
Parameters:

Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

pwm_set_duty_percent([stream]), percent

stream — optional parameter specifying the stream defined in #USE PWM.
percent- an intl6 constant or variable ranging from 0 to 1000 specifying the new PWM duty
cycle, D is 0% and 1000 is 100.0%.

Nothing.

To change the duty cycle of the PWM signal. Duty cycle percentage is based off the current
frequency/period of the PWM signal.

All devices.

#USE PWM

#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set duty percent (500) ; //set PWM duty cycle to 50%

None

#use_pwm, pwm_on(), pwm_off(), pwm_set_frequency(),
pwm_set_duty()

pwm_set_frequency

Syntax:
Parameters:

Returns:
Function:
Availability:

Requires:
Examples:

pwm_set_frequency([stream],frequency);

stream — optional parameter specifying the stream defined in #USE
PWM.

frequency — an int32 constant or variable specifying the new PWM
frequency.

Nothing.

To change the frequency of the PWM signal. Warning this may
change the resolution of the PWM signal.

All devices.

#USE PWM

#USE PWM (OUTPUT=PIN C2, FREQUENCY=10kHz, DUTY=25)
pwm_set frequency (1000); //set PWM frequency to 1lkHz

243

Built-in Functions

Example None
Files:

Also See: #use_pwm, pwm_on(), pwm_off(), pwm_set_duty percent,
pwm_set_duty()

gei_get_count()

Syntax: value = gei_get_count([type]);

Parameters: type - Optional parameter to specify which counter to get, defaults to position
counter. Defined in devices .h file as:

QEI_GET_POSITION_COUNT
QEI_GET_VELOCITY_COUNT

Returns: The 16-bit value of the position counter or velocity counter.
Function: Reads the current 16-bit value of the position or velocity counter.
Availability: Devices that have the QEI module.

Requires: Nothing.

Exanuﬂes; value = gei get counter (QEI GET POSITION COUNT) ;
value = geil get counter();
value = gei get counter (QEI GET VELOCITY COUNT) ;

Example None

Files:
Also See: setup_qei() , gei_set_count() , gei_status().

gei_set _count()

Syntax: gei_set_count(value);

Parameters: value- The 16-bit value of the position counter.
Returns: void

Function: Write a 16-bit value to the position counter.
Availability: ~ Devices that have the QEI module.

Requires: Nothing.

244

Examples:
Example Files:

Also See:

Built-in Functions

gel set counter (value);
None

setup_qei() , gei_get_count() , gei_status().

gei_status()

Syntax:
Parameters:
Returns:
Function:
Availability:
Requires:
Examples:

Example Files:

status = gei_status();

None

The status of the QEI module.
Returns the status of the QEI module.
Devices that have the QEI module.
Nothing.

status = gei status();

None

Also See: setup_qei() , gei_set_count() , gei_get_count().
gsort()
Syntax: gsort (base, num, width, compare)

Parameters: base: Pointer to array of sort data
num: Number of elements
width: Width of elements
compare: Function that compares two elements

Returns: None

Function: Performs the shell-metzner sort (not the quick sort algorithm). The contents of the
array are sorted into ascending order according to a comparison function pointed

to by compare.

Availability: All devices

Requires: #INCLUDE <stdlib.h>

245

Built-in Functions

Examples: int nums[5]={ 2,3,1,5,4};
int compar (void *argl,void *arg2);

void main () {
gsort (nums, 5, sizeof(int), compar);
}
int compar (void *argl,void *arg2) {
if (* (int *) argl < (* (int *) arg2) return -1

else if (* (int *) argl == (* (int *) arg2) return O
else return 1;

Example ex_gsort.c
Files:

Also See: bsearch()

rand()

Syntax: re=rand()
Parameters: None
Returns: A pseudo-random integer.

Function: The rand function returns a sequence of pseudo-random integers in the range of
0 to RAND_MAX.

Availability: ~ All devices

Requires: #INCLUDE <STDLIB.H>

Examples: int I;
I=rand();

Example None

Files:

Also See: srand()

rcv_buffer_bytes()

Syntax: value = rcv_buffer_bytes([stream]);

246

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Parameters:
Returns:

Function:

Availability:

Requires:
Examples:

Example
Files:

Also See:

Built-in Functions

stream — optional parameter specifying the stream defined in #USE RS232.

Number of bytes in receive buffer that still need to be retrieved.

Function to determine the number of bytes in receive buffer that still need to be
retrieved.

All devices

#USE RS232

#USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=100)
void main(void) {

char c;

if(rcv_buffer_bytes() > 10)

¢ = getc();
}

None

_USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(),
TX_BUFFER_BYTES(), GETC(), PUTC() ,PRINTF(), SETUP_UART(),
PUTC_SEND()

rcv_buffer_full()

Syntax: value = rcv_buffer_full([stream]);
Parameters: stream — optional parameter specifying the stream defined in #USE RS232.
Returns: TRUE if receive buffer is full, FALSE otherwise.
Function: Function to test if the receive buffer is full.
Availability: All devices
Requires: #USE RS232
Examples: #USE_RS232(UART1,BAUD=9600,RECEIVE_BUFFER=100)
void main(void) {
char c;
if(rcv_buffer_full())
¢ = getc();
Example None
Files:
Also See: _USE_RS232(),RCV_BUFFER_BYTES(), TX_BUFFER_BYTES()
,TX_BUFFER_FULL(), GETC(), PUTC(), PRINTF(), SETUP_UART(),
PUTC_SEND()
read_adc()

247

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

value = read_adc ([mode])

mode is an optional parameter. If used the values may be:
ADC_START_AND_READ (continually takes readings, this is the default)
ADC_START_ONLY (starts the conversion and returns)
ADC_READ_ONLY (reads last conversion result)

Either a 8 or 16 bit int depending on #DEVICE ADC= directive.

This function will read the digital value from the analog to digital
converter. Calls to setup_adc(), setup_adc_ports() and
set_adc_channel() should be made sometime before this function is
called. The range of the return value depends on number of bits in the
chips A/D converter and the setting in the #DEVICE ADC= directive as
follows:

#DEVICE 8 bit 10 bit 11 bit 12 bit 16 bit

ADC=8 00-FF 00-FF 00-FF O00-FF 00-FF

ADC=10 X 0-3FF x 0-3FF X
ADC=11 X X O-7FF X X
ADC=16 OFFO0 O- 0-FFEO O0-FFFO O-FFFF
FFCO

Note: Xxis not defined
This function is only available on devices with A/D hardware.

Pin constants are defined in the devices .h file.

setup adc(ADC CLOCK_ INTERNAL);

setup adc ports(ALL ANALOG) ;

set adc channel (1);

while (input(PIN BO)) {
delay ms(5000);
value = read adc()
printf ("A/D value

” ~e

$2x\n\r", value);

}
read adc (ADC_START ONLY) ;

sleep();
value=read adc (ADC_READ ONLY) ;

ex admm.c, ex 14kad.c

setup_adc(), set_adc_channel(), setup_adc_ports(),
#DEVICE, ADC Overview

248

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

read bank()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

value = read_bank (bank, offset)

bank is the physical RAM bank 1-3 (depending on the device)
offset is the offset into user RAM for that bank (starts at 0),

8 bit int

Read a data byte from the user RAM area of the specified memory bank. This
function may be used on some devices where full RAM access by auto variables is
not efficient. For example, setting the pointer size to 5 bits on the PIC16C57 chip
will generate the most efficient ROM code. However, auto variables can not be
above 1Fh. Instead of going to 8 bit pointers, you can save ROM by using this
function to read from the hard-to-reach banks. In this case, the bank may be 1-3
and the offset may be 0-15.

All devices but only useful on PCB parts with memory over 1Fh
and PCM parts with memory over FFh.

Nothing

// See write bank() example to see
// how we got the data
// Moves data from buffer to LCD

i=0;

do {
c=read bank(1l,i++);
1if (c!=0x13)

lcd putc(c);
} while (c!=0x13);

exX_psp.c

write_bank(), and the "Common Questions and Answers" section for more
information.

read_calibration()

Syntax:
Parameters:
Returns:

Function:

value = read_calibration (n)
n is an offset into calibration memory beginning at 0
An 8 bit byte

The read_calibration function reads location "n" of the 14000-calibration

249

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

memory.

Availability: This function is only available on the PIC14000.

Requires: Nothing

Examples: fin = read_calibration(16);
Example ex_14kad.c with 14kcal.c
Files:

Also See: None

read_configuration_memory()

Syntax: read_configuration_memory(ramPtr, n)

Parameters: ramPtr is the destination pointer for the read results
count is an 8 bit integer

Returns: undefined

Function: Reads n bytes of configuration memory and saves the values to ramPtr.
Availability: ~ All

Requires: Nothing

Examples: int dataf[6];
read configuration memory (data,6);

Example None

Files:

Also See: write_configuration_memory(), read_program_memory(), Configuration Memory
Overview,

250

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

read _eeprom()

Syntax: value = read_eeprom (address)

Parameters: address is an 8 bit or 16 bit int depending on the part
Returns: An 8 bit int

Function: Reads a byte from the specified data EEPROM address. The address begins at 0
and the range depends on the part.

Availability: ~ This command is only for parts with built-in EEPROMS
Requires: Nothing

Examples: #define LAST_VOLUME 10
volume = read EEPROM (LAST VOLUME) ;

Example None
Files:
Also See: write_eeprom(), Data Eeprom Overview

read_extended ram()

Syntax: read_extended_ram(page,address,data,count);

Parameters: page — the page in extended RAM to read from
address — the address on the selected page to start reading from
data — pointer to the variable to return the data to
count — the number of bytes to read (0-32768)

Returns: Undefined

Function: To read data from the extended RAM of the PIC.
Availability: On devices with more then 30K of RAM.
Requires: Nothing

Examples: unsigned int8 data([8];

read extended ram(1l,0x0000,data,8);

Example Files: None

251

Also See:

Built-in Functions

read_extended_ram(), Extended RAM Overview

read_program_memory()

read external_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

READ_PROGRAM_MEMORY (address, dataptr, count);
READ_EXTERNAL_MEMORY (address, dataptr, count);

address is 16 bits on PCM parts and 32 bits on PCH parts . The least significant
bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.

count is a 8 bit integer on PIC16 and 16-bit for PIC18

undefined

Reads count bytes from program memory at address to RAM at dataptr. B oth
of these functions operate exactly the same.

Only devices that allow reads from program memory.
Nothing

char buffer[o64];
read external memory(0x40000, buffer, 64);

None

write program memory(), External memory overview , Program Eeprom Overview

read high speed adc()

Syntax:

Parameters:

read_high_speed_adc(pair,mode,result); /I Individual start and read or

/l read only
read_high_speed_adc(pair,result); I/l Individual start and read
read_high_speed_adc(pair); /I Individual start only
read_high_speed_adc(mode,result); I/l Global start and read or

// read only
read_high_speed_adc(result); // Global start and read
read_high_speed_adc(); I/l Global start only

pair — Optional parameter that determines which ADC pair number to start and/or
read. Valid values are 0 to total number of ADC pairs. O starts and/or reads ADC
pair ANO and AN1, 1 starts and/or reads ADC pair AN2 and AN3, etc. If omitted
then a global start and/or read will be performed.

252

Returns:

Function:

Availability:
Requires:

Examples:

Built-in Functions

mode — Optional parameter, if used the values may be:
- ADC_START_AND_READ (starts conversion and reads result)
- ADC_START_ONLY (starts conversion and returns)
- ADC_READ_ONLY (reads conversion result)

result — Pointer to return ADC conversion too. Parameter is optional, if not used
the read_fast_adc() function can only perform a start.

Undefined

This function is used to start an analog to digital conversion and/or read the digital
value when the conversion is complete. Calls to setup_high_speed_adc() and
setup_high_speed_adc_pairs() should be made sometime before this function is
called.

When using this function to perform an individual start and read or individual start
only, the function assumes that the pair's trigger source was set to
INDIVIDUAL_SOFTWARE_TRIGGER.

When using this function to perform a global start and read, global start only, or
global read only. The function will perform the following steps:

1. Determine which ADC pairs are set for
GLOBAL_SOFTWARE_TRIGGER.

2. Clear the corresponding ready flags (if doing a start).

3. Set the global software trigger (if doing a start).

4, Read the corresponding ADC pairs in order from lowest to highest
(if doing a read).

5. Clear the corresponding ready flags (if doing a read).

When using this function to perform a individual read only. The function can read
the ADC result from any trigger source.

Only on dsPIC33FJxxGSxxx devices.

Constants are define in the device .h file.

//Individual start and read
intl6 result[2];

setup high speed adc(ADC _CLOCK DIV 4);
setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
read high speed adc (0, result); //starts conversion for ANO and ANl
and stores
//result in result[0] and result[1l]

//Global start and read
intl6 result[4];

setup high speed adc (ADC CLOCK DIV 4);

253

Example
Files:

Also See:

Built-in Functions

setup high speed adc pair (0, GLOBAL SOFTWARE TRIGGER) ;
setup high speed adc pair (4, GLOBAL SOFTWARE TRIGGER) ;
read high speed adc(result); //starts conversion for ANO, ANI,
//AN8 and AN9 and
//stores result in result[0], result
//[1]1, result[2]
and result[3]

None

setup_high_speed_adc(), setup_high_speed_adc_pair(), high_speed_adc_done()

read_program_eeprom()

Syntax:
Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

value = read_program_eeprom (address)

address is 16 bits on PCM parts and 32 bits on PCH parts
16 bits

Reads data from the program memory.

Only devices that allow reads from program memory.

Nothing

checksum = 0;

for (1=0;1<8196; i++)
checksum”=read program eeprom (i) ;

printf ("Checksum is %2X\r\n",checksum) ;

None

write_program_eeprom(), write_eeprom(), read_eeprom(), Program Eeprom
Overview

254

Built-in Functions

read_program_memory()

read external_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

realloc()

Syntax:

Parameters:

Returns:

Function:

READ_PROGRAM_MEMORY (address, dataptr, count);
READ_EXTERNAL_MEMORY (address, dataptr, count);

address is 16 bits on PCM parts and 32 bits on PCH parts . The least significant
bit should always be 0 in PCM.

dataptr is a pointer to one or more bytes.

count is a 8 bit integer on PIC16 and 16-bit for PIC18

undefined

Reads count bytes from program memory at address to RAM at dataptr. B oth
of these functions operate exactly the same.

Only devices that allow reads from program memory.

Nothing

char buffer[64];
read external memory(0x40000, buffer, 64);

None

write program memory(), External memory overview , Program Eeprom Overview

realloc (ptr, size)

ptr is a null pointer or a pointer previously returned by calloc or malloc or realloc
function, size is an integer representing the number of byes to be allocated.

A pointer to the possibly moved allocated memory, if any. Returns null otherwise.

The realloc function changes the size of the object pointed to by the ptr to the size
specified by the size. The contents of the object shall be unchanged up to the
lesser of new and old sizes. If the new size is larger, the value of the newly
allocated space is indeterminate. If ptr is a null pointer, the realloc function
behaves like malloc function for the specified size. If the ptr does not match a
pointer earlier returned by the calloc, malloc or realloc, or if the space has been
deallocated by a call to free or realloc function, the behavior is undefined. If the
space cannot be allocated, the object pointed to by ptr is unchanged. If size is zero
and the ptr is not a null pointer, the object is to be freed.

255

Built-in Functions

Availability: All devices
Requires: #INCLUDE <stdlibm.h>

Examples: int * iptr;
iptr=malloc (10);
realloc (iptr, 20)

// iptr will point to a block of memory of 20 bytes, if available.

Example None
Files:

Also See: malloc(), free(), calloc()

release_io()

Syntax: release_io();

Parameters: none

Returns: nothing
Function: The function releases the I/O pins after the device wakes up from deep sleep,
allowing

the state of the 1/O pins to change

Availability: Devices with a deep sleep module.

Requires: Nothing

Exan"ﬂes; unsigned intl6 restart;
restart = restart cause();
if (restart == RTC_FROM DS)

release io();

Example None

Files:

Also See: sleep()

256

Built-in Functions
reset_cpu()
Syntax: reset_cpu()
Parameters: None
Returns: This function never returns

Function: This is a general purpose device reset. It will jump to location 0 on PCB and PCM
parts and also reset the registers to power-up state on the PIC18XXX.

Availability: All devices
Requires: Nothing

Examples: if (checksum!=0)
reset cpu();

Example None
Files:
Also See: None

restart_cause()

Syntax: value = restart_cause()
Parameters: None

Returns: A value indicating the cause of the last processor reset. The actual values are
device dependent. See the device .h file for specific values for a specific device.
Some example values are: WDT_FROM_SLEEP, WDT_TIMEOUT,
MCLR_FROM_SLEEP and NORMAL_POWER_UP.

Function: Returns the cause of the last processor reset.
Availability: All devices
Requires: Constants are defined in the devices .h file.

Exanuﬂes; switch (restart cause()) {
case WDT FROM SLEEP:
case WDT TIMEOUT:

handle error();

257

Example ex_wdt.c

Files:

Built-in Functions

Also See: restart_wdt(), reset_cpu()

restart_wdt()

Syntax:
Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

restart_wdt()
None
undefined

Restarts the watchdog timer. If the watchdog timer is enabled, this
must be called periodically to prevent the processor from resetting.

The watchdog timer is used to cause a hardware reset if the
software appears to be stuck.

The timer must be enabled, the timeout time set and software must
periodically restart the timer. These are done differently on the
PCB/PCM and PCH parts as follows:

PCB/PCM PCH

Enable/Disable#fuses setup_wadt()
Timeout time setup_wdt() #fuses
restart restart_wdt()restart_wdt()
All devices

#FUSES

#fuses WDT // PCB/PCM example

// See setup wdt for a
// PIC1l8 example
main () {
setup wdt (WDT_ 2304MS) ;
while (TRUE) {
restart wdt();
perform activity();

}

ex wdt.c

#FUSES, setup_wdt(), WDT or Watch Dog Timer Overview

258

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

rotate_left()

Syntax: rotate_left (address, bytes)

address is a pointer to memory
Parameters: bytes is a count of the number of bytes to work with.

Returns: undefined

Rotates a bit through an array or structure. The address may be an array identifier
Eunction: or an address to a byte or structure (such as &data). Bit O of the lowest BYTE in

’ RAM is considered the LSB.

Availability: Al devices
Requires: et

x = 0x86;

. rotate left(&x, 1);

Examples: // x is now 0x0d
Example None
Files:
Also See: Fotate_right(), shift_left(), shift_right()

rotate right()

Syntax: rotate_right (address, bytes)

Parameters: address is a pointer to memory,
bytes is a count of the number of bytes to work with.

Returns: undefined

Function: Rotates a bit through an array or structure. The address may be an array
identifier or an address to a byte or structure (such as &data). Bit O of the lowest
BYTE in RAM is considered the LSB.

Availability: All devices

Requires: Nothing

259

Examples:

Example
Files:

Also See:

Built-in Functions

struct {
int cell 1 4;
int cell 2 : 4;
int cell 3 4;
int cell 4 : 4; } cells;
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
rotate right(&cells, 2);
// cell 1->4, 2->1, 3->2 and 4-> 3

None

rotate_left(), shift_left(), shift_right()

rtc_alarm_read()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

rtc_alarm_read(&datetime);

datetime- A structure that will contain the values to be written to the alarm in the
RTCC module.

Structure used in read and write functions are defined in the device header file
as rtc_time _t
void

Reads the date and time from the alarm in the RTCC module to structure
datetime.

Devices that have the RTCC module.
Nothing.

rtc alarm read(sdatetime) ;
None

rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),
setup_rtc()

260

Built-in Functions

rtc_alarm_write()

Syntax: rtc_alarm_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the alarm in the

RTCC module.
Strut_:ture used in read and write functions are defined in the device header file as
rtc_time_t.

Returns: void

Function: Writes the date and time to the alarm in the RTCC module as specified in the

structure date time.
Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples; rtc_alarm write(&datetime);

Example None

Files:

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc()

rtc_read()

Syntax: rtc_read(&datetime);

Parameters: datetime- A structure that will contain the values returned by the RTCC module.

Structure used in read and write functions are defined in the device header file as

rtc_time t.
Returns: void
Function: Reads the current value of Time and Date from the RTCC module and stores the

structure date time.
Availability: Devices that have the RTCC module.
Requires: Nothing.

Examples: rtc_read(&datetime);

261

Built-in Functions

Example ex_rtcc.c
Files:
Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(), rtc_write(),

setup_rtc()

rtc_write()

Syntax: rtc_write(&datetime);

Parameters: datetime- A structure that will contain the values to be written to the RTCC
module.

Structure used in read and write functions are defined in the device header file
as rtc_time_t.

Returns: void
Function: Writes the date and time to the RTCC module as specified in the structure date
time.

Availability: ~ Devices that have the RTCC module.

Requires: Nothing.

Examples: rtc_write(&datetime);

Example ex_rtcc.c

Files:

Also See: rtc_read() , rtc_alarm_read() , rtc_alarm_write() , setup_rtc_alarm() , rtc_write(),

setup_rtc()

rtos_await()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_await (expre)
Parameters: expre is a logical expression.
Returns: None

Function: This function can only be used in an RTOS task. This function waits for expre to be
true before continuing execution of the rest of the code of the RTOS task. This
function allows other tasks to execute while the task waits for expre to be true.

262

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Availability: All devices
Requires: #USE RTOS
Examples: rtos_await(kbhit());

Also See: None

rtos_disable()
The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_disable (task)
Parameters: task is the identifier of a function that is being used as an RTOS task.
Returns: None

Function: This function disables a task which causes the task to not execute until enabled by
rtos_enable(). All tasks are enabled by default.

Availability: All devices
Requires: #USE RTOS
Examples; rtos disable(toggle green)

Also See: rtos enable()

rtos_enable()
The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_enable (task)

Parameters: task is the identifier of a function that is being used as an RTOS task.
Returns: None

Function: This function enables a task to execute at it's specified rate.

Availability: All devices

263

Built-in Functions

Requires: #USE RTOS
Examples; rtos enable (toggle green);

Also See: rtos disable()

rtos_msg_poll()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: i = rtos_msg_poll()
Parameters: None
Returns: An integer that specifies how many messages are in the queue.

Function: This function can only be used inside an RTOS task. This function returns the
number of messages that are in the queue for the task that the rtos_msg_poll()
function is used in.

Availability: All devices
Requires: #USE RTOS
Examples: if(rtos_msg_poll())

Also See: rtos msg send(), rtos msg read()

rtos_msg_read()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: b = rtos_msg_read()
Parameters: None
Returns: A byte that is a message for the task.

Function: This function can only be used inside an RTOS task. This function reads in the
next (message) of the queue for the task that the rtos_msg_read() function is used
in.

Availability: All devices

264

Built-in Functions

Requires: #USE RTOS

Examples: 1if(rtos msg poll()) {
b = rtos msg read();

Also See: rtos msg poll(), rtos msg send()

rtos_msg_send()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_msg_send(task, byte)

Parameters:task is the identifier of a function that is being used as an RTOS task
byte is the byte to send to task as a message.

Returns: None

Function: This function can be used anytime after rtos_run() has been called.
This function sends a byte long message (byte) to the task identified by task.

Availability: All devices
Requires: #USE RTOS

Examples: if (kbhit())
{

rtos msg send(echo, getc());

}

Also See: rtos_msg_poll(), rtos_msg_read()

rtos_overrun()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_overrun([task])

Parameters: task is an optional parameter that is the identifier of a function that is being used
as an RTOS task

Returns: A 0 (FALSE) or 1 (TRUE)
Function: This function returns TRUE if the specified task took more time to execute than it

was allocated. If no task was specified, then it returns TRUE if any task ran over it's

265

Built-in Functions

alloted execution time.
Availability: All devices
Requires: #USE RTOS(statistics)
Examples: rtos_overrun()

Also See: None

rtos_run()
The RTOS is only included in the PCW, PCWH, and PCWHD software packages.

Syntax: rtos_run()
Parameters: None
Returns: None

Function: This function begins the execution of all enabled RTOS tasks. This function
controls the execution of the RTOS tasks at the allocated rate for each task. This
function will return only when rtos_terminate() is called.

Availability: All devices
Requires: #USE RTOS
Examples: rtos_run()

Also See: rtos terminate()

rtos_signal()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_signal (sem)

Parameters: sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

Returns: None

Function: This function can only be used by an RTOS task. This function increments sem to
let waiting tasks know that a shared resource is available for use.

266

Built-in Functions

Availability: All devices
Requires: #USE RTOS
Examples; rtos_signal (uart use)

Also See: rtos wait()

rtos_stats()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_stats(task,&stat)

Parameters:task is the identifier of a function that is being used as an RTOS task.
stat is a structure containing the following:
struct rtos_stas_struct {
unsigned int32 task_total_ticks; //number of ticks the task has

/lused

unsigned int16 task_min_ticks; //the minimum number of ticks
/lused

unsigned intl6 task_max_ticks; //the maximum number of ticks
/lused

unsigned int16 hns_per_tick; /lus = (ticks*hns_per_tick)/10
Returns: Undefine}z’d
Function: This function returns the statistic data for a specified task.
Availability: All devices
Requires: #USE RTOS(statistics)

Examples; rtos_stats(echo, &stats)

Also See: None

267

Built-in Functions

rtos_terminate()
The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_terminate()

Parameters: None

Returns: None

Function: This function ends the execution of all RTOS tasks. The execution of the program
will continue with the first line of code after the rtos_run() call in the program. (This
function causes rtos_run() to return.)

Availability: All devices

Requires: #USE RTOS

Examples: rtos_terminate ()

Also See: rtos run()

rtos_wait()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:

Also See:

rtos_wait (sem)

sem is a global variable that represents the current availability of a shared
system resource (a semaphore).

None

This function can only be used by an RTOS task. This function waits for sem to be
greater than 0 (shared resource is available), then decrements sem to claim usage
of the shared resource and continues the execution of the rest of the code the
RTOS task. This function allows other tasks to execute while the task waits for the
shared resource to be available.

All devices
#USE RTOS
rtos_wait (uart use)

rtos signal()

268

Built-in Functions

rtos_yield()

The RTOS is only included in the PCW, PCWH and PCWHD software packages.

Syntax: rtos_yield()

Parameters: None

Returns: None

Function: This function can only be used in an RTOS task. This function stops the execution

of the current task and returns control of the processor to rtos_run(). When the
next task executes, it will start it's execution on
the line of code after the rtos_yield().

Availability: All devices

Requires: #USE RTOS

Exanuﬂes; void yield(void)

{

printf (“Yielding...\r\n”);

rtos _yield();

printf (“Executing code after yield\r\n”);
}

Also See: None

set_adc_channel()

Syntax: set_adc_channel (chan [,neq]))

Parameters: chan is the channel number to select. Channel numbers start at 0 and are labeled
in the data sheet ANO, AN1. For devices with a differential ADC it sets the positive
channel to use.
neg is optional and is used for devices with a differential ADC only. It sets the
negative channel to use, channel numbers can be 0 to 6 or VSS. If no parameter is
used the negative channel will be set to VSS by default.

Returns: undefined

Function: Specifies the channel to use for the next read_adc() call. Be aware that you must

wait a short time after changing the channel before you can get a valid read. The
time varies depending on the impedance of the input source. In general 10us is
good for most applications. You need not change the channel before every read if
the channel does not change.

269

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

This function is only available on devices with A/D hardware.

Nothing

set _adc_channel (2);
delay us(10);
value = read adc();

ex admm.c

read_adc(), setup_adc(), setup_adc_ports(), ADC Overview

set_nco_inc_value()

Syntax:

Parameters:

Returns:

Function:

Availability:

Examples:

Example
Files:

Also See:

Syntax:

set_nco_inc_value(value);

value- 16-bit value to set the NCO increment registers to (O -
65535)

Undefined

Sets the value that the NCO's accumulator will be
incremented by on each clock pulse. The increment registers
are double buffered so the new value won't be applied until
the accumulator rolls-over.

On devices with a NCO module.

set nco inc value (inc_value) ; //sets the new
increment value

None
setup_nco(), get_nco_accumulator(), get_nco_inc_value()

set_open_drain_a(value)
set_open_drain_b(value)
set_open_drain_c(value)
set_open_drain_d(value)
set_open_drain_e(value)
set_open_drain_f(value)

set_open_drain_g(value)
set_open_drain_h(value)
set_open_drain_j(value)

set_open_drain_k(value)

270

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Parameters:

Returns:

Function

Availability
Examples:

Example
Files:

Built-in Functions

value — is a bitmap corresponding to the pins of the port. Setting a bit causes the
corresponding pin to act as an open-drain output.

Nothing

Enables/Disables open-drain output capability on port pins. Not all ports or port pins have open-drain
capability, refer to devices datasheet for port and pin availability.

On device that have open-drain capability.

set_open_drain_b(0x0001); /enables open-drain output on
PIN_BO, disable on all //other port B pins.

None.

set_power_pwm_override()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

set_power_pwm_override(pwm, override, value)

pwm is a constant between 0 and 7
Override is true or false
ValueisOor 1

undefined

pwm selects which module will be affected.

Override determines whether the output is to be determined by the OVDCONS
register or the PDC registers. When override is false, the PDC registers determine
the output.

When override is true, the output is determined by the value stored in OVDCONS.

value determines if pin is driven to it's active staet or if pin will be inactive. | will be
driven to its active state, O pin will be inactive.

All devices equipped with PWM.
None

set power pwm override(l, true, 1); //PWMl will be
//overridden to active
//state

set power pwm override(l, false, 0); //PMWl will not be
//overidden

None

setup_power_pwm(), setup_power_pwm_pins(), set_power_pwmX_duty()

set_power_pwmx_duty()

271

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

set_power_pwmX_duty(duty)

Xis0,2,4,0r6
Duty is an integer between 0 and 16383.

undefined

Stores the value of duty into the appropriate PDCXL/H register. This duty value is
the amount of time that the PWM output is in the active state.

All devices equipped with PWM.

None

set power pwmx duty(4000);
None

setup_power_pwm(), setup_power_pwm_pins(),
set_power_pwm_override()

set_ pwml _duty() set_pwm2_duty() set pwm3_duty()
set_pwm4_duty() set_ pwm5_duty()

Syntax:

Parameters:
Returns:

Function:

Availability:

set_pwm1l_duty (value)
set_pwm2_duty (value)
set_pwm3_duty (value)
set_pwm4_duty (value)
set_pwmb5_duty (value)

value may be an 8 or 16 bit constant or variable.
undefined

Writes the 10-bit value to the PWM to set the duty. An 8-bit value may be used if
the most significant bits are not required. The 10 bit value is then used to
determine the duty cycle of the PWM signal as follows:

o | dutycycle=value/[4* (PR2+1)]

Where PR2 is the maximum value timer 2 will count to before toggling the output
pin.

This function is only available on devices with CCP/PWM hardware.

272

Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

Nothing

// For a 20 mhz clock, 1.2 khz frequency,

// t2DIV set to 16, PR2 set to 200

// the following sets the duty to 50% (or 416 us).
long duty;

duty = 408; // [408/(4%(200+1))]=0.5=50%
set _pwml duty (duty);

ex_pwm.c

setup_ccpX(), CCP1 Overview

set_rtcc() set_timerO() set timerl() set timer2() set timer3()
set_timer4() set_timer5()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a
16 bit int.

Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

undefined

Sets the count value of a real time clock/counter. RTCC and TimerO are the same.
All timers count up. When a timer reaches the maximum value it will flip over to O
and continue counting (254, 255, 0, 1, 2...)

Timer O - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

273

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

set timer0(81); // 256-(.000035/(4/20000000))

Example ex_patg.c
Files:

Also See: set timerl(), get_timerX() TimerO Overview, TimerlOverview, Timer2 Overview,
Timer5 Overview

set_ticks()

Syntax: set_ticks([stream],value);
Parameters: stream — optional parameter specifying the stream defined in #USE TIMER

value — a 8, 16 or 32 bit integer, specifying the new value of the tick timer. (int8,
int16 or int32)

Returns: void
Function: Sets the new value of the tick timer. Size passed depends on the size of the tick
timer.

Availability: All devices.
Requires: #USE TIMER(options)

Examples: #USE TIMER (TIMER=1,TICK=1ms,BITS=16,NOISR)

void main (void) {
unsigned intl6 value = 0x1000;

set ticks(value);

}

Example None
Files:

Also See: #USE TIMER, get_ticks()

set_timerA()

Syntax: set_timerA(value);
Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)
Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches the

274

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).
Availability: This function is only available on devices with Timer A hardware.
Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer A
// to overflow in 35us

set_timerA(81); // 256-(.000035/(4/20000000))
Example none

Files:
Also See: get_timerA(), setup_timer_A(), TimerA Overview

set_timerB()

Syntax: set_timerB(value);
Parameters: An 8 bit integer. Specifying the new value of the timer. (int8)
Returns: undefined

Function: Sets the current value of the timer. All timers count up. When a timer reaches the
maximum value it will flip over to 0 and continue counting (254, 255, 0, 1, 2, ...).

Availability: This function is only available on devices with Timer B hardware.
Requires: Nothing

Examples: // 20 mhz clock, no prescaler, set timer B
// to overflow in 35us

set timerB(81); // 256-(.000035/(4/20000000))
Example none

Files:
Also See: get_timerB(), setup_timer_B(), TimerB Overview

set_timerx()

Syntax: set_timerX(value)

Parameters: A 16 bit integer, specifiying the new value of the timer.
(int16)

Returns: void

275

Function:
Availability:

Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

Allows the user to set the value of the timer.

This function is available on all devices that have a valid
timerX.

Nothing

if (EventOccured())
set timer2(0);//reset the timer.

None

Timer Overview, set_timerX()

set_rtcc() set_timerO() set timerl() set timer2() set timer3()
set_timer4() set_timer5()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

set_timerO(value) or set_rtcc (value)
set_timerl(value)
set_timer2(value)
set_timer3(value)
set_timer4(value)
set_timer5(value)

Timers 1 & 5 get a 16 bit int.

Timer 2 and 4 gets an 8 bit int.

Timer 0 (AKA RTCC) gets an 8 bit int except on the PIC18XXX where it needs a
16 bit int.

Timer 3 is 8 bit on PIC16 and 16 bit on PIC18

undefined

Sets the count value of a real time clock/counter. RTCC and TimerO are the same.
All timers count up. When a timer reaches the maximum value it will flip over to O
and continue counting (254, 255, 0, 1, 2...)

Timer 0 - All devices

Timers 1 & 2 - Most but not all PCM devices
Timer 3 - Only PIC18XXX and some pick devices
Timer 4 - Some PCH devices

Timer 5 - Only PIC18XX31

Nothing

// 20 mhz clock, no prescaler, set timer 0
// to overflow in 35us

276

Built-in Functions

set_timer0 (81); // 256-(.000035/(4/20000000))
Example ex_patg.c
Files:
Also See: set_timerl(), get_timerX() Timer0O Overview, TimerlOverview, Timer2 Overview,
Timer5 Overview
set_tris_x()
Syntax: set_tris_a (value)
set_tris_b (value)
set_tris_c (value)
set_tris_d (value)
set_tris_e (value)
set_tris_f (value)
set_tris_g (value)
set_tris_h (value)
set_tris_j (value)
set_tris_k (value)
Parameters: value is an 8 bit int with each bit representing a bit of the I/O port.
Returns: undefined
Function: These functions allow the 1/O port direction (TRI-State) registers to be set. This
must be used with FAST |0 and when I/O ports are accessed as memory such as
when a # BYTE directive is used to access an I/O port. Using the default standard
I/O the built in functions set the I/O direction automatically.
Each bit in the value represents one pin. A 1 indicates the pin is input and a 0
indicates it is output.
Availability: All devices (however not all devices have all I/O ports)
Requires: Nothing
Examples: SET_TRIS B(0x0F);
// B7,B6,B5,B4 are outputs
// B3,B2,B1,B0 are inputs
Example lcd.c
Files:
Also See: #USE FAST _IO, #USE FIXED_IO, #USE STANDARD_|O, General Purpose I/0

277

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

set_uart_speed()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

setimp()
Syntax:

Parameters:
Returns:

Function:

Availability:

set_uart_speed (baud, [stream, clock])

baud is a constant representing the number of bits per second.

stream is an optional stream identifier.

clock is an optional parameter to indicate what the current clock is if it is different
from the #use delay value

undefined
Changes the baud rate of the built-in hardware RS232 serial port at run-time.
This function is only available on devices with a built in UART.

#USE RS232

// Set baud rate based on setting
// of pins BO and Bl

switch(input b() & 3) {

case 0 : set uart speed(2400); break;
case 1 set uart speed(4800); break;
case 2 set uart speed(9600); break;
case 3 set uart speed(19200); break;

loader.c

#USE RS232, putc(), getc(), setup uart(), RS232 I/O Overview,

result = setjimp (env)
env: The data object that will receive the current environment

If the return is from a direct invocation, this function returns 0.
If the return is from a call to the longjmp function, the setjmp function returns a
nonzero value and it's the same value passed to the longjmp function.

Stores information on the current calling context in a data object of type jmp_buf
and which marks where you want control to pass on a corresponding longjmp call.

All devices

278

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

#INCLUDE <setjmp.h>
result = setjmp (jmpbuf) ;

None

longjmp()

setup_adc(mode)

Syntax:

Parameters:

Returns:
Function:
Availability:

Requires:

Examples:

Example
Files:

Also See:

setup_adc (mode);
setup_adc2(mode);
mode- Analog to digital mode. The valid options vary depending on the
device. See the devices .h file for all options. Some typical options include:
e ADC_OFF
e ADC_CLOCK_INTERNAL
e ADC_CLOCK_DIV_32

undefined
Configures the analog to digital converter.
Only the devices with built in analog to digital converter.

Constants are defined in the devices .h file.

setup adc ports(ALL ANALOG) ;
setup adc (ADC_CLOCK INTERNAL) ;
set adc channel(0);

value = read adc();

setup adc(ADC OFF);

ex _admm.c

setup_adc_ports(), set_adc_channel(), read_adc(), #DEVICE, ADC Overview,
see header file for device selected

setup_adc_ports()

Syntax:

setup_adc_ports (value)
setup_adc_ports (ports, [reference])

279

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Parameters: value - a constant defined in the devices .h file

Returns:

Function:

Also See:

ports - is a constant specifying the ADC pins to use
reference - is an optional constant specifying the ADC reference to use
By default, the reference voltage are Vss and vVdd

undefined

Sets up the ADC pins to be analog, digital, or a combination and the voltage
reference to use when computing the ADC value. The allowed analog pin
combinations vary depending on the chip and are defined by using the bitwise OR
to concatenate selected pins together. Check the device include file for a complete
list of available pins and reference voltage settings. The constants ALL_ANALOG
and NO_ANALOGS are valid for all chips. Some other example pin definitions are:

setup_adc(), read_adc(), set_adc_channel(), ADC Overview

280

Built-in Functions

setup_ccpl() setup_ccp2() setup_ccp3() setup_ccp4() setup_ccp5()
setup_ccp6()

Syntax: setup_ccpl (mode) or setup_ccpl (mode, pwm)
setup_ccp2 (mode) or setup_ccp2 (mode, pwm)
setup_ccp3 (mode) or setup_ccp3 (mode, pwm)
setup_ccp5 (mode) or setup_ccp5 (mode, pwm)
setup_ccp6 (mode) or setup_ccp6 (mode, pwm)

Parameters: mode is a constant. Valid constants are defined in the devices .h file and refer to
devices .h file for all options, some options are as follows:

Disable the CCP:

CCP_OFF
Set CCP to capture mode:
CCP_CAPTURE_FE Capture on falling edge
CCP_CAPTURE_RE Capture on rising edge
CCP_CAPTURE _DIV_4 Capture after 4 pulses
CCP_CAPTURE_DIV_16 Capture after 16 pulses

Set CCP to compare mode:
CCP_COMPARE_SET _ON_MATCH Output high on compare

CCP_COMPARE_CLR_ON_MATCH Output low on compare
CCP_COMPARE_INT interrupt on compare
CCP_COMPARE_RESET_TIMER Reset timer on compare

Set CCP to PWM mode:
CCP_PWM Enable Pulse Width Modulator

Constants used for ECCP modules are as follows:

CCP_PWM_H_H
CCP_PWM _H_L
CCP_PWM_L_H
CCP_PWM_L_L

CCP_PWM_FULL_BRIDGE
CCP_PWM_FULL_BRIDGE_REV
CCP_PWM_HALF_BRIDGE

CCP_SHUTDOWN_ON_COMP1 shutdown on Comparator 1 change
CCP SHUTDOWN ON COMP2 shutdown on Comparator 2 chanae

281

Returns:

Function:

Availability:
Requires:

Examples:

CCP_SHUTDOWN_ON_COMP
CCP_SHUTDOWN_ON_INTO

CCP_SHUTDOWN_ON_COMP1_INTO
CCP_SHUTDOWN_ON_COMP2_INTO

CCP_SHUTDOWN_ON_COMP_INTO

CCP_SHUTDOWN_AC_L
CCP_SHUTDOWN_AC_H
CCP_SHUTDOWN_AC_F

CCP_SHUTDOWN_BD_L
CCP_SHUTDOWN_BD_H
CCP_SHUTDOWN_BD_F

CCP_SHUTDOWN_RESTART

CCP_DELAY

Built-in Functions

Either Comp. 1 or 2 change
VIL on INT pin

VIL on INT pin or Comparator 1
change

VIL on INT pin or Comparator 2
change

VIL on INT pin or Comparator 1 or 2
change

Drive pins A and C high
Drive pins A and C low
Drive pins A and C tri-state

Drive pins B and D high
Drive pins B and D low
Drive pins B and D tri-state

the device restart after a shutdown
event

use the dead-band delay

pwm parameter is an optional parameter for chips that includes ECCP module.
This parameter allows setting the shutdown time. The value may be 0-255.

undefined

Initialize the CCP. The CCP counters may be accessed using the long variables
CCP_1 and CCP_2. The CCP operates in 3 modes. In capture mode it will copy
the timer 1 count value to CCP_x when the input pin event occurs. In compare
mode it will trigger an action when timer 1 and CCP_x are equal. In PWM mode it
will generate a square wave. The PCW wizard will help to set the correct mode and

timer settings for a particular application.

This function is only available on devices with CCP hardware.

Constants are defined in the devices .h file.

setup ccpl (CCP_CAPTURE RE) ;

282

Built-in Functions

Example ex_pwm.c, ex_ccpmp.c, ex _ccpls.c
Files:

Also See: set_pwmX_duty(), CCP1 Overview

setup_clcl() setup_clc2() setup_clc3() setup_clc4()

Syntax: setup_clcl(mode);
setup_clc2(mode);
setup_clc3(mode);
setup_clc4(mode);

Parameters: mode — The mode to setup the Configurable Logic Cell (CLC)
module into. See the device's .h file for all options. Some
typical options include:

CLC_ENABLED
CLC_OUTPUT
CLC_MODE_AND_OR
CLC_MODE_OR_XOR

Returns: Undefined.

Function: Sets up the CLC module to performed the specified logic.
Please refer to the device datasheet to determine what each
input to the CLC module does for the select logic function

Availability: On devices with a CLC module.

Returns: Undefined.

Examples: setup clcl (CLC_ENABLED | CLC MODE AND OR);
Example Files: None

Also See: clex_setup_gate(), clex_setup_input()

setup_comparator()

Syntax: setup_comparator (mode)

Parameters: mode is a constant. Valid constants are in the devices .h file refer to devices .h
file for valid options. Some typical options are as follows:

AO0_A3 Al A2

A0_A2 Al A2
NC_NC_Al A2

283

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink3.click()

Built-in Functions

NC_NC_NC_NC

AO0_VR_Al VR

A3_VR_A2_VR
AO_A2 Al A2 OUT ON_A3 A4
A3_A2_Al A2

Returns: undefined

Function: Sets the analog comparator module. The above constants have four parts
representing the inputs: C1-, C1+, C2-, C2+

Availability: ~ This function is only available on devices with an analog comparator.
Requires Constants are defined in the devices .h file.

Exanuﬂes; // Sets up two independent comparators (Cl and C2),
// Cl uses A0 and A3 as inputs (- and +), and C2
// uses Al and A2 as inputs
setup comparator (A0 A3 Al AZ2);

Example ex_comp.c
Files:

Also See: Analog Comparator overview

setup_counters()

Syntax: setup_counters (rtcc_state, ps_state)

Parameters: rtcc_state may be one of the constants defined in the devices
.h file. For example: RTCC_INTERNAL, RTCC EXT L TO H
or RTCC_EXT H_TO L

ps_state may be one of the constants defined in the devices
.hfile.

For example: RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8,
RTCC_DIV_16, RTCC_DIV_32, RTCC_DIV_64,
RTCC_DIV_128, RTCC_DIV_256, WDT_18MS,
WDT_36MS, WDT_72MS, WDT_144MS, WDT_288MS,
WDT_576MS, WDT_1152MS, WDT_2304MS

Returns: undefined

Function: Sets up the RTCC or WDT. The rtcc_state determines what
drives the RTCC. The PS state sets a prescaler for either the
RTCC or WDT. The prescaler will lengthen the cycle of the

284

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Availability:
Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

indicated counter. If the RTCC prescaler is set the WDT will
be set to WDT_18MS. If the WDT prescaler is set the RTCC is
setto RTCC_DIV_1.

This function is provided for compatibility with older

versions. setup_timer_0 and setup_WDT are the
recommended replacements when possible. For PCB devices
if an external RTCC clock is used and a WDT prescaler is
used then this function must be used.

All devices

Constants are defined in the devices .h file.

setup counters (RTCC_INTERNAL, WDT 2304MS);

None

setup wdt(), setup_timer 0(), see header file for device
selected

setup_cwg()

Syntax:

Parameters:

Returns:

setup_cwg(mode,shutdown,dead_time_rising,dead_time_falling’

mode- the setup of the CWG module. See the device's .h file for all «

Some typical options include:

CWG_ENABLED
CWG_DISABLED

CWG_OUTPUT B
CWG_OUTPUT_A

shutdown- the setup for the auto-shutdown feature of CWG module
See the device's .h file for all the options. Some typical options inclut

CWG_AUTO_RESTART
CWG_SHUTDOWN_ON)COMP1
CWG_SHUTDOWN_ON_FLT
CWG_SHUTDOWN_ON_CLC2

dead_time_rising- value specifying the dead time between A and B

rising edge. (0-63)

dead_time_rising- value specifying the dead time between A and B

falling edge. (0-63)

undefined

285

Function:

Availability:

Examples:

Example
Files:

Also See:

Built-in Functions

Sets up te CWG module, the auto-shutdown feature of module and t
and falling dead times of the module.

All devices with a CWG module.

setup cwg (CWG_ENABLED|CWG_OUTPUT A|CWG_OUTPUT B|
CWG_INPUT PWMI1,CWG SHUTDOWN ON FLT, 60, 30) ;

None

cwg_status(), cwg_restart()

setup_dac()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

setup_dac(mode);
mode- The valid options vary depending on the device. See

the devices .h file for all options. Some typical options
include:

- DAC_OUTPUT

undefined
Configures the DAC including reference voltage.
Only the devices with built in digital to analog converter.

Constants are defined in the devices .h file.

setup dac (DAC VDD | DAC OUTPUT) ;
dac_write (value);

None

dac_write(), DAC Overview, See header file for device
selected

286

Built-in Functions

setup_external_memory()

Syntax:
Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

SETUP_EXTERNAL_MEMORY(mode);

mode is one or more constants from the device header file OR'ed together.
undefined

Sets the mode of the external memory bus.

Only devices that allow external memory.

Constants are defined in the device.h file

setup external memory (EXTMEM WORD WRITE
|EXTMEM WAIT 0);
setup external memory (EXTMEM DISABLE) ;

None

WRITE PROGRAM EEPROM() , WRITE PROGRAM MEMORY(), External
Memory Overview

setup_high_speed_adc()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

setup_high_speed_adc (mode);

mode — Analog to digital mode. The valid options vary depending on the device.
See the devices .h file for all options. Some typical options include:

- ADC_OFF

- ADC_CLOCK_DIV_1

- ADC_HALT IDLE — The ADC will not run when PIC is idle.

Undefined

Configures the High-Speed ADC clock speed and other High-Speed ADC options
including, when the ADC interrupts occurs, the output result format, the conversion
order, whether the ADC pair is sampled sequentially or simultaneously, and
whether the dedicated sample and hold is continuously sampled or samples when
a trigger event occurs.

Only on dsPIC33FJIxxGSxxx devices.

Constants are define in the device .h file.

setup _high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup high speed adc(ADC CLOCK DIV 4);

287

Example
Files:

Also See:

Built-in Functions

read high speed adc (0, START AND READ, result);
setup _high speed adc (ADC OFF) ;

None

setup_high_speed_adc_pair(), read_high_speed_adc(), high_speed_adc_done()

setup_high_speed_adc_pair()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

setup_high_speed_adc_pair(pair, mode);

pair — The High-Speed ADC pair number to setup, valid values are 0 to total
number of ADC pairs. 0 sets up ADC pair ANO and AN1, 1 sets up ADC pair AN2
and AN3, etc.

mode — ADC pair mode. The valid options vary depending on the device. See
the devices .h file for all options. Some typical options include:

- INDIVIDUAL_SOFTWARE_TRIGGER

- GLOBAL_SOFTWARE_TRIGGER

- PWM_PRIMARY_SE_TRIGGER

- PWM_GEN1_PRIMARY_TRIGGER

- PWM_GEN2_PRIMARY_TRIGGER

Undefined

Sets up the analog pins and trigger source for the specified ADC pair. Also sets
up whether ADC conversion for the specified pair triggers the common ADC
interrupt.

If zero is passed for the second parameter the corresponding analog pins will be
set to digital pins.

Only on dsPIC33FJIxxGSxxx devices.
Constants are define in the device .h file.

setup high speed adc pair (0, INDIVIDUAL SOFTWARE TRIGGER) ;
setup high speed adc pair(l, GLOBAL SOFTWARE TRIGGER) ;

setup high speed adc pair (2, 0) - sets AN4 and AN5 as digital
pins.

None

setup_high_speed_adc(), read_high_speed_adc(), high_speed_adc_done()

288

Built-in Functions

setup_lcd()
Syntax: setup_lcd (mode, prescale, [segments0_31],[segments32_47]);
Parameters: Mode may be any of the following constants to enable the LCD and may be or'ed
with other constants in the devices *.h file:
. LCD_DISABLED, LCD_STATIC, LCD_MUX12, LCD_MUX13,
LCD_MUX14
See the devices .h file for other device specific options.
Prescale may be 0-15 for the LCD clock.
Segments0-31 may be any of the following constants or'ed together when using
the PIC16C92X series of chips::
. SEGO0_4, SEG5_8, SEG9_11, SEG12_15, SEG16_19, SEG20_26,
SEG27_28, SEG29_31 ALL_LCD_PINS
When using the PIC16F/LF1xxx or PIC18F/LFxxxx series of chips, each of the
segments are enabled individually. A value of 1 will enable the segment, 0 will
disable it and use the pin for normal I/O operation.
Segments 32-47 when using a chip with more than 32 segments, this enables
segments 32-47. A value 1 will enable the segment, 0 will disable it. Bit 0
corresponds to segment 32 and bit 15 corresponds to segment 47.
Returns: undefined.
Function: This function is used to initialize the LCD Driver Module on the PIC16C92X and
PIC16F/LF193X series of chips.
Availability: Only on devices with built-in LCD Driver Module hardware.
Requires Constants are defined in the devices *.h file.
Exanuﬂes; © setup lcd(LCD MUX14 | LCD _STOP ON SLEEP, 2, ALL LCD PINS);
// PIC16C92X
-+ setup lcd(LCD MUX13 | LCD REF ENABLED | LCD B HIGH POWER, O,
O0xFF0429) ;
// PICl6F/LF193X - Enables Segments 0, 3, 5, 10, 16, 17,
18, 19, 20, 21, 22, 23
Example ex 92lcd.c
Files:
Also See: lcd_symbol(), Icd_load(), Icd_contrast(), Internal LCD Overview

289

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

setup_low_volt_detect()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires

Examples:

setup_low_volt_detect(mode)

mode may be one of the constants defined in the devices .h file. LVD_LVDIN,
LVD_45, LVD_42, LVD_40, LvD_38, LVD_36, LVD_35, LVD_33, LVD_30,
LvD_28, LVD_27,LVD_25, LVD_23,LVD_21, LVD_19

One of the following may be or’ed(via |) with the above if high voltage detect is also
available in the device

LVD_TRIGGER_BELOW, LVD_TRIGGER_ABOVE

undefined

This function controls the high/low voltage detect module in the device. The mode
constants specifies the voltage trip point and a direction of change from that point
(available only if high voltage detect module is included in the device). If the device
experiences a change past the trip point in the specified direction the interrupt flag
is set and if the interrupt is enabled the execution branches to the interrupt service
routine.

This function is only available with devices that have the high/low voltage detect
module.

Constants are defined in the devices.h file.
setup low volt detect(LVD TRIGGER BELOW | LVD 36);

This would trigger the interrupt when the voltage is below 3.6 volts

setup_nco()

Syntax:

Parameters:

Returns:

Function:

setup_nco(settings,inc_value)

settings- setup of the NCO module. See the device's .h file fc
Some typical options include:

NCO_ENABLE
NCO_OUTPUT
NCO_PULSE_FREQ_MODE
NCO_FIXED _DUTY_MODE

inc_value- int16 value to increment the NCO 20 bit accumule
Undefined

Sets up the NCO module and sets the value to increment the

290

Availability:

Examples:

Example Files:

Also See:

Built-in Functions

On devices with a NCO module.

setup nco (NCO_ENABLED|NCO_ OUTPUT |NCO_FIXED DUTY MC
NCO_CLOCK_FOSC, 8192) ;

None

get_nco_accumulator(), set_nco_inc_value(), get_nco_inc_\

setup_opampl() setup_opamp?2()

Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

setup_opampl(enabled)
setup_opamp2(enabled)

enabled can be either TRUE or FALSE.
undefined

Enables or Disables the internal operational amplifier peripheral of certain
PICmicros.

Only parts with a built-in operational amplifier (for example, PIC16F785).

Only parts with a built-in operational amplifier (for example, PIC16F785).

setup opampl (TRUE) ;
setup opamp2 (boolean flag);

None

None

setup_opampl() setup_opamp2()

Syntax:

Parameters:
Returns:

Function:

setup_opampl(enabled)
setup_opamp2(enabled)

enabled can be either TRUE or FALSE.
undefined

Enables or Disables the internal operational amplifier peripheral of certain
PICmicros.

201

Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

Only parts with a built-in operational amplifier (for example, PIC16F785).

Only parts with a built-in operational amplifier (for example, PIC16F785).

setup_ opampl (TRUE) ;
setup opamp2 (boolean flag);

None

None

setup_oscillator()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

setup_oscillator(mode, finetune)

mode is dependent on the chip. For example, some chips allow speed setting
such as OSC_8MHZ or OSC_32KHZ. Other chips permit changing the source like
OSC_TIMER1.

The finetune (only allowed on certain parts) is a signed int with a range of -31 to
+31.

Some chips return a state such as OSC_STATE_STABLE to indicate the oscillator
is stable .

This function controls and returns the state of the internal RC oscillator on some
parts. See the devices .h file for valid options for a particular device.

Note that if INTRC or INTRC_IO is specified in #fuses and a #USE DELAY is
used for a valid speed option, then the compiler will do this setup automatically at
the start of main().

WARNING: If the speed is changed at run time the compiler may not generate the
correct delays for some built in functions. The last #USE DELAY encountered in

the file is always assumed to be the correct speed. You can have multiple #USE
DELAY lines to control the compilers knowledge about the speed.

Only parts with a OSCCON register.

Constants are defined in the .h file.

setup oscillator(OSC_2MHZ);
None

#FUSES, Internal oscillator Overview

292

Built-in Functions

setup_pmp(option,address_mask)

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

setup_pmp(options,address_mask);

options- The mode of the Parallel Master Port that allows to set the Master Port
mode, read-write strobe options and other functionality of the PMPort module. See
the device's .h file for all options. Some typical options include:

PAR_PSP_AUTO_INC
PAR_CONTINUE_IN_IDLE

PAR_INTR_ON_RW //Interrupt on read write

PAR_INC_ADDR /lincrement address by 1 every
/lread/write cycle

PAR_MASTER_MODE_1 //Master Mode 1

PAR_WAITE4 //4 Tcy Wait for data hold after
/I strobe

address_mask- this allows the user to setup the address enable register with a
16-bit value. This value determines which address lines are active from the
available 16 address lines PMAO:PMA15.

Undefined.

Configures various options in the PMP module. The options are present in the
device's .h file and they are used to setup the module. The PMP module is highly
configurable and this function allows users to setup configurations like the Slave
module, Interrupt options, address increment/decrement options, Address enable
bits, and various strobe and delay options.

Only the devices with a built-in Parallel Master Port module.

Constants are defined in the device's .h file.

setup psp (PAR_ENABLE | //Sets up Master mode with address
PAR MASTER MODE 1|PAR //lines PMAQ:PMA7
STOP IN IDLE,Ox00FF);

None

setup_pmp(), pmp_address(), pmp_read(), psp_read(), psp_write(), pmp_write(
), psp_output_full('), psp_input_full(), psp_overflow(), pmp_output_full(),
pmp_input_full(), pmp_overflow()

See header file for device selected

setup_power_pwm()

Syntax:

setup_power_pwm(modes, postscale, time_base, period, compare,

293

Built-in Functions

compare_postscale, dead_time)

Parameters: modes values may be up to one from each group of the following:
PWM_CLOCK_DIV_4, PWM_CLOCK_DIV_16,
PWM_CLOCK_DIV_64, PWM_CLOCK_DIV_128

PWM_OFF, PWM_FREE_RUN, PWM_SINGLE_SHOT,
PWM_UP_DOWN, PWM_UP_DOWN_INT

PWM_OVERRIDE_SYNC
PWM_UP_TRIGGER,

PWM_DOWN_TRIGGER
PWM_UPDATE_DISABLE, PWM_UPDATE_ENABLE

PWM_DEAD_CLOCK_DIV_2,
PWM_DEAD_CLOCK_DIV_4,
PWM_DEAD_CLOCK_DIV_8,
PWM_DEAD_CLOCK_DIV_16

postscale is an integer between 1 and 16. This value sets the PWM time base
output postscale.

time_base is an integer between 0 and 65535. This is the initial value of the PWM
base

period is an integer between 0 and 4095. The PWM time base is incremented
until it reaches this number.

compare is an integer between 0 and 255. This is the value that the PWM time
base is compared to, to determine if a special event should be triggered.

compare_postscale is an integer between 1 and 16. This postscaler affects
compare, the special events trigger.

dead_time is an integer between 0 and 63. This value specifies the length of an
off period that should be inserted between the going off of a pin and the going on
of it is a complementary pin.

Returns: undefined
Function: Initializes and configures the motor control Pulse Width Modulation (PWM)
module.

Availability: All devices equipped with motor control or power PWM module.

Requires: None

294

Built-in Functions

Exan“jes; setup power pwm(PWM CLOCK DIV 4 | PWM FREE RUN |
PWM DEAD CLOCK DIV 4,1,10000,1000,0,1,0);

Example None
Files:

Also See: set_power_pwm_override(), setup_power_pwm_pins(), set_power_pwmX_duty()

setup_power_pwm_pins()

Syntax: setup_power_pwm_pins(module0,modulel,module2,module3)

Parameters: For each module (two pins) specify:
PWM_OFF, PWM_ODD_ON, PWM_BOTH_ON,
PWM_COMPLEMENTARY

Returns: undefined
Function: Configures the pins of the Pulse Width Modulation (PWM) device.
Availability: All devices equipped with a power control PWM.

Requires: None

Exanuﬂes; setup power pwm pins (PWM OFF, PWM OFF, PWM OFF,
PWM OFF) ;
setup power pwm pins (PWM COMPLEMENTARY,
PWM COMPLEMENTARY, PWM OFF, PWM OFF) ;

Example None
Files:

Also See: setup_power_pwm(), set_power_pwm_override(),set_power_pwmxX_duty()

setup_psp(option,address_mask)

Syntax: setup_psp (options,address_mask);
setup_psp(options);

Parameters: Option- The mode of the Parallel slave port. This allows to set the slave port
mode, read-write strobe options and other functionality of the PMP/EPMP
module. See the devices .h file for all options. Some typical options include:

. PAR_PSP_AUTO_INC
. PAR_CONTINUE_IN_IDLE

- PAR_INTR_ON_RW /lInterrupt on read write

- PAR_INC_ADDR /lincrement address by 1 every
/Iread/write cycle

- PAR_WAITE4 //4 Tcy Walit for data hold after

295

Built-in Functions

[/Istrobe

address_mask- This allows the user to setup the address enable register with a
16 bit or 32 bit (EPMP) value. This value determines which address lines are
active from the available 16 address lines PMAO: PMA15 or 32 address lines
PMAO:PMA31 (EPMP only).

Returns: Undefined.

Function: Configures various options in the PMP/EPMP module. The options are present in
the device.h file and they are used to setup the module. The PMP/EPMP module is
highly configurable and this function allows users to setup configurations like the
Slave mode, Interrupt options, address increment/decrement options, Address
enable bits and various strobe and delay options.

Availability: Only the devices with a built in Parallel Port module or Enhanced Parallel Master
Port module.

Requires: Constants are defined in the devices .h file.

Exanuﬂes; setup psp (PAR PSP AUTO INC| //Sets up legacy slave
//mode with
PAR STOP_IN IDLE,OxOOFF); //read and write buffers

//auto increment.

Example None
Files:

Also See: psp_output_full(), psp_input_full(), psp_overflow(),
See header file for device selected.

setup_pwml() setup_pwm?2() setup_pwm3() setup_pwm4()

Syntax: setup_pwml(settings);
setup_pwm2(settings);
setup_pwm3(settings);
setup_pwmd(settings);

Parameters: settings- setup of the PWM module. See the device's .h
file for all options.
Some typical options include:
PWM_ENABLED

PWM_OUTPUT
PWM_ACTIVE_LOW

Returns: Undefined

Function: Sets up the PWM module.

296

Built-in Functions

Availability: On devices with a PWM module.
Exan"ﬂes: setup pwml (PWM ENABLED|PWM OUTPUT) ;
Example None

Files:

Also See: set_pwm_duty()

setup_qgei()

Syntax: setup_qei(options, filter, maxcount);

Parameters: Options- The mode of the QEI module. See the devices .h file for all options

Some common options are:
. QEI_MODE_X2
. QEI_MODE_X4

filter - This parameter is optional, the user can enable the digital filters and
specify the clock divisor.

maxcount - Specifies the value at which to reset the position counter.
Returns: void

Function: Configures the Quadrature Encoder Interface. Various settings
like mode and filters can be setup.

Availability: Devices that have the QEI module.
Requires: Nothing.

Examples: setup_gei (QEI_MODE_XZ|QEI_RESET WHEN_MAXCOUNT,
QEI FILTER ENABLE QEA|QEI FILTER DIV 2,0x1000);

Example None
Files:

Also See: qgei_set_count() , gei_get_count() , gei_status()

setup_rtc()

Syntax: setup_rtc() (options, calibration);

297

Built-in Functions

Parameters: Options- The mode of the RTCC module. See the devices .h file for all
options

Calibration- This parameter is optional and the user can specify an 8 bit

value that will get written to the calibration configuration register.
Returns: void

Function: Configures the Real Time Clock and Calendar module. The module requires
an external 32.768 kHz clock crystal for operation.

Availability: Devices that have the RTCC module.
Requires: Nothing.

Exanuﬂes; setup_rtc(RTC_ENABLE | RTC_OUTPUT SECONDS, 0x00);
// Enable RTCC module with seconds clock and no calibration

Example None
Files:

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(, setup_rtc()

setup_rtc_alarm()

Syntax: setup_rtc_alarm(options, mask, repeat);

Parameters: options- The mode of the RTCC module. See the devices .h file for all
options

mask- specifies the alarm mask bits for the alarm configuration.

repeat- Specifies the number of times the alarm will repeat. It can have a
max value of 255.

Returns: void

Function: Configures the alarm of the RTCC module.

Availability: Devices that have the RTCC module.

Requires: Nothing.

Examples: setup_rtc_alarm(RTC_ALARM ENABLE, RTC_ALARM_HOUR, 3);

Example None
Files:

298

Built-in Functions

Also See: rtc_read(), rtc_alarm_read(), rtc_alarm_write(), setup_rtc_alarm(),
rtc_write(), setup_rtc()

setup_spi() setup_spi2()

Syntax: setup_spi (mode)
setup_spi2 (mode)

Parameters: mode may be:
. SPI_MASTER, SPI_SLAVE, SPI_SS_DISABLED

. SPI_L TO_H, SPI_H_TO_L
. SPI_CLK _DIV_4, SPI_CLK_DIV_186,
. SPI_CLK_DIV_64, SPI_CLK T2
. SPI_SAMPLE_AT_END, SPI_XMIT_L_TO_H
. Constants from each group may be or'ed together with |.
Returns: undefined
Function: Initializes the Serial Port Interface (SPI). This is used for 2 or 3 wire serial devices

that follow a common clock/data protocol.
Also See: spi_write(), spi_read(), spi_data_is_in(), SPI Overview

setup_timer_A()

Syntax: setup_timer_A (mode);

Parameters: mode values may be:
- TA_OFF, TA_INTERNAL, TA_ EXT H TO L, TA_EXT_L_TO_H
-TA_DIV_1, TA DIV_2, TA_DIV_4, TA_DIV_8, TA DIV_16, TA_DIV_32,

TA_DIV_64, TA DIV_128, TA_DIV_256

- constants from different groups may be or'ed together with |.

Returns: undefined

Function: sets up Timer A.

Availability: ~ This function is only available on devices with Timer A hardware.

Requires: Constants are defined in the device's .h file.

Examples: setup timer A(TA OFF);
setup timer A(TA INTERNAL | TA DIV 256);
setup timer A(TA EXT L TO H | TA DIV 1);

Example none

299

Built-in Functions

Files:
Also See: get_timerA(), set_timerA(), TimerA Overview

setup_timer_B()

Syntax: setup_timer_B (mode);

Parameters: mode values may be:
- TB_OFF, TB_INTERNAL, TB_EXT_H_TO _L,
TB_EXT_L_TO_H
-TB_DIV_1, TB_DIV_2, TB_DIV_4, TB_DIV_8, TB_DIV_16,
TB_DIV_32,
TB_DIV_64, TB_DIV_128, TB_DIV_256
- constants from different groups may be or'ed together with |.

Returns: undefined
Function: sets up Timer B

Availability: ~ This function is only available on devices with Timer B
hardware.

Requires: Constants are defined in device's .h file.

Examples: setup timer B(TB OFF);
setup timer B(TB INTERNAL | TB DIV 256);
setup timer B(TA EXT L TO H | TB DIV 1);

Example none
Files:
Also See: get_timerB(), set_timerB(), TimerB Overview

setup_timer_0()

Syntax: setup_timer_0 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h
file. RTCC_INTERNAL, RTCC_EXT_L TO _Hor RTCC_EXT_H TO L

RTCC_DIV_2, RTCC_DIV_4, RTCC_DIV_8, RTCC_DIV_16, RTCC_DIV_32,
RTCC_DIV_64, RTCC_DIV_128, RTCC_DIV_256

PIC18XXX only: RTCC_OFF, RTCC_8 _BIT

One constant may be used from each group or'ed together with the | operator.

300

Returns:

Function:

Availability:

Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

undefined
Sets up the timer O (aka RTCC).
All devices.

Constants are defined in the devices .h file.

setup_timer 0 (RTCC DIV 2|RTCC EXT L TO H);

get_timer0(), set_timer0(), setup counters()

setup_timer_1()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

setup_timer_1 (mode)

mode values may be:

. T1 DISABLED, T1 INTERNAL, T1_EXTERNAL,

T1 _EXTERNAL_SYNC

. T1 CLK _OUT

. T1 DIV_BY_1,T1 DIV_BY_2,T1 DIV_BY_4,T1 _DIV_BY_8

. constants from different groups may be or'ed together with |.
undefined

Initializes timer 1. The timer value may be read and written to using
SET_TIMER1() and GET_TIMER1()Timer 1 is a 16 bit timer.

With an internal clock at 20mhz and with the T1_DIV_BY_8 mode, the timer will
increment every 1.6us. It will overflow every 104.8576ms.

This function is only available on devices with timer 1 hardware.

Constants are defined in the devices .h file.

setup timer 1 (Tl DISABLED);
setup timer 1 (T1 INTERNAL | Tl DIV BY 4);
setup timer 1 (T1 INTERNAL | Tl DIV BY 8);

get_timerl(), set_timerl() , Timerl Overview

301

Built-in Functions

setup_timer_2()

Syntax: setup_timer_2 (mode, period, postscale)

Parameters: mode may be one of:
. T2_DISABLED, T2_DIV_BY_1, T2_DIV_BY_4,T2_DIV_BY_16

period is a int 0-255 that determines when the clock value is reset,

postscale is a number 1-16 that determines how many timer overflows before an
interrupt: (1 means once, 2 means twice, and so on).

Returns: undefined

Function: Initializes timer 2. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER2() and
SET_TIMERZ2(). Timer 2 is a 8 bit counter/timer.

Availability: This function is only available on devices with timer 2 hardware.
Requires: Constants are defined in the devices .h file.

Exanuﬂes; setup timer 2 (T2 DIV _BY 4, 0xcO0, 2);
// At 20mhz, the timer will increment every 800ns,
// will overflow every 154.4us,
// and will interrupt every 308.8us.

Example

Files:
Also See: get_timer2(), set_timer2(), Timer2 Overview

setup_timer_3()

Syntax: setup_timer_3 (mode)

Parameters: Mode may be one of the following constants from each group or'ed (via |)

together:
. T3_DISABLED, T3_INTERNAL, T3_EXTERNAL,
T3_EXTERNAL_SYNC
. T3 _DIV_BY_1,T3_DIV_BY_2, T3_DIV_BY_4, T3_DIV_BY_8
Returns: undefined
Function: Initializes timer 3 or 4.The mode specifies the clock divisor (from the oscillator

302

Availability:
Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

clock). The timer value may be read and written to using GET_TIMER3() and
SET_TIMER3(). Timer 3 is a 16 bit counter/timer.

This function is only available on devices with timer 3 hardware.
Constants are defined in the devices .h file.

setup timer 3 (T3 INTERNAL | T3 DIV BY 2);

None

get_timer3(), set_timer3()

setup_timer_4()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

setup_timer_4 (mode, period, postscale)

mode may be one of:
. T4 _DISABLED, T4 _DIV_BY_1, T4 _DIV_BY_4, T4 _DIV_BY_16

period is a int 0-255 that determines when the clock value is reset,

postscale is a number 1-16 that determines how many timer overflows before an
interrupt: (1 means once, 2 means twice, and so on).

undefined

Initializes timer 4. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER4() and
SET_TIMERA4(). Timer 4 is a 8 bit counter/timer.

This function is only available on devices with timer 4 hardware.

Constants are defined in the devices .h file

setup timer 4 (T4 DIV _BY 4, 0xc0, 2);

// At 20mhz, the timer will increment every 800ns,
// will overflow every 153.6us,

// and will interrupt every 307.2us.

get_timer4(), set_timer4()

303

Built-in Functions

setup_timer_5()

Syntax: setup_timer_5 (mode)

Parameters: mode may be one or two of the constants defined in the devices .h file.
T5 _DISABLED, T5_INTERNAL, TS_EXTERNAL, or T5_EXTERNAL_SYNC
T5_DIV_BY_1, T5 DIV_BY 2, T5 DIV_BY 4, T5 DIV_BY_8
T5 _ONE_SHOT, T5_DISABLE_SE_RESET, or T5_ENABLE_DURING_SLEEP

Returns: undefined

Function: Initializes timer 5. The mode specifies the clock divisor (from the oscillator clock).
The timer value may be read and written to using GET_TIMER5() and
SET_TIMERS5(). Timer 5 is a 16 bit counter/timer.

Availability: This function is only available on devices with timer 5 hardware.
Requires: Constants are defined in the devices .h file.
Examples; setup timer 5 (T5 INTERNAL | T5 DIV BY 2);

Example None
Files:

Also See: get_timer5(), set_timer5(), Timer5 Overview

setup_uart()

Syntax: setup_uart(baud, stream)
setup_uart(baud)
setup_uart(baud, stream, clock)

Parameters: baud is a constant representing the number of bits per second. A one or zero may
also be passed to control the on/off status.
Stream is an optional stream identifier.

Chips with the advanced UART may also use the following constants:
UART_ADDRESS UART only accepts data with 9th bit=1
UART_DATA UART accepts all data

Chips with the EUART H/W may use the following constants:
UART_AUTODETECT Waits for 0x55 character and sets the UART baud rate to
match.

UART_AUTODETECT_NOWAIT Same as above function, except returns before
0x55 is received. KBHIT() will be true when the match is made. A call to GETC()
will clear the character.

304

Built-in Functions

UART_WAKEUP_ON_RDA Wakes PIC up out of sleep when RCV goes from high

to low

clock - If specified this is the clock rate this function should assume. The default

comes from the #USE DELAY.

Returns: undefined

Function: Very similar to SET_UART_SPEED. If 1 is passed as a parameter, the UART is
turned on, and if O is passed, UART is turned off. If a BAUD rate is passed to it, the

UART is also turned on, if not already on.
Availability: This function is only available on devices with a built in UART.
Requires: #USE RS232

Examples: setup_uart (9600);
setup uart (9600, rsOut);

Example None

Files:
Also See: #USE RS232, putc(), getc(), RS232 1/O Overview

setup_vref()

Syntax: setup_vref (mode | value)

Parameters: mode may be one of the following constants:

. FALSE (off)

. VREF_LOW for VDD*VALUE/24

. VREF_ HIGH for VDD*VALUE/32 + VDD/4
. any may be or'ed with VREF_A2.

value is an int 0-15.

Also See: Voltage Reference Overview

305

Built-in Functions

setup_wdt()

Syntax: setup_wdt (mode)
Parameters: Constants like: WDT_18MS, WDT_36MS, WDT_72MS,
WDT_144MS,WDT_288MS, WDT_576MS, WDT_1152MS, WDT_2304MS
For some parts: WDT_ON, WDT_OFF
Also #FUSES , restart_wdt() , WDT or Watch Dog Timer Overview
See: Internal Oscillator Overview
shift_left()
Syntax: shift_left (address, bytes, value)
Parameters: address is a pointer to memory.
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.
Returns: 0 or 1 for the bit shifted out
Function: Shifts a bit into an array or structure. The address may be an array identifier or an
address to a structure (such as &data). Bit O of the lowest byte in RAM is treated
as the LSB.
Availability: All devices
Requires: Nothing
Examples: Dbyte buffer[3];
for (i=0; i<=24; ++i){
// Wait for clock high
while (!input(PIN A2));
shift left (buffer, 3, input (PIN A3));
// Wait for clock low
while (input (PIN_A2));
}
// reads 24 bits from pin A3,each bit is read
// on a low to high on pin A2
Example ex_extee.c, 9356.c
Files:
Also See: shift_right(), rotate_right(), rotate_left(),

306

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

shift_right()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

sleep()
Syntax:

Parameters:

Returns:

shift_right (address, bytes, value)

address is a pointer to memory
bytes is a count of the number of bytes to work with
value is a 0 to 1 to be shifted in.

0 or 1 for the bit shifted out

Shifts a bit into an array or structure. The address may be an array identifier or an
address to a structure (such as &data). Bit O of the lowest byte in RAM is treated
as the LSB.

All devices

Nothing

// reads 16 bits from pin Al, each bit is read
// on a low to high on pin A2

struct {
byte time;
byte command : 4;
byte source : 4;} msg;

for (1=0; i<=16; ++1) {
while (!input (PIN A2));
shift right (&msg, 3, input (PIN Al));
while (input (PIN A2)) ;}

// This shifts 8 bits out PIN A0, LSB first.

for (1=0;1<8;++1)
output bit (PIN AO,shift right(&data,1,0));

ex_extee.c, 9356.c

shift_left(), rotate_right(), rotate_left(),

sleep(mode)

mode - for most chips this is not used. Check the device header for special options
on some chips.

Undefined

307

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

Issues a SLEEP instruction. Details are device dependent. However, in general the
part will enter low power mode and halt program execution until woken by specific
external events. Depending on the cause of the wake up execution may continue
after the sleep instruction. The compiler inserts a sleep() after the last statement in
main().

All devices
Nothing

SLEEP () ;

ex_wakup.c

reset cpu()

sleep_ulpwu()

Syntax:

sleep_ulpwu(time)

Parameters: time specifies how long, in us, to charge the capacitor on the ultra-low power

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

wakeup pin (by outputting a high on PIN_A0).
undefined

Charges the ultra-low power wake-up capacitor on PIN_AO for time microseconds,
and then puts the PIC to sleep. The PIC will then wake-up on an ‘Interrupt-on-
Change' after the charge on the cap is lost.

Ultra Low Power Wake-Up support on the PIC (example, PIC12F683)

#USE DELAY

while (TRUE)
{
if (input (PIN Al))
//do something
else
sleep ulpwu(10); //cap will be charged for 10us,
//then goto sleep

None

308

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Also See:

Spi_data

Syntax:

Parameters:
Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

spi_init()
Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Built-in Functions

#USE DELAY

Is_in() spi_data_is_in2()

result = spi_data_is_in()
result = spi_data_is_in2()

None

0 (FALSE) or 1 (TRUE)

Returns TRUE if data has been received over the SPI.

This function is only available on devices with SPI hardware.
Nothing

(!'spi data is in() && input(PIN B2));
if(spi _data is in())
data = spi_read();

None

spi_read(), spi_write(), SPI Overview

spi_init(baud);
spi_init(stream,baud);

stream — is the SPI stream to use as defined in the STREAM=name option in
#USE SPI.

band- the band rate to initialize the SPI module to. If FALSE it will disable the SPI
module, if TRUE it will enable the SPI module to the band rate specified in #use
SPI.

Nothing.
Initializes the SPI module to the settings specified in #USE SPI.
This function is only available on devices with SPI hardware.

#USE SPI

#use spi (MATER, SPI1, baud=1000000, mode=0, stream=SPI1 MODEO)

309

Example
Files:

Also See:

Built-in Functions

spi init (SPI1 MODEO, TRUE); //initialize and enable SPI1l to
setting in #USE SPI

spi init (FALSE); //disable SPI1

spi init (250000);//initialize and enable SPI1 to a baud rate of
250K

None

#USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_speed()

spi_prewrite(data);

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

spi_prewrite(data);
spi_prewrite(stream, data);

stream — is the SPI stream to use as defined in the STREAM=name option in
#USE SPI.
data- the variable or constant to transfer via SPI

Nothing.

Writes data into the SPI buffer without waiting for transfer to be completed. Can
be used in conjunction with spi_xfer() with no parameters to transfer more then 8
bits for PCM and PCH device, or more then 8 bits or 16 bits (XFER16 option) for
PCD. Function is useful when using the SSP or SSP2 interrupt service routines
for PCM and PCH device, or the SPIx interrupt service routines for PCD device.

This function is only available on devices with SPI hardware.

#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI
slave device

spi_prewrite(data_out);
ex_spi_slave.c

#USE SPI, spi_xfer(), spi_xfer_in(), spi_init(), spi_speed()

spi_read() spi_read2()

Syntax:

Parameters:

Returns:

Function:

value = spi_read ([data])
value = spi_read?2 ([data])

data — optional parameter and if included is an 8 bit int.
An 8 bit int

Return a value read by the SPI. If a value is passed to the spi_read() the data will
be clocked out and the data received will be returned. If no data is ready,
spi_read() will wait for the data is a SLAVE or return the last DATA clocked in from
spi_write().

310

Availability:
Requires:
Examples:
Example

Files:
Also See:

Built-in Functions

If this device is the MASTER then either do a spi_write(data) followed by a
spi_read() or do a spi_read(data). These both do the same thing and will generate
a clock. If there is no data to send just do a spi_read(0) to get the clock.

If this device is a SLAVE then either call spi_read() to wait for the clock and data or
use_spi_data _is_in() to determine if data is ready.

This function is only available on devices with SPI hardware.

Nothing

data in = spi read(out data);

ex_spi.c

spi_write(), , , spi_data_is_in(), SPI Overview

spi_read_16()

spi_read2_16()
spi_read3_16()
spi_read4 16()

Syntax:

Parameters:
Returns:

Function:

Availability:

Requires:

value = spi_read_16([data]);

value = spi_read2_16([data]);
value = spi_read3_16([data]);
value = spi_read4_16([data]);

data — optional parameter and if included is a 16 bit int
A 16 bit int

Return a value read by the SPI. If a value is passed to the spi_read 16() the data
will be clocked out and the data received will be returned. If no data is ready,
spi_read_16() will wait for the data is a SLAVE or return the last DATA clocked in
from spi_write_16().

If this device is the MASTER then either do a spi_write_16(data) followed by a
spi_read_16() or do a spi_read_16(data). These both do the same thing and will
generate a clock. If there is no data to send just do a spi_read_16(0) to get the
clock.

If this device is a slave then either call spi_read_16() to wait for the clock and data
or use_spi_data_is_in() to determine if data is ready.

This function is only available on devices with SPI hardware.

NThat the option SPI_MODE_16B be used in setup_spi() function, or that the
option XFER16 be used in #use SPI(

311

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples; data in = spi read 16 (out data);

Example None
Files:

Also See: spi_read(), spi_write(), spi_write_16(), spi_data_is_in(), SPI Overview
spi_speed
Syntax: spi_speed(baud);

spi_speed(stream,baud);
spi_speed(stream,baud,clock);

Parameters: stream — is the SPI stream to use as defined in the STREAM=name option in
#USE SPI.
band- the band rate to set the SPI module to
clock- the current clock rate to calculate the band rate with.
If not specified it uses the value specified in #use delay ().

Returns: Nothing.

Function: Sets the SPI module's baud rate to the specified value.
Availability: ~ This function is only available on devices with SPI hardware.
Requires: #USE SPI

Examples: spi_speed(250000);
spi_speed(SPI1_MODEO, 250000);
spi_speed(SPI1_MODEO, 125000, 8000000);

Example None
Files:

Also See: #USE SPI, spi_xfer(), spi_xfer_in(), spi_prewrite(), spi_init()

spi_write() spi_write2()

Syntax: spi_write(Jwait],value);
spi_write2([wait],value);

Parameters: value is an 8 bit int
wait- an optional parameter specifying whether the function will wait for the SPI
transfer to complete before exiting. Default is TRUE if not specified.

Returns: Nothing

Function: Sends a byte out the SPI interface. This will cause 8 clocks to be generated. This

312

Built-in Functions

function will write the value out to the SPI. At the same time data is clocked out
data is clocked in and stored in a receive buffer. spi_read() may be used to read
the buffer.

Availability: This function is only available on devices with SPI hardware.

Requires: Nothing

Examples: spi write(data out);
data in = spi read();

Example ex_spi.c

Files:

Also See: spi_read(), spi_data_is_in(), SPI Overview, spi_write_16(), spi_read_16()

spi_xfer()

Syntax: spi_xfer(data)
spi_xfer(stream, data)
spi_xfer(stream, data, bits)
result = spi_xfer(data)
result = spi_xfer(stream, data)
result = spi_xfer(stream, data, bits)

Parameters: data is the variable or constant to transfer via SPI. The pin used to transfer data is
defined in the DO=pin option in #use spi. stream is the SPI stream to use as
defined in the STREAM=name option in #USE SPI.

bits is how many bits of data will be transferred.

Returns: The data read in from the SPI. The pin used to transfer result is defined in the
Dl=pin option in #USE SPI.

Function: Transfers data to and reads data from an SPI device.

Availability: All devices with SPI support.

Requires: #USE SPI

Examples: int i = 34;
spi_xfer(i);

// transfers the number 34 via SPI

int trans = 34, res;

res = spi xfer(trans);

// transfers the number 34 via SPI

// also reads the number coming in from SPI
Example None
Files:

313

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Also See:

Built-in Functions

#USE SPI

SPII_XFER_IN()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:
Examples:

Example
Files:
Also See:

sprintf()
Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

value = spi_xfer_in();
value = spi_xfer_in(bits);
value = spi_xfer_in(stream,bits);

stream — is the SPI stream to use as defined in the STREAM=name option in
#USE SPI.
bits — is how many bits of data to be received.

The data read in from the SPI

Reads data from the SPI, without writing data into the transmit buffer first.
This function is only available on devices with SPI hardware.

#USE SPI, and the option SLAVE is used in #USE SPI to setup PIC as a SPI

slave device.
data in = spi xfer in();

ex_spi_slave.c

#USE SPI, spi_xfer(), spi_prewrite(), spi_init(), spi_speed()

sprintf(string, cstring, values...);
bytes=sprintf(string, cstring, values...)

string is an array of characters.

cstring is a constant string or an array of characters null terminated.

Values are a list of variables separated by commas. Note that format specifies
do not work in ram band strings.

Bytes is the number of bytes written to string.

This function operates like printf() except that the output is placed into the specified

string. The output string will be terminated with a null. No checking is done to

ensure the string is large enough for the data. See printf() for details on formatting.

All devices.

Nothing

314

Examples:

Example
Files:

Also See:

sqrt()
Syntax:

Parameters:
Returns:

Function:

Availability:
Requires:
Examples:
Example

Files:
Also See:

srand()

Syntax:

Built-in Functions

char mystring[20];
long mylong;

mylong=1234;

sprintf (mystring, "<%1lu>",mylong) ;
// mystring now has:

// <1234>\0

None

printf()

result = sqrt (value)
value is a float
A float

Computes the non-negative square root of the float value x. If the argument is
negative, the behavior is undefined.

Note on error handling:

If "errno.h" is included then the domain and range errors are stored in the errno
variable. The user can check the errno to see if an error has occurred and print the
error using the perror function.

Domain error occurs in the following cases:
sqrt: when the argument is negative

All devices

#INCLUDE <math.h>

distance = sqgrt(pow((x1-x2),2)+pow((yl-y2),2));
None

None

srand(n)

315

Built-in Functions

Parameters: n is the seed for a new sequence of pseudo-random numbers to be returned by

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

subsequent calls to rand.
No value.

The srand() function uses the argument as a seed for a new sequence of pseudo-
random numbers to be returned by subsequent calls to rand. If srand() is then
called with same seed value, the sequence of random numbers shall be repeated.
If rand is called before any call to srand() have been made, the same sequence
shall be generated as when srand() is first called with a seed value of 1.

All devices.

#INCLUDE <STDLIB.H>

srand (10) ;
I=rand () ;

None

rand()

STANDARD STRING FUNCTIONS() memchr() memcmp() strcat()
strchr() stremp() strcoll() strespn() strerror() stricmp() strlen()
striwr() strncat() strncmp() strncpy() strpbrk() strrchr() strspn()
strstr() strxfrm()

Syntax:

ptr=strcat (s1, s2) Concatenate s2 onto sl

ptr=strchr (s1, c) Find c in s1 and return &s1][i]
ptr=strrchr (s1, c) Same but search in reverse
cresult=strcmp (s1, s2) Compare s1to s2

iresult=strncmp (s1, s2, n) Compare sl to s2 (n bytes)
iresult=stricmp (s1, s2) Compare and ignore case

ptr=strncpy (s1, s2, n) Copy up to n characters s2->s1
iresult=strcspn (s1, s2) Count of initial chars in s1 not in s2
iresult=strspn (s1, s2) Count of initial chars in s1 also in s2
iresult=strlen (s1) Number of characters in s1

ptr=striwr (s1) Convert string to lower case
ptr=strpbrk (s1, s2) Search sl for first char also in s2
ptr=strstr (s1, s2) Search for s2 in sl

ptr=strncat(s1,s2) Concatenates up to n bytes of s2 onto sl
iresult=strcoll(s1,s2) Compares sl to s2, both interpreted as

appropriate to the current locale.

316

Built-in Functions

res=strxfrm(s1,s2,n) Transforms maximum of n characters of s2 and
places them in s1, such that strcmp(s1,s2) will
give the same result as strcoll(s1,s2)

iresult=memcmp(m1,m2,n) Compare ml to m2 (n bytes)

ptr=memchr(m1,c,n) Find c in first n characters of m1 and return
&m1[i]
ptr=strerror(errnum) Maps the error number in errnum to an error

message string. The parameters 'errnum' is an
unsigned 8 bit int. Returns a pointer to the
string.

Parameters: s1 and s2 are pointers to an array of characters (or the name of an array). Note

Returns:

Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

strtod()

that s1 and s2 MAY NOT BE A CONSTANT (like "hi").
n is a count of the maximum number of character to operate on.
c is a 8 hit character

m1 and m2 are pointers to memory.

ptr is a copy of the s1 pointer

iresult is an 8 bit int

result is -1 (less than), O (equal) or 1 (greater than)
res is an integer.

Functions are identified above.
All devices.

#include <string.h>

char stringl[10], string2[10];
strcpy (stringl,"hi ");

strcpy (string2, "there");
strcat (stringl,string2);

printf ("Length is %ulr\n", strlen(stringl));
// Will print 8

ex_str.c

strepy(), strtok()

317

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Syntax:
Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

strtok()
Syntax:

Parameters:

Returns:

Function:

Built-in Functions

result=strtod(nptr,& endptr)
nptr and endptr are strings

result is a float.
returns the converted value in result, if any. If no conversion could be performed,
zero is returned.

The strtod function converts the initial portion of the string pointed to by nptr to a
float representation. The part of the string after conversion is stored in the object
pointed to endptr, provided that endptr is not a null pointer. If nptr is empty or does
not have the expected form, no conversion is performed and the value of nptr is
stored in the object pointed to by endptr, provided endptr is not a null pointer.

All devices.

#INCLUDE <stdlib.h>

float result;

char str[12]="123.45hello";

char *ptr;

result=strtod(str, &ptr);

//result is 123.45 and ptr is "hello"

None

strtol(), strtoul()

ptr = strtok(s1, s2)

s1 and s2 are pointers to an array of characters (or the name of an array). Note
that s1 and s2 MAY NOT BE A CONSTANT (like "hi"). s1 may be 0 to indicate a
continue operation.

ptr points to a character in sl oris 0

Finds next token in s1 delimited by a character from separator string s2 (which can
be different from call to call), and returns pointer to it.

First call starts at beginning of s1 searching for the first character NOT contained
in s2 and returns null if there is none are found.

If none are found, it is the start of first token (return value). Function then
searches from there for a character contained in s2.

318

Availability:
Requires:

Examples:

Example
Files:

Also See:

strtol()

Syntax:
Parameters:

Returns:

Function:

Built-in Functions

If none are found, current token extends to the end of s1, and subsequent
searches for a token will return null.

If one is found, it is overwritten by "\0', which terminates current token. Function
saves pointer to following character from which next search will start.

Each subsequent call, with 0 as first argument, starts searching from the saved
pointer.

All devices.

#INCLUDE <string.h>

char string[30], term[3], *ptr;

strcpy (string, "one, two, three; ") ;
strcpy (term,",;");

ptr = strtok(string, term);
while (ptr!=0) {

puts (ptr) ;

ptr = strtok (0, term);

}

// Prints:
one
two
three

ex_str.c

strxxxx(), strcpy()

result=strtol(nptr,& endptr, base)
nptr and endptr are strings and base is an integer

result is a signed long int.
returns the converted value in result , if any. If no conversion could be performed,
zero is returned.

The strtol function converts the initial portion of the string pointed to by nptr to a
signed long int representation in some radix determined by the value of base. The
part of the string after conversion is stored in the object pointed to endptr, provided
that endptr is not a null pointer. If nptr is empty or does not have the expected
form, no conversion is performed and the value of nptr is stored in the object

319

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Availability:
Requires:

Examples:

Example
Files:

Also See:

strtoul()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Built-in Functions

pointed to by endptr, provided endptr is not a null pointer.
All devices.
#INCLUDE <stdlib.h>

signed long result;

char str[9]="123hello";

char *ptr;
result=strtol (str, &ptr,10);
//result is 123 and ptr is "hello"

None

strtod(), strtoul()

result=strtoul(nptr,endptr, base)

nptr and endptr are strings pointers and base is an integer 2-36.

result is an unsigned long int.
returns the converted value in result , if any. If no conversion could be performed,
Zero is returned.

The strtoul function converts the initial portion of the string pointed to by nptr to a
long int representation in some radix determined by the value of base. The part of
the string after conversion is stored in the object pointed to endptr, provided that
endptr is not a null pointer. If nptr is empty or does not have the expected form, no
conversion is performed and the value of nptr is stored in the object pointed to by
endptr, provided endptr is not a null pointer.

All devices.

STDLIB.H must be included

long result;

char str[9]="123hello";

char *ptr;
result=strtoul (str, &ptr,10);
//result is 123 and ptr is "hello"

320

Built-in Functions

Example None
Files:
Also See: strtol(), strtod()
swap()
Syntax: swap (lvalue)
Parameters: Ivalue is a byte variable
Returns: undefined - WARNING: this function does not return the result
Function: Swaps the upper nibble with the lower nibble of the specified byte. This is the
same as:
byte = (byte << 4) | (byte >> 4);
Availability: ~ All devices.
Requires: Nothing
Examples: x=0x45;
swap (x) ;
//x now is 0x54
Example None
Files:
Also See: rotate_right(), rotate_left()

tolower() toupper()

Syntax: result = tolower (cvalue)
result = toupper (cvalue)
Parameters: cvalue is a character
Returns: An 8 bit character
Function: These functions change the case of letters in the alphabet.

TOLOWER(X) will return 'a'..'z' for X in 'A".."Z" and all other characters are
unchanged. TOUPPER(X) will return 'A'..'’Z' for X in 'a’..'z' and all other characters
are unchanged.

321

Built-in Functions

Availability: ~ All devices.
Requires: Nothing

Examples: switch(toupper (getc()) {

)
case 'R' : read cmd(); break;
case 'W' : write cmd(); break;
case 'Q' : done=TRUE; break;

Example ex_str.c
Files:

Also See: None

touchpad_getc()
Syntax: input = TOUCHPAD_ GETC();

Parameters: None
Returns: char (returns corresponding ASCII number is “input” declared as int)

Function: Actively waits for firmware to signal that a pre-declared Capacitive Sensing Module
(CSM) or charge time measurement unit (CTMU) pin is active, then stores the pre-
declared character value of that pin in “input”.

Note: Until a CSM or CTMU pin is read by firmware as active, this instruction will
cause the microcontroller to stall.

Availability: All PIC's with a CSM or CTMU Module
Requires: #USE TOUCHPAD (options)

Exanuﬂes; //When the pad connected to PIN BO is activated, store the letter
'A'

#USE TOUCHPAD (PIN_BO='A')
void main (void) {
char c;
enable interrupts (GLOBAL) ;

c = TOUCHPAD GETC();

//will wait until one of declared pins is detected
//1if PIN BO is pressed, c will get value 'A'

322

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Example
Files:

Also See:

Built-in Functions

None

#USE TOUCHPAD, touchpad_state()

touchpad_hit()

Syntax:

value = TOUCHPAD_ HIT()

Parameters: None

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

TRUE or FALSE

Returns TRUE if a Capacitive Sensing Module (CSM) or Charge Time
Measurement Unit (CTMU) key has been pressed. If TRUE, then a call to
touchpad_getc() will not cause the program to wait for a key press.

All PIC's with a CSM or CTMU Module

#USE TOUCHPAD (options)

// When the pad connected to PIN B0 is activated, store the letter
IAI

#USE TOUCHPAD (PIN7B0='A')
volid main (void) {

char c;

enable interrupts (GLOBAL) ;

while (TRUE) {
if (TOUCHPAD HIT())
//wait until key on PIN BO is pressed
c = TOUCHPAD GETC(); //get key that was pressed
} //c will get value 'A'

None

#USE TOUCHPAD (), touchpad_state(), touchpad_getc()

touchpad_state()

Syntax:

TOUCHPAD_STATE (state);

Parameters: state is a literal 0, 1, or 2.

Returns:

None

323

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

Built-in Functions
Sets the current state of the touchpad connected to the Capacitive Sensing
Module (CSM). The state can be one of the following three values:
0 : Normal state
1 : Calibrates, then enters normal state

2 : Test mode, data from each key is collected in the int16 array TOUCHDATA

Note: If the state is set to 1 while a key is being pressed, the touchpad will not
calibrate properly.

All PIC's with a CSM Module

#USE TOUCHPAD (options)

#USE TOUCHPAD (THRESHOLD=5, PIN_D5='5', PIN_BO='C')
void main (void) {

char c;

TOUCHPAD STATE (1) ; //calibrates, then enters normal state
enable interrupts (GLOBAL) ;

while (1) {

c = TOUCHPAD GETC();
//will wait until one of declared pins is detected

//1if PIN BO is pressed, c will get value 'C'
} //if PIN D5 is pressed, c will get value '5'

None

#USE TOUCHPAD, touchpad_getc(), touchpad_hit()

tx_buffer_bytes()

Syntax:

value = tx_buffer_bytes([stream]);

Parameters: stream — optional parameter specifying the stream defined in #USE RS232.

Returns:
Function:

Number of bytes in transmit buffer that still need to be sent.

Function to determine the number of bytes in transmit buffer that still need to be sent.

Availability: All devices

Requires:
Examples:

Example
Files:

#USE RS232

#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50)
void main(void) {

char string[] = “Hello”;

if(tx_buffer_bytes() <= 45)

printf(“%s”,string);
}

None

324

Also See:

Built-in Functions

_USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL(),
RCV_BUFFER_BYTES(), GET(), PUTC() ,PRINTF(), SETUP_UART(),
PUTC_SEND()

tx_buffer_full()

Syntax:
Parameters:
Returns:
Function:
Availability:

Requires:
Examples:

Example
Files:

Also See:

va_arg()
Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

value = tx_buffer_full([stream])
stream — optional parameter specifying the stream defined in #USE RS232
TRUE if transmit buffer is full, FALSE otherwise.

Function to determine if there is room in transmit buffer for another character.
All devices

#USE RS232
#USE_RS232(UART1,BAUD=9600,TRANSMIT_BUFFER=50)
void main(void) {

char c;

if('tx_buffer_full())

putc(c);
}

None

_USE_RS232(), RCV_BUFFER_FULL(), TX_BUFFER_FULL().,
RCV_BUFFER_BYTES(), GETC(), PUTC(), PRINTF(), SETUP_UART().,
PUTC_SEND()

va_arg(argptr, type)
argptr is a special argument pointer of type va_list

type — This is data type like int or char.

The first call to va_arg after va_start return the value of the parameters after that
specified by the last parameter. Successive invocations return the values of the
remaining arguments in succession.

The function will return the next argument every time it is called.
All devices.

#INCLUDE <stdarg.h>

325

Built-in Functions

Exan“jes; int foo(int num, ...)
{

int sum = 0;
int i;
va_list argptr; // create special argument pointer
va_ start(argptr,num); // initialize argptr
for (i=0; i<num; 1i++)
sum = sum + va_ arg(argptr, int);
va_end(argptr); // end variable processing

return sum;

}
Example None

Files:
Also See: nargs(), va_end(), va_start()

va_end()
Syntax: va_end(argptr)

Parameters: argptr is a special argument pointer of type va_list.
Returns: None

Function: A call to the macro will end variable processing. This will facillitate a normal return
from the function whose variable argument list was referred to by the expansion of
va_start().

Availability: ~ All devices.
Requires: #INCLUDE <stdarg.h>

Exan"ﬂes; int foo(int num, ...)
{

int sum = 0;
int i;
va list argptr; // create special argument pointer
va_start (argptr,num); // initialize argptr
for (1=0; i<num; 1i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing

return sum;

}
Example None

Files:
Also See: nargs(), va_start(), va_arg()

326

va_start
Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

Built-in Functions

va_start(argptr, variable)

argptr is a special argument pointer of type va_list

variable — The second parameter to va_start() is the name of the last parameter
before the variable-argument list.

None
The function will initialize the argptr using a call to the macro va_start().
All devices.

#INCLUDE <stdarg.h>

int foo(int num, ...)

{

int sum = 0;
int i;
va_list argptr; // create special argument pointer
va start(argptr,num); // initialize argptr
for (1=0; i<num; 1i++)
sum = sum + va_arg(argptr, int);
va_end(argptr); // end variable processing

return sum;

}
None

nargs(), va_start(), va_arg()

327

Built-in Functions

write_bank()

Syntax:

Parameters:

Returns:

Function:

Availability:

Requires:

Examples:

Example
Files:

Also See:

write_bank (bank, offset, value)

bank is the physical RAM bank 1-3 (depending on the device)
offset is the offset into user RAM for that bank (starts at 0)
value is the 8 bit data to write

undefined

Write a data byte to the user RAM area of the specified memory bank. This
function may be used on some devices where full RAM access by auto variables is
not efficient. For example on the PIC16C57 chip setting the pointer size to 5 bits
will generate the most efficient ROM code however auto variables can not be
above 1Fh. Instead of going to 8 bit pointers you can save ROM by using this
function to write to the hard to reach banks. In this case the bank may be 1-3 and
the offset may be 0-15.

All devices but only useful on PCB parts with memory over 1Fh and PCM parts
with memory over FFh.

Nothing

i=0; // Uses bank 1 as a RS232 buffer
do {

c=getc();

write bank(1l,i++,c);
} while (c!=0x13);

€X Psp.c

See the "Common Questions and Answers" section for more information.

write_configuration_memory()

Syntax:

Parameters:

Returns:

Function:

Requires:

write_configuration_memory (dataptr, count)

dataptr: pointer to one or more bytes
count: a 8 bit integer

undefined

Erases all fuses and writes count bytes from the dataptr to the configuration
memory.

Nothing

328

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions

Examples: int data[6];
write configuration memory (data, 6)

Example None
Files:

Also See: WRITE_PROGRAM_MEMORY(), Configuration Memory Overview

write_eeprom()

Syntax: write_eeprom (address, value)

Parameters: address is a (8 bit or 16 bit depending on the part) int, the range is device
dependent
value is an 8 bit int

Returns: undefined

Function: Write a byte to the specified data EEPROM address. This function may take
several milliseconds to execute. This works only on devices with EEPROM built
into the core of the device.

For devices with external EEPROM or with a separate EEPROM in the same
package (like the 12CE671) see EX_EXTEE.c with CE51X.c, CE61X.c or
CE67X.c.

In order to allow interrupts to occur while using the write operation, use the
#DEVICE option WRITE_EEPROM = NOINT. This will allow interrupts to occur
while the write_eeprom() operations is polling the done bit to check if the write
operations has completed. Can be used as long as no EEPROM operations are
performed during an ISR.

Availability: This function is only available on devices with supporting hardware on chip.
Requires: Nothing

Examples: #define LAST_VOLUME 10 // Location in EEPROM

volume++;
write eeprom(LAST VOLUME, volume) ;

Example ex_intee.c, ex extee.c, ce51x.c, ce62x.c, ce67x.c
Files:

Also See: read_eeprom(), write_program_eeprom(), read_program_eeprom(), data Eeprom
Overview

329

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink3.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink4.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink5.click()

Built-in Functions

write_external_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

write_external_memory(address, dataptr, count)

address is 16 bits on PCM parts and 32 bits on PCH parts
dataptr is a pointer to one or more bytes
count is a 8 bit integer

undefined

Writes count bytes to program memory from dataptr to address. Unlike
write_program_eeprom() and read_program_eeprom() this function does not use
any special EEPROM/FLASH write algorithm. The data is simply copied from
register address space to program memory address space. This is useful for
external RAM or to implement an algorithm for external flash.

Only PCH devices.

Nothing

for (1=0x1000;i<=0x1fff;i++) {
value=read adc();
write external memory (i, value, 2);
delay ms(1000);

ex load.c, loader.c

write_program_eeprom(), erase_program eeprom(), Program Eeprom Overview

330

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

write_extended ram()

Syntax:

Parameters:

Returns:
Function:
Availability:
Requires:

Examples:

Example
Files:

Also See:

write_extended_ram (page,address,data,count);

page — the page in extended RAM to write to

address — the address on the selected page to start writing to
data — pointer to the data to be written

count — the number of bytes to write (0-32768)

undefined
To write data to the extended RAM of the PIC.
On devices with more then 30K of RAM.

Nothing

unsigned int8 datal8] =
{0x01,0x02,0x03,0x04,0x05,0x06,0x07,0x08};

write extended ram(1l,0x0000,data,8);
None

read_extended_ram(), Extended RAM Overview

331

Built-in Functions

write_program_eeprom()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

write_program_eeprom (address, data)

address is 16 bits on PCM parts and 32 bits on PCH parts,
data is 16 bits. The least significant bit should always be 0 in
PCH.

undefined

Writes to the specified program EEPROM area.

See our write_program_memory() for more information on this
function.

Only devices that allow writes to program memory.
Nothing

write program eeprom(0,0x2800); //disables
program

ex load.c, loader.c

read_program_eeprom(), read_eeprom(), write_eeprom(),
write_program_memory(), erase_program_eeprom(),
Program Eeprom Overview

332

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()
file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink2.click()

Built-in Functions

write_program_memory()

Syntax:

Parameters:

Returns:

Function:

Availability:
Requires:

Examples:

Example
Files:

Also See:

Additional
Notes:

write_program_memory(address, dataptr, count);

address is 16 bits on PCM parts and 32 bits on PCH parts .
dataptr is a pointer to one or more bytes
count is a 8 bit integer on PIC16 and 16-bit for PIC18

undefined

Writes count bytes to program memory from dataptr to address. This function is
most effective when count is a multiple of FLASH_WRITE_SIZE. Whenever this
function is about to write to a location that is a multiple of FLASH_ERASE_SIZE
then an erase is performed on the whole block.

Only devices that allow writes to program memory.

Nothing

for (1=0x1000;i<=0x1fff;i++) {
value=read adc();
write program memory (i, value, 2);
delay ms(1000);

}

loader.c
write_program_eeprom , erase_program_eeprom , Program Eeprom Overview

Clarification about the functions to write to program memory:

In order to get the desired results while using write_program_memory(), the block
of memory being written to needs to first be read in order to save any other
variables currently stored there, then erased to clear all values in the block before
the new values can be written. This is because the write_program_memory()
function does not save any values in memory and will only erase the block if the
first location is written to. If this process is not followed, when new values are
written to the block, they will appear as garbage values.

For chips where
getenv(“FLASH_ERASE_SIZE”) > getenv(“FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, does not erase (use
erase_program_eeprom())

write_program_memory() - Writes any number of bytes, will erase a block

whenever the first (lowest) byte in a block is written to. If the first address is
not the start of a block that block is not erased.

333

file:///C:/Documents%20and%20Settings/Help-Manual%20Files/CCSC/javascript:shortcutlink.click()

Built-in Functions
erase_program_eeprom() - Will erase a block. The lowest address bits are
not used.

For chips where
getenv(“FLASH_ERASE_SIZE”) = getenv(“FLASH_WRITE_SIZE”)

write_program_eeprom() - Writes 2 bytes, no erase is needed.

write_program_memory() - Writes any number of bytes, bytes outside the
range of the write block are not changed. No erase is needed.

erase_program_eeprom() - Not available

334

;o
L\

STANDARD C INCLUDE FILES

errno.h

errno.h

EDOM Domain error value

ERANGE Range error value

ermo error value

float.h

float.h

FLT_RADIX: Radix of the exponent representation

FLT_MANT_DIG: Number of base digits in the floating point significant

FLT_DIG: Number of decimal digits, g, such that any floating point number with
g decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.

FLT_MIN_EXP:

FLT_MIN_10_EXP:

FLT_MAX_EXP:

FLT_MAX_10_EXP:

FLT_MAX:
FLT_EPSILON:

FLT_MIN:
DBL_MANT_DIG:
DBL_DIG:
DBL_MIN_EXP:

DBL_MIN_10_EXP:

DBL_MAX_EXP:

DBL_MAX_10_EXP:

DBL_MAX:
DBL_EPSILON:

DBL_MIN:
LDBL_MANT_DIG:
LDBL_DIG:

Minimum negative integer such that FLT RADIX raised to that power
minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT RADIX raised to that power
minus 1 is a representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the
range representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with
g decimal digits can be rounded into a floating point number with p
radix b digits and back again without change to the q decimal digits.
Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized floating point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating point numbers.

Maximum negative integer such that FLT RADIX raised to that power
minus 1 is a representable finite floating point number.

Maximum negative integer such that 10 raised to that power is in the
range of representable finite floating point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

Minimum normalized positive floating point number.

Number of base digits in the floating point significant

Number of decimal digits, g, such that any floating point number with
g decimal digits can be rounded into a floating point number with p

335

LDBL_MIN_EXP:

LDBL_MIN_10_EXP:

LDBL_MAX_EXP:

LDBL_MAX_10_EXP:

LDBL_MAX:
LDBL_EPSILON:

Standard C Include Files

radix b digits and back again without change to the q decimal digits.
Minimum negative integer such that FLT_RADIX raised to that power
minus 1 is a normalized floating-point number.

Minimum negative integer such that 10 raised to that power is in the
range of normalized floating-point numbers.

Maximum negative integer such that FLT_RADIX raised to that power
minus 1 is a representable finite floating-point number.

Maximum negative integer such that 10 raised to that power is in the
range of representable finite floating-point numbers.

Maximum representable finite floating point number.

The difference between 1 and the least value greater than 1 that is
representable in the given floating point type.

LDBL_MIN: Minimum normalized positive floating point number.
limits.h

limits.h

CHAR_BIT: Number of bits for the smallest object that is not a bit_field.
SCHAR_MIN: Minimum value for an object of type signed char
SCHAR_MAX: Maximum value for an object of type signed char
UCHAR_MAX: Maximum value for an object of type unsigned char
CHAR_MIN: Minimum value for an object of type char(unsigned)
CHAR_MAX: Maximum value for an object of type char(unsigned)
MB_LEN_MAX: Maximum number of bytes in a multibyte character.
SHRT_MIN: Minimum value for an object of type short int
SHRT_MAX: Maximum value for an object of type short int
USHRT_MAX: Maximum value for an object of type unsigned short int
INT_MIN: Minimum value for an object of type signed int
INT_MAX: Maximum value for an object of type signed int
UINT_MAX: Maximum value for an object of type unsigned int
LONG_MIN: Minimum value for an object of type signed long int
LONG_MAX: Maximum value for an object of type signed long int
ULONG_MAX: Maximum value for an object of type unsigned long int
locale.h

locale.h

locale.h (Localization not supported)

Iconv localization structure

SETLOCALE() returns null

LOCALCONV() returns clocale

336

Standard C Include Files

setjimp.h
setjmp.h
jmp_buf: An array used by the following functions
setjimp: Marks a return point for the next longjmp
longjmp: Jumps to the last marked point
stddef.h
stddef.h
ptrdiff_t: The basic type of a pointer
size_t: The type of the sizeof operator (int)

wchar_t The type of the largest character set supported (char) (8 bits)
NULL A null pointer (0)

stdio.h

stdio.h

stderr The standard error s stream (USE RS232 specified as stream or the first USE RS232)
stdout The standard output stream (USE RS232 specified as stream last USE RS232)
stdin - The standard input s stream (USE RS232 specified as stream last USE RS232)

stdlib.h

stdlib.h

div_t structure type that contains two signed integers (quot and rem).
Idiv_t structure type that contains two signed longs (quot and rem
EXIT_FAILURE returns 1

EXIT_SUCCESS returns O

RAND_MAX-

MBCUR_MAX- 1

SYSTEM() Returns O(not supported)

Multibyte character and string Multibyte characters not supported

functions:

MBLEN() Returns the length of the string.

MBTOWC() Returns 1.

WCTOMB() Returns 1.

MBSTOWCS() Returns length of string.

WBSTOMBS() Returns length of string.

Stdlib.h functions included just for compliance with ANSI C.

337

;o
L\

ERROR MESSAGES

Compiler Error Messages

ENDIF with no corresponding #IF

Compiler found a #ENDIF directive without a corresponding #IF.

#ERROR

A #DEVICE required before this line

The compiler requires a #device before it encounters any statement or compiler directive that
may cause it to generate code. In general #defines may appear before a #device but not much
more.

ADDRESSMOD function definition is incorrect

ADDRESSMOD range is invalid

A numeric expression must appear here

Some C expression (like 123, A or B+C) must appear at this spot in the code. Some expression
that will evaluate to a value.

Arrays of bits are not permitted

Arrays may not be of SHORT INT. Arrays of Records are permitted but the record size is
always rounded up to the next byte boundary.

Assignment invalid: value is READ ONLY

Attempt to create a pointer to a constant

Constant tables are implemented as functions. Pointers cannot be created to functions. For
example CHAR CONST MSG[9]={"HI THERE"Y}; is permitted, however you cannot use &MSG.
You can only reference MSG with subscripts such as MSGJi] and in some function calls such as
Printf and STRCPY.

Attributes used may only be applied to a function (INLINE or SEPARATE)

An attempt was made to apply #INLINE or #SEPARATE to something other than a function.

Bad ASM syntax

Bad expression syntax

This is a generic error message. It covers all incorrect syntax.

Baud rate out of range

The compiler could not create code for the specified baud rate. If the internal UART is being
used the combination of the clock and the UART capabilities could not get a baud rate within
3% of the requested value. If the built in UART is not being used then the clock will not permit
the indicated baud rate. For fast baud rates, a faster clock will be required.

BIT variable not permitted here

Addresses cannot be created to bits. For example &X is not permitted if X is a SHORT INT.

Branch out of range

Cannot change device type this far into the code

The #DEVICE is not permitted after code is generated that is device specific. Move the
#DEVICE to an area before code is generated.

Character constant constructed incorrectly

338

Error Messages

Generally this is due to too many characters within the single quotes. For example 'ab'is an
error as is '\nr'. The backslash is permitted provided the result is a single character such as
"\010' or \n".

Constant out of the valid range

This will usually occur in inline assembly where a constant must be within a particular range and
it is not. For example BTFSC 3,9 would cause this error since the second operand must be from
0-8.

Data item too big

Define expansion is too large

A fully expanded DEFINE must be less than 255 characters. Check to be sure the DEFINE is
not recursively defined.

Define syntax error

This is usually caused by a missing or misplaced (or) within a define.

Demo period has expired

Please contact CCS to purchase a licensed copy.

www.ccsinfo.com/pricing

Different levels of indirection

This is caused by a INLINE function with a reference parameter being called with a parameter
that is not a variable. Usually calling with a constant causes this.

Divide by zero

An attempt was made to divide by zero at compile time using constants.

Duplicate case value

Two cases in a switch statement have the same value.

Duplicate DEFAULT statements

The DEFAULT statement within a SWITCH may only appear once in each SWITCH. This error
indicates a second DEFAULT was encountered.

Duplicate function

A function has already been defined with this name. Remember that the compiler is not case
sensitive unless a #CASE is used.

Duplicate Interrupt Procedure

Only one function may be attached to each interrupt level. For example the #INT_RB may only
appear once in each program.

Element is not a member

A field of a record identified by the compiler is not actually in the record. Check the identifier
spelling.

ELSE with no corresponding IF

Compiler found an ELSE statement without a corresponding IF. Make sure the ELSE statement
always match with the previous IF statement.

End of file while within define definition

The end of the source file was encountered while still expanding a define. Check for a missing
).

End of source file reached without closing comment */ symbol

The end of the source file has been reached and a comment (started with /*) is still in effect.
The */ is missing.

type are INT and CHAR.

Expect ;
Expect }
Expect CASE

339

http://www.ccsinfo.com/content.php?page=Purchasing1

Error Messages

Expect comma

Expect WHILE

Expecting *

Expecting :

Expecting <

Expecting =

Expecting >

Expecting a (

Expecting a , or)

Expecting a, or}

Expecting a .

Expecting a ; or,

Expecting a ; or {

Expecting a close paren

Expecting a declaration

Expecting a structure/union

Expecting a variable

Expecting an =

Expecting a]

Expecting a {

Expecting an array

Expecting an identifier

Expecting function name

Expecting an opcode mnemonic

This must be a Microchip mnemonic such as MOVLW or BTFSC.
Expecting LVALUE such as a variable name or * expression
This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Expecting a basic type

Examples of a basic type are INT and CHAR.

Expression must be a constant or simple variable

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression must evaluate to a constant

The indicated expression must evaluate to a constant at compile time. For example 5*3+1 is
permitted but 5*x+1 where X is a INT is not permitted. If X were a DEFINE that had a constant
value then it is permitted.

Expression too complex

This expression has generated too much code for the compiler to handle for a single
expression. This is very rare but if it happens, break the expression up into smaller parts.

Too many assembly lines are being generated for a single C statement. Contact CCS to
increase the internal limits.

EXTERNal symbol not found

EXTERNal symbol type mis-match
Extra characters on preprocessor command line

340

Error Messages

Characters are appearing after a preprocessor directive that do not apply to that directive.
Preprocessor commands own the entire line unlike the normal C syntax. For example the
following is an error:

#PRAGMA DEVICE <PIC16C74> main() { int x; x=1;}

File cannot be opened

Check the filename and the current path. The file could not be opened.

File cannot be opened for write

The operating system would not allow the compiler to create one of the output files. Make sure
the file is not marked READ ONLY and that the compiler process has write privileges to the
directory and file.

Filename must start with " or <

The correct syntax of a #include is one of the following two formats:
#include "filename.ext"
#include <filename.ext>

This error indicates neither a " or < was found after #include.

Filename must terminate with " or; msg:""

The filename specified in a #include must terminate with a " if it starts with a . It must terminate
with a > if it starts with a <.

Floating-point numbers not supported for this operation

A floating-point number is not permitted in the operation near the error. For example, ++F
where F is a float is not allowed.

Function definition different from previous definition

This is a mis-match between a function prototype and a function definition. Be sure that if a
#INLINE or #SEPARATE are used that they appear for both the prototype and definition. These
directives are treated much like a type specifier.

Function used but not defined

The indicated function had a prototype but was never defined in the program.
Identifier is already used in this scope

An attempt was made to define a new identifier that has already been defined.
lllegal C character in input file

A bad character is in the source file. Try deleting the line and re-typing it.

Import error

Improper use of a function identifier

Function identifiers may only be used to call a function. An attempt was made to otherwise
reference a function. A function identifier should have a (after it.

Incorrectly constructed label

This may be an improperly terminated expression followed by a label. For example:

x=5+

MPLAB:

Initialization of unions is not permitted

Structures can be initialized with an initial value but UNIONS cannot be.

Internal compiler limit reached

The program is using too much of something. An internal compiler limit was reached. Contact
CCS and the limit may be able to be expanded.

Internal Error - Contact CCS

This error indicates the compiler detected an internal inconsistency. This is not an error with the
source code; although, something in the source code has triggered the internal error. This
problem can usually be quickly corrected by sending the source files to CCS so the problem can
be re-created and corrected.

341

Error Messages

In the meantime if the error was on a particular line, look for another way to perform the same
operation. The error was probably caused by the syntax of the identified statement. If the error
was the last line of the code, the problem was in linking. Look at the call tree for something out
of the ordinary.

Interrupt handler uses too much stack

Too many stack locations are being used by an interrupt handler.

Invalid conversion from LONG INT to INT

In this case, a LONG INT cannot be converted to an INT. You can type cast the LONG INT to
perform a truncation. For example:

I = INT(LI);

Invalid interrupt directive

Invalid parameters to built in function

Built-in shift and rotate functions (such as SHIFT_LEFT) require an expression that evaluates to
a constant to specify the number of bytes.

Invalid Pre-Processor directive

The compiler does not know the preprocessor directive. This is the identifier in one of the

following two places:
#XXXXX
#PRAGMA XXXXX

Invalid ORG range

The end address must be greater than or equal to the start address. The range may not overlap
another range. The range may not include locations 0-3. If only one address is specified it
must match the start address of a previous #org.

Invalid overload function

Invalid type conversion

Label not permitted here

Library in USE not found

The identifier after the USE is not one of the pre-defined libraries for the compiler. Check the
spelling.

Linker Error: "%s" already defined in "%s"

Linker Error: ("%s'

Linker Error: Canont allocate memory for the section "%s" in the module "%s", because it
overlaps with other sections.

Linker Error: Cannot find unique match for symbol "%s"

Linker Error: Cannot open file "%s"

Linker Error: COFF file "%s" is corrupt; recompile module.

Linker Error: Not enough memory in the target to reallocate the section "%s" in the module
"%s".

Linker Error: Section "%s" is found in the modules "%s" and "%s" with different section types.
Linker Error: Unknown error, contact CCS support.

Linker Error: Unresolved external symbol "%s" inside the module "%s".

Linker option no compatible with prior options.

Linker Warning: Section "%s" in module "%s" is declared as shared but there is no shared
memory in the target chip. The shared flag is ignored.

Linker option not compatible with prior options

Conflicting linker options are specified. For example using both the EXCEPT= and ONLY=
options in the same directive is not legal.

LVALUE required

342

Error Messages

This error will occur when a constant is used where a variable should be. For example 4=5; will
give this error.

Macro identifier requires parameters

A #DEFINE identifier is being used but no parameters were specified, as required. For
example:

fdefine min(x,y) ((x<y)?x:y)

When called MIN must have a (--,--) after it such as:

r=min (value, 6);

Macro is defined recursively

A C macro has been defined in such a way as to cause a recursive call to itself.

Missing #ENDIF

A #IF was found without a corresponding #ENDIF.

Missing or invalid .CRG file

The user registration file(s) are not part of the download software. In order for the software to
run the files must be in the same directory as the .EXE files. These files are on the original
diskette, CD ROM or e-mail in a non-compressed format. You need only copy them to the .EXE
directory. There is one .REG file for each compiler (PCB.REG, PCM.REG and PCH.REG).

More info:

Must have a #USE DELAY before this #USE

Must have a #USE DELAY before a #USE RS232

The RS232 library uses the DELAY library. You must have a #USE DELAY before you can do
a #USE RS232.

No errors

The program has successfully compiled and all requested output files have been created.

No MAIN() function found

All programs are required to have one function with the name main().

No overload function matches

No valid assignment made to function pointer

Not enough RAM for all variables

The program requires more RAM than is available. The symbol map shows variables allocated.
The call tree shows the RAM used by each function. Additional RAM usage can be obtained by
breaking larger functions into smaller ones and splitting the RAM between them.

For example, a function A may perform a series of operations and have 20 local variables
declared. Upon analysis, it may be determined that there are two main parts to the calculations
and many variables are not shared between the parts. A function B may be defined with 7 local
variables and a function C may be defined with 7 local variables. Function A now calls B and C
and combines the results and now may only need 6 variables. The savings are accomplished
because B and C are not executing at the same time and the same real memory locations will
be used for their 6 variables (just not at the same time). The compiler will allocate only 13
locations for the group of functions A, B, C where 20 were required before to perform the same
operation.

Number of bits is out of range

For a count of bits, such as in a structure definition, this must be 1-8. For a bit number
specification, such as in the #BIT, the number must be 0-7.

Only integers are supported for this operation

343

Error Messages

Option invalid

Out of ROM, A segment or the program is too large

A function and all of the INLINE functions it calls must fit into one segment (a hardware code
page). For example, on the PIC16 chip a code page is 512 instructions. If a program has only
one function and that function is 600 instructions long, you will get this error even though the
chip has plenty of ROM left. The function needs to be split into at least two smaller functions.
Even after this is done, this error may occur since the new function may be only called once
and the linker might automatically INLINE it. This is easily determined by reviewing the call tree.
If this error is caused by too many functions being automatically INLINED by the linker, simply
add a #SEPARATE before a function to force the function to be SEPARATE. Separate
functions can be allocated on any page that has room. The best way to understand the cause
of this error is to review the call tree.

Parameters must be located in RAM

Parameters not permitted

An identifier that is not a function or preprocessor macro can not have a ' (' after it.

Pointers to bits are not permitted

Addresses cannot be created to bits. For example, &X is not permitted if X is a SHORT INT.
Previous identifier must be a pointer

A -> may only be used after a pointer to a structure. It cannot be used on a structure itself or
other kind of variable.

Printf format type is invalid

An unknown character is after the % in a printf. Check the printf reference for valid formats.
Printf format (%) invalid

A bad format combination was used. For example, %ilc.

Printf variable count (%) does not match actual count

The number of % format indicators in the printf does not match the actual number of variables
that follow. Remember in order to print a single %, you must use %%.

Recursion not permitted

The linker will not allow recursive function calls. A function may not call itself and it may not call
any other function that will eventually re-call it.

Recursively defined structures not permitted

A structure may not contain an instance of itself.

Reference arrays are not permitted

A reference parameter may not refer to an array.

Return not allowed in void function

A return statement may not have a value if the function is void.

RTOS call only allowed inside task functions

Selected part does not have ICD debug capability

STDOUT not defined (may be missing #RS 232)

An attempt was made to use a I/O function such as printf when no default I/O stream has been
established. Add a #USE RS232 to define a I/O stream.

Stream must be a constant in the valid range

I/0O functions like fputc, fgetc require a stream identifier that was defined in a #USE RS232.
This identifier must appear exactly as it does when it was defined. Be sure it has not been
redefined with a #define.

String too long

Structure field name required

344

Error Messages

A structure is being used in a place where a field of the structure must appear. Change to the
form s.f where s is the structure name and f is a field name.

Structures and UNIONS cannot be parameters (use * or &)

A structure may not be passed by value. Pass a pointer to the structure using &.

Subscript out of range

A subscript to a RAM array must be at least 1 and not more than 128 elements. Note that large
arrays might not fit in a bank. ROM arrays may not occupy more than 256 locations.

This linker function is not available in this compiler version.

Some linker functions are only available if the PCW or PCWH product is installed.

This type cannot be qualified with this qualifier

Check the qualifiers. Be sure to look on previous lines. An example of this error is:

VOID X;

Too many array subscripts

Arrays are limited to 5 dimensions.

Too many constant structures to fit into available space

Available space depends on the chip. Some chips only allow constant structures in certain
places. Look at the last calling tree to evaluate space usage. Constant structures will appear
as functions with a @CONST at the beginning of the name.

Too many elements in an ENUM

A max of 256 elements are allowed in an ENUM.

Too many fast interrupt handlers have been defined

Too many fast interrupt handlers have been identified

Too many nested #INCLUDEs

No more than 10 include files may be open at a time.

Too many parameters

More parameters have been given to a function than the function was defined with.
Too many subscripts

More subscripts have been given to an array than the array was defined with.
Type is not defined

The specified type is used but not defined in the program. Check the spelling.
Type specification not valid for a function

This function has a type specifier that is not meaningful to a function.

Undefined identifier

Undefined label that was used in a GOTO

There was a GOTO LABEL but LABEL was never encountered within the required scope. A
GOTO cannot jump outside a function.

Unknown device type

A #DEVICE contained an unknown device. The center letters of a device are always C
regardless of the actual part in use. For example, use PIC16C74 not PIC16RC74. Be sure the
correct compiler is being used for the indicated device. See #DEVICE for more information.
Unknown keyword in #FUSES

Check the keyword spelling against the description under #FUSES.

Unknown linker keyword

The keyword used in a linker directive is not understood.

Unknown type

The specified type is used but not defined in the program. Check the spelling.

345

Error Messages

User aborted compilation
USE parameter invalid
One of the parameters to a USE library is not valid for the current environment.

USE parameter value is out of range
One of the values for a parameter to the USE library is not valid for the current environment.

Variable never used

Variable of this data type is never greater than this constant

346

;o
L\

COMPILER WARNING MESSAGES

Compiler Warning Messages

#error/warning

Assignment inside relational expression

Although legal it is a common error to do something like if(a=b) when it was intended to do
if(a==Db).

Assignment to enum is not of the correct type.

This warning indicates there may be such a typo in this line:

Assignment to enum is not of the correct type

If a variable is declared as a ENUM it is best to assign to the variables only elements of the

enum. For example:
enum colors {RED,GREEN,BLUE} color;

color

= GREEN; // OK
color = 1; // Warning 209
color = (colors)l; //OK

Code has no effect
The compiler can not discern any effect this source code could have on the generated code.
Some examples:
1;
a==b;
1,2,3;
Condition always FALSE
This error when it has been determined at compile time that a relational expression will never be
true. For example:
int x;
1f(x>>9)
Condition always TRUE
This error when it has been determined at compile time that a relational expression will never be

false. For example:
#define PIN Al 41

if (PIN Al) // Intended was: if(input (PIN Al))

Function not void and does not return a value

Functions that are declared as returning a value should have a return statement with a value to
be returned. Be aware that in C only functions declared VOID are not intended to return a value.
If nothing is specified as a function return value "int" is assumed.

Duplicate #define

The identifier in the #define has already been used in a previous #define. To redefine an
identifier use #UNDEF first. To prevent defines that may be included from multiple source do

something like:
#ifndef ID
#define ID text
#endif

Feature not supported

347

Compiler Warning Messages

Function never called

Function not void and does not return a value.
Info:

Interrupt level changed

Interrupts disabled during call to prevent re-entrancy.

Linker Warning: "%s" already defined in object "%s"; second definition ignored.

Linker Warning: Address and size of section "%s" in module "%s" exceeds maximum range for
this processor. The section will be ignored.

Linker Warning: The module "%s" doesn't have a valid chip id. The module will be considered
for the target chip "%s".

Linker Warning: The target chip "%s" of the imported module "%s" doesn't match the target chip
"%s" of the source.

Linker Warning: Unsupported relocation type in module "%s".

Memory not available at requested location.
Operator precedence rules may not be as intended, use() to clarify
Some combinations of operators are confusing to some programmers. This warning is issued
for expressions where adding() would help to clarify the meaning. For example:
if(x << n + 1)
would be more universally understood when expressed:
if(x << (n + 1))
Option may be wrong
Structure passed by value
Structures are usually passed by reference to a function. This warning is generated if the
structure is being passed by value. This warning is not generated if the structure is less than 5
bytes. For example:

void myfunct(mystruct sl) // Pass by value - Warning
myfunct (s2);

void myfunct(mystruct * sl) // Pass by reference - OK
myfunct (&s2);

void myfunct(mystruct & sl) // Pass by reference - OK

myfunct (s2);
Undefined identifier
The specified identifier is being used but has never been defined. Check the spelling.
Unprotected call in a #INT_GLOBAL
The interrupt function defined as #INT_GLOBAL is intended to be assembly language or very
simple C code. This error indicates the linker detected code that violated the standard memory
allocation scheme. This may be caused when a C function is called from a #INT_GLOBAL
interrupt handler.
Unreachable code
Code included in the program is never executed. For example:
if (n==5)
goto dob5;
goto exit;
if (n==20) // No way to get to this line
return;
Unsigned variable is never less than zero

348

Compiler Warning Messages

Unsigned variables are never less than 0. This warning indicates an attempt to check to see if
an unsigned variable is negative. For example the following will not work as intended:

int i;

for (i=10; i>=0; i--)

Variable assignment never used.
Variable of this data type is never greater than this constant
A variable is being compared to a constant. The maximum value of the variable could never be

larger than the constant. For example the following could never be true:
int x; // 8 bits, 0-255
if (x>300)

Variable never used
A variable has been declared and never referenced in the code.

Variable used before assignment is made.

349

;o
L\

COMMON QUESTIONS & ANSWERS

How are type conversions handled?

The compiler provides automatic type conversions when an assignment is performed. Some
information may be lost if the destination can not properly represent the source. For example:
int8var = intl6var; Causes the top byte of intl6var to be lost.

Assigning a smaller signed expression to a larger signed variable will result in the sign being
maintained. For example, a signed 8 bit int that is -1 when assigned to a 16 bit signed variable
is still -1.

Signed numbers that are negative when assigned to a unsigned number will cause the 2's
complement value to be assigned. For example, assigning -1 to a int8 will result in the int8 being
255. In this case the sign bit is not extended (conversion to unsigned is done before conversion
to more bits). This means the -1 assigned to a 16 bit unsigned is still 255.

Likewise assigning a large unsigned number to a signed variable of the same size or smaller will
result in the value being distorted. For example, assigning 255 to a signed int8 will result in -1.

The above assignment rules also apply to parameters passed to functions.

When a binary operator has operands of differing types then the lower order operand is
converted (using the above rules) to the higher. The order is as follows:
. Float
Signed 32 bit
Unsigned 32 bit
Signed 16 bit
Unsigned 16 bit
Signed 8 bit
Unsigned 8 bit
1 bit

The result is then the same as the operands. Each operator in an expression is evaluated
independently. For example:

i32 =116 - (i8 + i8)

The + operator is 8 bit, the result is converted to 16 bit after the addition and the - is 16 bit, that
result is converted to 32 bit and the assignment is done. Note that if i8 is 200 and i16 is 400
then the result in i32 is 256. (200 plus 200 is 144 with a 8 bit +)

Explicit conversion may be done at any point with (type) inserted before the expression to be
converted. For example in the above the perhaps desired effect may be achieved by doing:

i32 =16 - ((long)i8 + i8)

350

Common Questions & Answers

In this case the first i8 is converted to 16 bit, then the add is a 16 bit add and the second i8 is
forced to 16 bit.

A common C programming error is to do something like:
i16 =i8 * 100;

When the intent was:
i16 = (long) i8 * 100;

Remember that with unsigned ints (the default for this compiler) the values are never
negative. For example 2-4 is 254 (in 8 bit). This means the following is an endless loop since i
is never less than O:

inti;
for(i=100; i>=0; i--)

How can a constant data table be placed in ROM?

The compiler has support for placing any data structure into the device ROM as a constant
read-only element. Since the ROM and RAM data paths are separate in the PIC® , there are
restrictions on how the data is accessed. For example, to place a 10 element BYTE array in

ROM use:
BYTE CONST TABLE [10]= {9,8,7,6,5,4,3,2,1,0};

and to access the table use:
x = TABLE [i]:;

OR

x = TABLE [5];

BUT NOT
ptr = &TABLE [i];

In this case, a pointer to the table cannot be constructed.

Similar constructs using CONST may be used with any data type including structures, longs and
floats.

Note that in the implementation of the above table, a function call is made when a table is
accessed with a subscript that cannot be evaluated at compile time.

How can | use two or more RS-232 ports on one PIC®?

The #USE RS232 (and 12C for that matter) is in effect for GETC, PUTC, PRINTF and KBHIT
functions encountered until another #USE RS232 is found.

The #USE RS232 is not an executable line. It works much like a #DEFINE.

351

Common Questions & Answers

The following is an example program to read from one RS-232 port (A) and echo the data to
both the first RS-232 port (A) and a second RS-232 port (B).

#USE RS232 (BAUD=9600, XMIT=PIN BO, RCV=PIN BIl)

void put to a(char c) {
put (c) ;

}

char get from a() {

return (getc()); }
#USE RS232 (BAUD=9600, XMIT=PIN_B2,RCV=PIN_B3)
void put to b(char b) {
putc (c) ;
}
main () {
char c;
put to a("Online\n\r");
put _to b ("Online\n\r");
while (TRUE) {
c=get from a();
put to b(c);
put to a(c);
}
}

The following will do the same thing but is more readable and is the recommended method:

#USE RS232 (BAUD=9600, XMIT=PIN BO, RCV=PIN Bl, STREAM=COM A)
#USE RS232 (BAUD=9600, XMIT=PIN B2, RCV=PIN B3, STREAM=COM B)

main () {
char c;
fprintf (COM A, "Online\n\zr");
fprintf (COM B, "Online\n\r");
while (TRUE) {
c = fgetc(COM A);
fputc(c, COM _A);
fputc(c, COM B);
}
}

How can the RB interrupt be used to detect a button press?

The RB interrupt will happen when there is any change (input or output) on pins B4-B7. There is

only one interrupt and the PIC® does not tell you which pin changed. The programmer must
determine the change based on the previously known value of the port. Furthermore, a single
button press may cause several interrupts due to bounce in the switch. A debounce algorithm
will need to be used. The following is a simple example:

#int rb
rb _isr() {
byte changes;
changes = last b ~ port b;
last b = port b;
if (bit_test(changes, 4)&& !bit test(last b,4)) {
//b4 went low

352

Common Questions & Answers

}

if (bit_test (changes,5)&& !bit test (last b,5)) {
//b5 went low

}

delay ms (100); //debounce
}

The delay=ms (100) is a quick and dirty debounce. In general, you will not want to sit in an ISR
for 100 MS to allow the switch to debounce. A more elegant solution is to set a timer on the first
interrupt and wait until the timer overflows. Do not process further changes on the pin.

How do | directly read/write to internal registers?

A hardware register may be mapped to a C variable to allow direct read and write capability to

the register. The following is an example using the TIMERO register:
#BYTE timer 0 = Ox 01

timer0= 128; //set timer0 to 128

while (timer 0 ! = 200); // wait for timer0 to reach 200

Bits in registers may also be mapped as follows:
#BIT T 0 IF = Ox 0B.2

while (!T 0 IF); //wait for timer0 interrupt

Registers may be indirectly addressed as shown in the following example:
printf ("enter address:");

a = gethex ();

printf ("\r\n value is $%$x\r\n", *a);

The compiler has a large set of built-in functions that will allow one to perform the most common
tasks with C function calls. When possible, it is best to use the built-in functions rather than
directly write to registers. Register locations change between chips and some register
operations require a specific algorithm to be performed when a register value is changed. The
compiler also takes into account known chip errata in the implementation of the built-in
functions. For example, it is better to do set_tris_ A (0); rather than *0x 85 =0;

How do | do a printf to a string?

The following is an example of how to direct the output of a printf to a string. We used the \f to
indicate the start of the string.

This example shows how to put a floating point number in a string.

main () |
char string[20];
float f;
£f=12.345;

353

Common Questions & Answers

sprintf (string, "\f%6.3f", f);
}

How do | get getc() to timeout after a specified time?

GETC will always wait for a character to become available unless a timeout time is specified in
the #use rs232().

The following is an example of how to setup the PIC to timeout when waiting for an RS232
character.

#include <18F4520.h>

#fuses HS,NOWDT

#use delay(clock=20MHz)

fuse rs232 (UART1,baud=9600, timeout=500) //timeout = 500 milliseconds, 1/2
second

void main ()

{

char c;

while (TRUE)
{

c=getc(); //1if getc() timeouts 0 is returned to c
//otherwise receive character is returned to c

if(c) //if not zero echo character back
putc(c);

//user to do code

output toggle (PIN_A5);

How do | make a pointer to a function?

The compiler does not permit pointers to functions so that the compiler can know at compile
time the complete call tree. This is used to allocate memory for full RAM re-use. Functions that
could not be in execution at the same time will use the same RAM locations. In addition since
there is no data stack in the PIC®, function parameters are passed in a special way that
requires knowledge at compile time of what function is being called. Calling a function via a
pointer will prevent knowing both of these things at compile time. Users sometimes will want
function pointers to create a state machine. The following is an example of how to do this
without pointers:

enum tasks {taskA, taskB, taskC};
run_task(tasks task to run) {
switch(task to run) {

case taskA : taskA main(); Dbreak;
case taskB : taskB main(); break;
case taskC : taskC main(); break;

}
}

How do | put a NOP at location O for the ICD?

354

Common Questions & Answers

The CCS compilers are fully compatible with Microchips ICD debugger using MPLAB. In order
to prepare a program for ICD debugging (NOP at location 0 and so on) you need to add a
#DEVICE ICD=TRUE after your normal #DEVICE.

For example:
#INCLUDE <16F877.h>
#DEVICE ICD=TRUE

How do | wait only a specified time for a button press?

The following is an example of how to wait only a specific time for a button press.

#define PUSH BUTTON PIN A4

intl timeout error;

intl timed get button press(void) {
intl6é timeout;

timeout error=FALSE;

timeout=0;

while (input (PUSH BUTTON) && (++timeout<50000)) // 1/2 second
delay us(10);

if(!input(PUSH_BUTTON))
return (TRUE); //button pressed

else(
timeout error=TRUE;
return (FALSE); //button not pressed timeout occurred

How do | write variables to EEPROM that are not a byte?

The following is an example of how to read and write a floating point number from/to EEPROM.
The same concept may be used for structures, arrays or any other type.

o n is an offset into the EEPROM.
. For floats you must increment it by 4.
o For example, if the first float is at 0, the second one should be at 4, and the third
at 8.
WRITE FLOAT EXT EEPROM(long int n, float data) {
int 1i;
for (1 = 0; 1 < 4 ; 1i++)
write ext eeprom(i + n, *(((int 8 *)&data + i)) ;

}

float READ FLOAT EXT EEPROM(long int n) {

int 1i;
float data;
for (i = 0; i < 4; i++)
*(((int 8 *)&data) + i) = read ext eeprom(i + n);

return (data) ;

355

Common Questions & Answers

How does one map a variable to an I/O port?

Two methods are as follows:

#byte PORTB = 6 //Just an example, check the
#define ALL OUT 0 //DATA sheet for the correct
#define ALL IN Oxff //address for your chip
main () {

int i;

set tris b (ALL OUT);
PORTB = 0;// Set all pins low

for (1=0;1<=127;++1) // Quickly count from 0 to 127
PORTB=1; // on the I/O port pin

set tris b(ALL IN);

i = PORTB; // 1 now contains the portb value.

Remember when using the #BYTE, the created variable is treated like memory. You must
maintain the tri-state control registers yourself via the SET_TRIS_X function. Following is an

example of placing a structure on an I/O port:

struct port b layout
{int data : 4;
int rw : 1;
int cd : 1;
int enable : 1;
int reset : 1; };
struct port b layout port b;
#byte port b = 6

struct port b layout const INIT 1 {0, 1,1, 1,1 };
struct port b layout const INIT 2 {3, 1,1, 1,0 };
struct port b layout const INIT 3 = {0, 0,0, 0,0 };
struct port b layout const FOR SEND = {0,0,0, 0,0 };
// All outputs
struct port b layout const FOR READ = {15,0,0, 0,0 };
// Data is an input

main () |

int x;

set tris b ((int)FOR SEND) ; // The constant
// structure is
// treated like
// a byte and
// is used to
// set the data
// direction

port b = INIT 1;

delay us(25);

port b
// are used to set all fields

port b = INIT 3; // on the port with a single
// command

set tris b((int)FOR READ);
port b.rw=0;

356

INIT 2; // These constant structures delay us(25);

Common Questions & Answers

// Here the individual
port b.cd=1; // fields are accessed
port b.enable=0; // independently.
x = port b.data;
port b.enable=0

How does the compiler determine TRUE and FALSE on expressions?

When relational expressions are assigned to variables, the result is always 0 or 1.

For example:
bytevar = 5>0; //bytevar will be 1
bytevar = 0>5; //bytevar will be 0

The same is true when relational operators are used in expressions.
For example:
bytevar = (x>y) *4;
is the same as:
if(x>y)
bytevar=4;
else

bytevar=0;

SHORT INTSs (bit variables) are treated the same as relational expressions. They evaluate to 0
orl.

When expressions are converted to relational expressions or SHORT INTSs, the result will be
FALSE (or 0) when the expression is 0, otherwise the result is TRUE (or 1).

For example:

bytevar = 54;

bitvar = bytevar; //bitvar will be 1 (bytevar ! = 0)
if (bytevar) //will be TRUE

bytevar = 0;

bitvar = bytevar; //bitvar will be 0

How does the PIC® connect to a PC?

A level converter should be used to convert the TTL (0-5V__ levels that the PIC® operates with
to the RS-232 voltages (+/- 3-12V) used by the PIC®. The following is a popular configuration
using the MAX232 chip as a level converter.

357

Common Questions & Answers

+ +
=
I 1 16 2 4 14
. 61
16 T I
4 Max 232 L | 18pin i
15 —|
pc 5 PIC® 1
14 1 2 (A3)
13 15 12 1(A2) 5
T I
= Any two /O
Pins may be
used here

How does the PIC® connect to an 12C device?

Two 1/O lines are required for 12C. Both lines must have pullup registers. Often the 12C device
will have a H/W selectable address. The address set must match the address in S/W. The
example programs all assume the selectable address lines are grounded.

+
—
— 4 14
L1 1 8 —+
18 Pin 16 T i
ik 2416 ! 1K PIC® 15 T|H
— 3 6 I 12 (Bs) =
1K+
| | 4 5 |==] 13 (87)
5
<+ <+

How much time do math operations take?

Unsigned 8 bit operations are quite fast and floating point is very slow. If possible consider fixed
point instead of floating point. For example instead of "float cost_in_dollars;" do "long
cost_in_cents;". For trig formulas consider a lookup table instead of real time calculations (see
EX_SINE.C for an example). The following are some rough times on a 14-bit PIC®. Note times
will vary depending on memory banks used.

20 mhz PIC16

int32 float

int8 [us] int16 [us] [us] [us]

358

Common Questions & Answers

+ 0.6 1.4 3 111.
- 0.6 1.4 3 113.
* 11.1 47.2 132 178.
/ 23.2 70.8 239.2 330.
exp() * * * 1697.3
In() * * * 2017.7
sin() * * * 2184.5
40 mhz PIC18

int8 [us] int16 [us] int32 [us] float [us]
+ 0.3 0.4 0.6 51.3
- 0.3 0.4 0.6 52.3
* 0.4 3.2 22.2 35.8
/ 11.3 32 106.6 144.9
exp() * * * 510.4
In() * * * 644.8
sin() * * * 698.7

Instead of 800, the compiler calls 0. Why?

The PIC® ROM address field in opcodes is 8-10 Bits depending on the chip and specific
opcode. The rest of the address bits come from other sources. For example, on the 174 chip to
call address 800 from code in the first page you will see:

BSF 0A, 3
CALL 0

The call 0 is actually 800H since Bit 11 of the address (Bit 3 of PCLATH, Reg 0A) has been set.

Instead of AO, the compiler is using register 20. Why?

The PIC® RAM address field in opcodes is 5-7 bits long, depending on the chip. The rest of the
address field comes from the status register. For example, on the 74 chip to load AO into W you
will see:

BSF 3,5
MOVEW 20

Note that the BSF may not be immediately before the access since the compiler optimizes out
the redundant bank switches.

What can be done about an OUT OF RAM error?

359

Common Questions & Answers

The compiler makes every effort to optimize usage of RAM. Understanding the RAM allocation
can be a help in designing the program structure. The best re-use of RAM is accomplished
when local variables are used with lots of functions. RAM is re-used between functions not
active at the same time. See the NOT ENOUGH RAM error message in this manual for a more
detailed example.

RAM is also used for expression evaluation when the expression is complex. The more complex
the expression, the more scratch RAM locations the compiler will need to allocate to that
expression. The RAM allocated is reserved during the execution of the entire function but may
be re-used between expressions within the function. The total RAM required for a function is the
sum of the parameters, the local variables and the largest number of scratch locations required
for any expression within the function. The RAM required for a function is shown in the call tree
after the RAM=. The RAM stays used when the function calls another function and new RAM is
allocated for the new function. However when a function RETURNS the RAM may be re-used
by another function called by the parent. Sequential calls to functions each with their own local
variables is very efficient use of RAM as opposed to a large function with local variables
declared for the entire process at once.

Be sure to use SHORT INT (1 bit) variables whenever possible for flags and other boolean
variables. The compiler can pack eight such variables into one byte location. The compiler does
this automatically whenever you use SHORT INT. The code size and ROM size will be smaller.

Finally, consider an external memory device to hold data not required frequently. An external 8
pin EEPROM or SRAM can be connected to the PIC® with just 2 wires and provide a great deal
of additional storage capability. The compiler package includes example drivers for these
devices. The primary drawback is a slower access time to read and write the data. The SRAM
will have fast read and write with memory being lost when power fails. The EEPROM will have a
very long write cycle, but can retain the data when power is lost.

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how to use a
simple one-wire interface to transfer data between PICs®. Slower data can use pin BO and the
EXT interrupt. The built-in UART may be used for high speed transfers. An RS232 driver chip
may be used for long distance operations. The RS485 as well as the high speed UART require
2 pins and minor software changes. The following are some hardware configurations.

360

Common Questions & Answers

SIMPLE MULTIPLE PIC® BUS

B0 J BO J BO J -

PIC® PIC® PIC® cee

+5

#USE RS232 (baud=9600, float_high, bits=9, xmit=PIN BO, rcv=PIN BO)

LONG DISTANCE MUTLI-DROP BUS

+ +
| |
NP 8 6 6 8 1 = * use C6,
| C7 for
pico * |1 4 - %m% 7 4 | * PICE nigh
speed or
B2l—| 3 DS75176 DS75176 3 || B2 B0, B1 for
2 5 Several 2 5 slower
PICS can speeds
|—_L—| tap in I__|__I
- parallel =

#USE RS232 (baud=9600, bits=9, xmit=PIN *,K RCV=PIN *, enable=PIN B2)

What is an easy way for two or more PICs® to communicate?

There are two example programs (EX_PBUSM.C and EX_PBUSR.C) that show how
to use a simple one-wire interface to transfer data between PICs®. Slower data can
use pin BO and the EXT interrupt. The built-in UART may be used for high speed
transfers. An RS232 driver chip may be used for long distance operations. The
RS485 as well as the high speed UART require 2 pins and minor software changes.
The following are some hardware configurations.

361

Common Questions & Answers

SIMPLE MULTIPLE PIE BUS

| |

-5

BO BO BO

PIC® PIC® PICE| eue

#USE RES232 (baud=9500, float high, bits=9, mmt=FIN B0, rovw=FIR EO0)

LONG DISTANCE MUTLI-DROP BUS

+ +
|]
"1 aﬁws 31—* " use C4,
£ -] C7 for
PICs* |- 4 7 |outaoni) 7 4|+ PICE high
speed or
g2| | 3 DS75176 DS75176 a || B2 Bo. B1 for
2 5 Several 2 b slower
PICS can speeds
'T' tapin 'T'
- parallel

H#USE R3232 (bLaud=2600, bits=%, K xmit=PIN * K ROV=PIN *, endble=FIN B2}

What is the format of floating point numbers?

CCS uses the same format Microchip uses in the 14000 calibration constants. PCW users have a
utility Numeric Converter that will provide easy conversion to/from decimal, hex and float in a
small window in the Windows IDE. See EX_FLOAT.C for a good example of using floats or float
types variables. The format is as follows:

BYTE1 | BYTE2 _|BYIE3 _|BYIE4
Lowest
BYTE
in RAM
T % LSB
SX?JI; ot E‘ﬁ” 23 Bit Mantisa
with bias
of 7F
Example Number
0 00 00 00 o
1 7F 00 00 o
1 7F 80 00 o
" 82 20 00 00
100 85 48 o~ o6
123.45 85 76 i o
123.45E20 C8 27 4E >
123.45 E-20 43 36 2E o

362

Common Questions & Answers

!

Lowest BYTE in RAM

Why does the .LST file look out of order?

The list file is produced to show the assembly code created for the C source code. Each C
source line has the corresponding assembly lines under it to show the compiler’s work. The
following three special cases make the .LST file look strange to the first time viewer.
Understanding how the compiler is working in these special cases will make the .LST file appear
quite normal and very useful.

1. Stray code near the top of the program is sometimes under what looks like a non-executable
source line.

Some of the code generated by the compiler does not correspond to any particular source
line. The compiler will put this code either near the top of the program or sometimes under a
#USE that caused subroutines to be generated.

2. The addresses are out of order.

The compiler will create the .LST file in the order of the C source code. The linker has re-
arranged the code to properly fit the functions into the best code pages and the best half of a
code page. The resulting code is not in source order. Whenever the compiler has a discontinuity
in the .LST file, it will put a * line in the file. This is most often seen between functions and in
places where INLINE functions are called. In the case of an INLINE function, the addresses will
continue in order up where the source for the INLINE function is located.

3. The compiler has gone insane and generated the same instruction over and over.

For example:

46:CLRF 15

*

051: CLRF 15

*

113: CLRF 15

This effect is seen when the function is an INLINE function and is called from more than one
place. In the above case, the A=0 line is in an INLINE function called in four places. Each place
it is called from gets a new copy of the code. Each instance of the code is shown along with the
original source line, and the result may look unusual until the addresses and the * are noticed.

Why does the compiler show less RAM than there really is?

Some devices make part of the RAM much more ineffective to access than the standard RAM.
In particular, the 509, 57, 66, 67,76 and 77 devices have this problem.

By default, the compiler will not automatically allocate variables to the problem RAM and,
therefore, the RAM available will show a number smaller than expected.

363

Common Questions & Answers

There are three ways to use this RAM:
1. Use #BYTE or #BIT to allocate a variable in this RAM. Do NOT create a pointer to these
variables.

Example:
#BYTE counter=0x30

2. Use Read_Bank and Write_Bank to access the RAM like an array. This works well if you
need to allocate an array in this RAM.

Example:
For (i=0;1<15;1i++)
Write Bank(1l,i,getc());

For (1i=0;1<=15;1i++)
PUTC (Read Bank(1,1));

3. You can switch to larger pointers for full RAM access (this takes more ROM). In PCB add *=8
to the #device and in PCM/PCH add *=16 to the #device.

Example:
#DEVICE PIC16C77 *=16

or

#include <16C77.h>
fdevice *=16

Why does the compiler use the obsolete TRIS?

The use of TRIS causes concern for some users. The Microchip data sheets recommend not
using TRIS instructions for upward compatibility. If you had existing ASM code and it used TRIS
then it would be more difficult to port to a new Microchip part without TRIS. C does not have this
problem, however; the compiler has a device database that indicates specific characteristics for
every part. This includes information on whether the part has a TRIS and a list of known
problems with the part. The latter question is answered by looking at the device errata.

CCS makes every attempt to add new devices and device revisions as the data and errata
sheets become available.

PCW users can edit the device database. If the use of TRIS is a concern, simply change the
database entry for your part and the compiler will not use it.

Why is the RS-232 not working right?

1. The PIC® is Sending Garbage Characters.
A. Check the clock on the target for accuracy. Crystals are usually not a problem but RC
oscillators can cause trouble with RS-232. Make sure the #USE DELAY matches the
actual clock frequency.

B. Make sure the PC (or other host) has the correct baud and parity setting.

364

Common Questions & Answers

C. Check the level conversion. When using a driver/receiver chip, such as the MAX 232,
do not use INVERT when making direct connections with resistors and/or diodes. You
probably need the INVERT option in the #USE RS232.

D. Remember that PUTC(6) will send an ASCII 6 to the PC and this may not be a visible
character. PUTC('A") will output a visible character A.

2. The PIC® is Receiving Garbage Characters.
A. Check all of the above.

3. Nothing is Being Sent.

A. Make sure that the tri-state registers are correct. The mode (standard, fast, fixed) used

will be whatever the mode is when the #USE RS232 is encountered. Staying with the
default STANDARD mode is safest.

B. Use the following main() for testing:

main () {
while (TRUE)
putc ('U");

}

Check the XMIT pin for activity with a logic probe, scope or whatever you can. If you can

look at it with a scope, check the bit time (it should be 1/BAUD). Check again after the
level converter.

4. Nothing is being received.

First be sure the PIC® can send data. Use the following main() for testing:

main () {
printf ("start");
while (TRUE)
putc(getc()+1);
}

When connected to a PC typing A should show B echoed back.

If nothing is seen coming back (except the initial "Start"), check the RCV pin on the PIC®
with a logic probe. You should see a HIGH state and when a key is pressed at the PC, a
pulse to low. Trace back to find out where it is lost.

5. The PIC® is always receiving data via RS-232 even when none is being sent.
A. Check that the INVERT option in the USE RS232 is right for your level converter. If
the RCV pin is HIGH when no data is being sent, you should NOT use INVERT. If the pin

is low when no data is being sent, you need to use INVERT.

B. Check that the pin is stable at HIGH or LOW in accordance with A above when no
data is being sent.

365

Common Questions & Answers

C. When using PORT A with a device that supports the SETUP_ADC_PORTS function
make sure the port is set to digital inputs. This is not the default. The same is true for
devices with a comparator on PORT A.

6. Compiler reports INVALID BAUD RATE.

A. When using a software RS232 (no built-in UART), the clock cannot be really slow
when fast baud rates are used and cannot be really fast with slow baud
rates. Experiment with the clock/baud rate values to find your limits.

B. When using the built-in UART, the requested baud rate must be within 3% of a rate
that can be achieved for no error to occur. Some parts have internal bugs with BRGH set
to 1 and the compiler will not use this unless you specify BRGH1OK in the #USE RS232
directive.

366

;o
L\

EXAMPLE PROGRAMS

EXAMPLE PROGRAMS

A large number of example programs are included with the software. The following is a list of
many of the programs and some of the key programs are re-printed on the following pages.
Most programs will work with any chip by just changing the #INCLUDE line that includes the
device information. All of the following programs have wiring instructions at the beginning of the
code in a comment header. The SIOW.EXE program included in the program directory may be
used to demonstrate the example programs. This program will use a PC COM port to
communicate with the target.

Generic header files are included for the standard PIC® parts. These files are in the DEVICES
directory. The pins of the chip are defined in these files in the form PIN_B2. It is recommended
that for a given project, the file is copied to a project header file and the PIN_xx defines be
changed to match the actual hardware. For example; LCDRW (matching the mnemonic on the
schematic). Use the generic include files by placing the following in your main .C file:

#include <16C74.H>

LIST OF COMPLETE EXAMPLE PROGRAMS (in the EXAMPLES directory)

EX_14KAD.C
An analog to digital program with calibration for the PIC14000

EX_1920.C
Uses a Dallas DS1920 button to read temperature

EX_8PIN.C
Demonstrates the use of 8 pin PICs with their special I/O requirements

EX _92LCD.C
Uses a PIC16C92x chip to directly drive LCD glass

EX_AD12.C
Shows how to use an external 12 bit A/D converter

EX_ADMM.C
A/D Conversion example showing min and max analog readings

EX_ADMM10.C
Similar to ex_admm.c, but this uses 10bit A/D readings.

EX_ADMM_STATS.C
Similar to ex_admm.c, but this uses also calculates the mean and standard deviation.

EX_BOOTLOAD.C

A stand-alone application that needs to be loaded by a bootloader (see ex_bootloader.c for a
bootloader).

367

Example Programs

EX_BOOTLOADER.C
A bootloader, loads an application onto the PIC (see ex_bootload.c for an application).

EX_CAN.C
Receive and transmit CAN packets.

EX_CHECKSUM.C
Determines the checksum of the program memory, verifies it agains the checksum that was
written to the USER ID location of the PIC.

EX_CCP1S.C
Generates a precision pulse using the PIC CCP module

EX_CCPMP.C
Uses the PIC CCP module to measure a pulse width

EX_COMP.C
Uses the analog comparator and voltage reference available on some PIC s

EX_CRC.C
Calculates CRC on a message showing the fast and powerful bit operations

EX_CUST.C
Change the nature of the compiler using special preprocessor directives

EX_FIXED.C
Shows fixed point numbers

EX_DPOT.C
Controls an external digital POT

EX DTMF.C
Generates DTMF tones

EX_ENCOD.C
Interfaces to an optical encoder to determine direction and speed

EX_EXPIO.C
Uses simple logic chips to add 1/O ports to the PIC

EX_EXSIO.C
Shows how to use a multi-port external UART chip

EX_EXTEE.C
Reads and writes to an external EEPROM

EX_EXTDYNMEM.C

Uses addressmod to create a user defined storage space, where a new qualifier is created that
reads/writes to an extrenal RAM device.

368

Example Programs

EX_FAT.C
An example of reading and writing to a FAT file system on an MMC/SD card.

EX_FLOAT.C
Shows how to use basic floating point

EX_FREQC.C
A 50 mhz frequency counter

EX_GLCD.C
Displays contents on a graphic LCD, includes shapes and text.

EX_GLINT.C
Shows how to define a custom global interrupt hander for fast interrupts

EX_HPINT.C
An example of how to use the high priority interrupts of a PIC18.

EX_HUMIDITY.C
How to read the humidity from a Humirel HT3223/HTF3223 Humidity module

EX_ICD.C
Shows a simple program for use with Microchips ICD debugger

EX_INTEE.C
Reads and writes to the PIC internal EEPROM

EX_INTFL.C
An example of how to write to the program memory of the PIC.

EX_LCDKB.C
Displays data to an LCD module and reads data for keypad

EX_LCDTH.C
Shows current, min and max temperature on an LCD

EX_LED.C
Drives a two digit 7 segment LED

EX_LINBUS_MASTER.C
An example of how to use the LINBUS mode of a PIC's EAUSART. Talks to the
EX_LINBUS_SLAVE.C example.

EX_LINBUS_SLAVE.C
An example of how to use the LINBUS mode of a PIC's EAUSART. Talks to the
EX_LINBUS_MASTER.C example.

EX_LOAD.C
Serial boot loader program for chips like the 16F877

EX_LOGGER.C

369

Example Programs

A simple temperature data logger, uses the flash program memory for saving data

EX_MACRO.C
Shows how powerful advanced macros can be in C

EX_MALLOC.C
An example of dynamic memory allocation using malloc().

EX_MCR.C
An example of reading magnetic card readers.

EX_MMCSD.C
An example of using an MMC/SD media card as an external EEPROM. To use this card with a
FAT file system, see ex_fat.c

EX_MODBUS_MASTER.C
An example MODBUS application, this is a master and will talk to the ex_modbus_slave.c
example.

EX_MODBUS_SLAVE.C
An example MODBUS application, this is a slave and will talk to the ex_modbus_master.c
example.

EX_MOUSE.C
Shows how to implement a standard PC mouse on a PIC

EX_MXRAM.C
Shows how to use all the RAM on parts with problem memory allocation

EX_PATG.C
Generates 8 square waves of different frequencies

EX_PBUSM.C
Generic PIC to PIC message transfer program over one wire

EX_PBUSR.C
Implements a PIC to PIC shared RAM over one wire

EX_PBUTT.C
Shows how to use the B port change interrupt to detect pushbuttons

EX_PGEN.C
Generates pulses with period and duty switch selectable

EX_PLL.C
Interfaces to an external frequency synthesizer to tune a radio

EX_POWER_PWM.C
How to use the enhanced PWM module of the PIC18 for motor controls.

EX_PSP.C

370

Example Programs

Uses the PIC PSP to implement a printer parallel to serial converter

EX_PULSE.C
Measures a pulse width using timer0

EX_PWM.C
Uses the PIC CCP module to generate a pulse stream

EX_QSORT.C
An example of using the stdlib function gsort() to sort data. Pointers to functions is used by
gsort() so the user can specify their sort algorithm.

EX_REACT.C
Times the reaction time of a relay closing using the CCP module

EX_RFID.C
An example of how to read the ID from a 125kHz RFID transponder tag.

EX_RMSDB.C
Calculates the RMS voltage and dB level of an AC signal

EX_RS485.C
An application that shows a multi-node communication protocol commonly found on RS-485
busses.

EX_RTC.C
Sets and reads an external Real Time Clock using RS232

EX_RTCLK.C
Sets and reads an external Real Time Clock using an LCD and keypad

EX RTCTIMER.C
How to use the PIC's hardware timer as a real time clock.

EX_RTOS_DEMO_X.C
9 examples are provided that show how to use CCS's built-in RTOS (Real Time Operating
System).

EX_SINE.C
Generates a sine wave using a D/A converter

EX_SISR.C
Shows how to do RS232 serial interrupts

EX_STISR.C
Shows how to do RS232 transmit buffering with interrupts

EX_SLAVE.C
Simulates an 12C serial EEPROM showing the PIC slave mode

EX_SPEED.C

371

Example Programs

Calculates the speed of an external object like a model car

EX_SPI.C
Communicates with a serial EEPROM using the H/W SPI module

EX_SPI_SLAVE.C
How to use the PIC's MSSP peripheral as a SPI slave. This example will talk to the ex_spi.c
example.

EX_SQW.C
Simple Square wave generator

EX_SRAM.C
Reads and writes to an external serial RAM

EX_STEP.C
Drives a stepper motor via RS232 commands and an analog input

EX_STR.C
Shows how to use basic C string handling functions

EX_STWT.C
A stop Watch program that shows how to user a timer interrupt

EX_SYNC_MASTER.C

EX_SYNC_SLAVE.C

An example of using the USART of the PIC in synchronous mode. The master and slave
examples talk to each other.

EX_TANK.C
Uses trig functions to calculate the liquid in a odd shaped tank

EX_TEMP.C
Displays (via RS232) the temperature from a digital sensor

EX_TGETC.C
Demonstrates how to timeout of waiting for RS232 data

EX_TONES.C
Shows how to generate tones by playing "Happy Birthday"

EX_TOUCH.C
Reads the serial number from a Dallas touch device

EX_USB_HID.C
Implements a USB HID device on the PIC16C765 or an external USB chip

EX_USB_SCOPE.C
Implements a USB bulk mode transfer for a simple oscilloscope on an ext USB chip

EX_USB_KBMOUSE.C

372

Example Programs

EX_USB_KBMOUSE2.C
Examples of how to implement 2 USB HID devices on the same device, by combining a mouse
and keyboard.

EX_USB_SERIAL.C

EX_USB_SERIAL2.C

Examples of using the CDC USB class to create a virtual COM port for backwards compatability
with legacy software.

EX_VOICE.C
Self learning text to voice program

EX_WAKUP.C
Shows how to put a chip into sleep mode and wake it up

EX_WDT.C
Shows how to use the PIC watch dog timer

EX_WDT18.C
Shows how to use the PIC18 watch dog timer

EX_X10.C
Communicates with a TW523 unit to read and send power line X10 codes

EX_EXTA.C
The XTEA encryption cipher is used to create an encrypted link between two PICs.

LIST OF INCLUDE FILES (in the DRIVERS directory)

14KCAL.C
Calibration functions for the PIC14000 A/D converter

2401.C
Serial EEPROM functions

2402.C
Serial EEPROM functions

2404.C
Serial EEPROM functions

2408.C
Serial EEPROM functions

24128.C
Serial EEPROM functions

2416.C
Serial EEPROM functions

24256.C

373

Serial EEPROM functions

2432.C
Serial EEPROM functions

2465.C
Serial EEPROM functions

25160.C
Serial EEPROM functions

25320.C
Serial EEPROM functions

25640.C
Serial EEPROM functions

25C080.C
Serial EEPROM functions

68HC68R1
C Serial RAM functions

68HC68R2.C
Serial RAM functions

74165.C
Expanded input functions

74595.C
Expanded output functions

9346.C
Serial EEPROM functions

9356.C
Serial EEPROM functions

9356SPI.C
Serial EEPROM functions (uses H/W SPI)

9366.C
Serial EEPROM functions

AD7705.C
A/D Converter functions

AD7715.C
A/D Converter functions

AD8400.C

Example Programs

374

Example Programs

Digital POT functions

ADS8320.C
A/D Converter functions

ASSERT.H
Standard C error reporting

AT25256.C
Serial EEPROM functions

AT29C1024.C
Flash drivers for an external memory chip

CRC.C
CRC calculation functions

CE51X.C
Functions to access the 12CE51x EEPROM

CE62X.C
Functions to access the 12CE62x EEPROM

CE67X.C
Functions to access the 12CE67x EEPROM

CTYPE.H
Definitions for various character handling functions

DS1302.C
Real time clock functions

DS1621.C
Temperature functions

DS1621M.C
Temperature functions for multiple DS1621 devices on the same bus

DS1631.C
Temperature functions

DS1624.C
Temperature functions

DS1868.C
Digital POT functions

ERRNO.H
Standard C error handling for math errors

FLOAT.H

375

Standard C float constants

FLOATEE.C
Functions to read/write floats to an EEPROM

INPUT.C
Functions to read strings and numbers via RS232

ISD4003.C
Functions for the ISD4003 voice record/playback chip

KBD.C
Functions to read a keypad

LCD.C
LCD module functions

LIMITS.H
Standard C definitions for numeric limits

LMX2326.C
PLL functions

LOADER.C
A simple RS232 program loader

LOCALE.H
Standard C functions for local language support

LTC1298.C
12 Bit A/D converter functions

MATH.H
Various standard trig functions

MAX517.C
D/A converter functions

MCP3208.C
A/D converter functions

NJU6355.C
Real time clock functions

PCF8570.C
Serial RAM functions

PIC_USB.H
Hardware layer for built-in PIC USB

SC28L19X.C

Example Programs

376

Example Programs

Driver for the Phillips external UART (4 or 8 port)

SETIJMP.H
Standard C functions for doing jumps outside functions

STDDEF.H
Standard C definitions

STDIO.H
Not much here - Provided for standard C compatibility

STDLIB.H
String to number functions

STDLIBM.H
Standard C memory management functions

STRING.H
Various standard string functions

TONES.C
Functions to generate tones

TOUCH.C
Functions to read/write to Dallas touch devices

USB.H
Standard USB request and token handler code

USBN960X.C
Functions to interface to Nationals USBN960x USB chips

USB.C
USB token and request handler code, Also includes usb_desc.h and usb.h

X10.C
Functions to read/write X10 codes

L1117 7000777770077 7777707777777 777777777777777777777777777777777

/17 EX SQW.C /17
/17 This program displays a message over the RS-232 and /77
/// waits for any keypress to continue. The program ///
/// will then begin a 1lkhz square wave over I/0 pin BO. /77
/// Change both delay us to delay ms to make the ///
/// frequency 1 hz. This will be more visible on /7
/// a LED. Configure the CCS prototype card as follows: /17
/// insert jumpers from 11 to 17, 12 to 18, and 42 to 47. /77

LIT177 0000777777077 7 7777707777777 707777777777777777777777777777777
#ifdef PCB

#include <16C56.H>
#else

377

Example Programs

#include <16C84.H>
#endif

#use delay(clock=20000000)
#use rs232(baud=9600, xmit=PIN A3, rcv=PIN A2)

main () {
printf ("Press any key to begin\n\r");
getc();
printf ("1 khz signal activated\n\r");
while (TRUE) {
output high (PIN BO);
delay us(500);
output low (PIN BO);
delay us(500);

[I777

/77 EX STIWT.C /77
/77 This program uses the RTCC (timer0) and interrupts ///
/77 to keep a real time seconds counter. A simple stop ///
/77 watch function is then implemented. Configure the /77
/77 CCS prototype card as follows, insert jumpers from: /77
/17 11 to 17 and 12 to 18.]/

LITT77 7000777770077 7 777707777777 777777777777777777777777777777777

#include <16C84.H>

#use delay (clock=20000000)

#use rs232(baud=9600, xmit=PIN A3, rcv=PIN A2

#define INTS PER SECOND 76 //(20000000/ (4*256*256))

byte seconds; //Number of interrupts left
//before a second has elapsed

#int rtcc //This function is called
cloci_isr() { //every time the RTCC (timer0)
//overflows (255->0)
//For this program this is apx
//76 times per second.

if (--int count==0) {
++seconds;
int count=INTS PER SECOND;

}
}

main () |
byte start;
int count=INTS PER SECOND;
set rtcc(0);
setup counters (RTCC INTERNAL, RTCC DIV 256);
enable interrupts (INT RTCC);
enable interrupts (GLOBAL)
do {

378

Example Programs

printf ("Press any key to begin. \n\r");

getc();

start=seconds;

printf ("Press any key to stop. \n\r");

getc();

printf ("%u seconds. \n\r", seconds-start);
} while (TRUE) ;

L1117 7007777777007 7 7777777777777 0777 7777777777777777777777777777

/77 EX_ INTEE.C /77
/// This program will read and write to the ’83 or ’84]/
/// internal EEPROM. Configure the CCS prototype card as ///
/// follows: insert jumpers from 11 to 17 and 12 to 18. ///

[1777
#include <16C84.H>

#use delay(clock-100000000)
#use rs232 (baud=9600, xmit=PIN A3, rv+PIN A2)

#include <HEX.C>

main () {
byte i,j,address, value;

do {

printf ("\r\n\nEEPROM: \r\n") //Displays contents

for (i=0; i<3; ++1i) { //entire EEPROM
for (j=0; j<=15; ++3) { //in hex

printf ("%$2x", read eeprom(i+l6+3j));

}
printf ("\n\r");

}

printf ("\r\nlocation to change: ");

address= gethex() ;

printf ("\r\nNew value: ");

value=gethex () ;

write eeprom (address, value);
} while (TRUE)

L1117 7000777770077 7777777777777 707777777777777777777777777777777

/// Library for a Microchip 93C56 configured for a x8 ///
/17 /17
/77 org init ext eeprom(); Call before the other /77
/17 functions are used /7
/17 /77
/// write ext eeprom(a,d); Write the byte d to /77
/17 the address a /7
/17 /77
/17 d=read ext eeprom (a); Read the byte d from /7
/// the address a. /17

379

Example Programs

/// The main program may define eeprom select, ///
/17 eeprom_di, eeprom do and eeprom clk to override /17
/// the defaults below. ///

LITD77 0000077770077 7 777707077777 77777 777777777777 7777777777777777

#ifndef EEPROM SELECT

#define EEPROM_SELECT PIN_B7
#define EEPROM_CLK PIN_B6
#define EEPROM DI PIN BS
#define EEPROM_ DO PIN B4
#endif

#define EEPROM ADDRESS byte

#define EEPROM SIZE 256
void init ext eeprom () {

byte cmd[2];

byte 1i;

output low (EEPROM DI) ;
Output_lOW(EEPROM_CLK);
Output_low(EEPROM_SELECT);

cmd[0]=0x80;
cmd([1]=0x9;

for (i=1; 1i<=4; ++1)
shift left(cmd, 2,0);

output high (EEPROM SELECT) ;

for (i=1; i<=12; ++1i) {
output bit (EEPROM DI, shift left(cmd, 2,0));
output high (EEPROM CLK) ;
output low (EEPROM CLK) ;

output low (EEPROM DI) ;
Output_low(EEPROM_SELECT);
}

void write ext eeprom (EEPROM ADDRESS address, byte data) {
byte cmd[3];
byte i;

cmd [0]=data;
cmd[1l]=address;
cmd [2]=0xa;

for (i=1;1i<=4;++1)
shift left(cmd, 3,0);

output high (EEPROM SELECT) ;

for (i=1;1i<=20;++1) {
output _bit (EEPROM DI, shift left (cmd,3,0));
output high (EEPROM CLK) ;
output low (EEPROM CLK) ;

}

output low (EEPROM DI);

380

Example Programs

output low (EEPROM SELECT) ;
delay ms(11);
}

byte read ext eeprom(EEPROM ADDRESS address) {
byte cmd[3];
byte i, data;

cmd[0]=0;
cmd[1l]=address;
cmd [2]=0xc;

for(i=1;i<=4;++1)

shift left(cmd, 3,0);
output_high (EEPROM SELECT) ;
for (i=1;1<=20;++1) {

output bit (EEPROM DI, shift left (cmd,3,0));

Output_high (EEPROM_CLK);

Output_low (EEPROM_CLK) ;

if (1>12)

shift left (&data, 1, input (EEPROM DO));

}
Output_low (EEPROM_SELECT);
return (data) ;

LITT77 7000777770077 7 777707777777 777777777777777777777777777777777

/// This file demonstrates how to use the real time ///
/77 operating system to schedule tasks and how to use /77
/// the rtos run function. ///
/7 ///

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 77 7707777777777 7777777777777 7777777777777777777777777777777

#include <18F452.h>
#fuse delay(clock=20000000)
#use rs232 (baud=9600,xmit=PIN C6, rcv=PIN C7)
// this tells the compiler that the rtos functionality will be needed,
that
// timer0 will be used as the timing device, and that the minor cycle for
// all tasks will be 500 miliseconds
#use rtos(timer=0,minor cycle=100ms)
// each function that is to be an operating system task must have the
#task
// preprocessor directive located above it.
// in this case, the task will run every second, its maximum time to run
is
// less than the minor cycle but this must be less than or equal to the
// minor cycle, and there is no need for a queue at this point, so no
// memory will be reserved.
#task (rate=1000ms, max=100ms)
// the function can be called anything that a standard function can be
called
void The first rtos task ()
{

printf ("1\n\zr");

381

Example Programs

}

#task (rate=500ms, max=100ms)
void The second rtos task ()
{
printf ("\t2!\n\r");
}
#task (rate=100ms, max=100ms)
void The third rtos task ()
{
printf ("\t\t3\n\r");
}
// main 1is still the entry point for the program
void main ()
{
// rtos_run begins the loop which will call the task functions above at
the
// schedualed time
rtos run ();

LITT77 0000777770077 7777707777777 777777777777777777777777771777777

/// This file demonstrates how to use the real time ///
/77 operating system rtos terminate function /77
/17 /77

/77 this demo makes use of the PIC18F452 prototyping board ///
L1170 7770777777777 7777 777777777777 7777777777777777777777777777777

#include <18F452.h>
#use delay(clock=20000000)
#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)
// a counter will be kept
int8 counter;
#task (rate=1000ms, max=100ms)
void The first rtos task ()
{
printf ("1\n\r");
// 1f the counter has reached the desired wvalue, the rtos will
terminate
if (++counter==5)
rtos_terminate ();
}
#task (rate=500ms, max=100ms)
void The second rtos task ()
{
printf ("\t2!\n\r");
}
#task (rate=100ms, max=100ms)
void The third rtos task ()
{
printf ("\t\t3\n\r");
}
void main ()
{
// main is the best place to initialize resources the the rtos is
dependent

382

Example Programs

// upon
counter = 0;
rtos_run ();

// once the rtos terminate function has been called, rtos run will

return
// program control back to main
printf ("RTOS has been terminated\n\r");

L1117 7007777777007 7 7777777777777 0777 7777777777777777777777777777

/// This file demonstrates how to use the real time ///
/// operating system rtos enable and rtos_disable functions ///
/17]/

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 777777777777 777

#include <18F452.h>
#use delay(clock=20000000)
#use rs232 (baud=9600, xmit=PIN C6,rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)
int8 counter;
// now that task names will be passed as parameters, it is best
// to declare function prototypes so that their are no undefined
// identifier errors from the compiler
#task (rate=1000ms, max=100ms)
void The first rtos task ();
#task (rate=500ms, max=100ms)
void The second rtos task ();
#task (rate=100ms, max=100ms)
void The third rtos task ();
void The first rtos task () {
printf ("1\n\r");
if (counter==3)
{
// to disable a task, simply pass the task name
// into the rtos disable function
rtos disable(The third rtos task);
}
}

void The second rtos task () {
printf ("\t2!\n\r");
if (++counter==10) {
counter=0;
// enabling tasks is similar to disabling them
rtos_enable(The third rtos task);
}
}
void The third rtos task () {
printf ("\t\t3\n\r");
}

void main () {
counter = 0;
rtos run ();

383

Example Programs

L1117 0007777777007 7777777777777 0777 7777777777777777777777777777

/// This file demonstrates how to use the real time /77
/17 operating systems messaging functions ///
/7 /17

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 77 7777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)

int8 count;

// each task will now be given a two byte gqueue
#task (rate=1000ms, max=100ms, queue=2)

void The first rtos task ();

#task (rate=500ms, max=100ms, queue=2)
void The second rtos task ();
void The first rtos task () {

// the function rtos msg poll will return the number of messages in the
// current tasks queue

// always make sure to check that their is a message or else the read
// function will hang

if (rtos_msg poll ()>0){
// the function rtos msg read, reads the first value in the queue
printf ("messages recieved by taskl : %i\n\r",rtos msg read ());

// the funciton rtos msg send, sends the value given as the
// second parameter to the function given as the first
rtos msg send(The second rtos task,count);

count++;
}
}
void The second rtos task () {
rtos msg send(The first rtos task,count);
if (rtos _msg poll ()>0){
printf ("messages recieved by task2 : %$i\n\r",rtos msg read ());
count++;
}
}
void main () {
count=0;

rtos_run();

L1117 7000777770077 7777707777777 777777777777777777777777777777777

/// This file demonstrates how to use the real time /77
/17 operating systems yield function ///
/17 /17

/// this demo makes use of the PIC18F452 prototyping board ///
L1717 777777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)

#task (rate=1000ms, max=100ms, queue=2)

384

Example Programs

void The first rtos task ();

#task (rate=500ms, max=100ms, queue=2)
void The second rtos task ();
void The first rtos task () |

int count=0;
// rtos_yield allows the user to break out of a task at a given point
// and return to the same ponit when the task comes back into context
while (TRUE) {
count++;
rtos msg send(The second rtos task,count);
rtos _yield ();
}
}
void The second rtos task () {
if (rtos _msg poll())
{
printf ("count is : %i\n\r",rtos msg read ());
}
}
void main () {
rtos_run();

NN,

/77 This file demonstrates how to use the real time /77
/17 operating systems yield function signal and wait ///
/17 function to handle resources ///
/17 /17

/77 this demo makes use of the PIC18F452 prototyping board ///
L1177 777777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232 (baud=9600,xmit=PIN C6, rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms)

// a semaphore is simply a shared system resource

// in the case of this example, the semaphore will be the red LED
int8 sem;

#define RED PIN_B5

#task (rate=1000ms, max=100ms, queue=2)

void The first rtos task ();
#task (rate=1000ms, max=100ms, queue=2)
void The second rtos task ();
void The first rtos task () {
int i;

// this will decrement the semaphore variable to zero which signals
// that no more user may use the resource
rtos wait (sem) ;
for (i=0;1i<5;i++) {
output low (RED); delay ms (20); output high (RED);
rtos_yield ();
}

// this will inrement the semaphore variable to zero which then signals

// that the resource is available for use
rtos_signal (sem) ;

385

Example Programs

void The second rtos task () {
int 1i;
rtos wait (sem);
for (1i=0;1<5;1i++) {
output high (RED); delay ms(20); output low (RED);
rtos _yield ();
}
rtos _signal (sem) ;
}
void main () {
// sem is initialized to the number of users allowed by the resource
// in the case of the LED and most other resources that limit is one
sem=1;
rtos_run();

LITT77 7000777770077 7 777707777777 777777777777777777777777777777777

/77 This file demonstrates how to use the real time ///
/17 operating systems await function ///
/17 /17

/77 this demo makes use of the PIC18F452 prototyping board ///
L1177 77707 777777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232 (baud=9600, xmit=PIN C6, rcv=PIN C7)
#use rtos(timer=0,minor cycle=100ms)

#define RED PIN B5

#define GREEN PIN A5

int8 count;

#task (rate=1000ms, max=100ms, queue=2)

void The first rtos task ();

#task (rate=1000ms, max=100ms, queue=2)
void The second rtos task ();

void The first rtos task () {

// rtos_await simply waits for the given expression to be true

// if it is not true, it acts like an rtos_yield and passes the system
// to the next task

rtos await (count==10);

output low (GREEN); delay ms(20); output high (GREEN) ;

count=0;
}
void The second rtos task () {
output low(RED); delay ms(20); output high (RED);
count++;
}
void main () {
count=0;

rtos_run();

NN,

/// This file demonstrates how to use the real time /77
/17 operating systems statistics features /17
/17 /17

386

Example Programs

/// this demo makes use of the PIC18F452 prototyping board ///
L1177 77 7777777777 777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms,statistics)

// This structure must be defined inorder to retrieve the statistical
// information

struct rtos stats {

int32 task total ticks; // number of ticks the task has used
intlé task min ticks; // the minimum number of ticks used
intl6 task max ticks; // the maximum number of ticks ueed
intl6 hns per tick; // us = (ticks*hns per tic)/10

}i
#task (rate=1000ms, max=100ms)

void The first rtos task ();
#task (rate=1000ms, max=100ms)
void The second rtos task ();
void The first rtos task () {

struct rtos_stats stats;
rtos_stats(The second rtos task, &stats);

printf ("\n\r");
printf ("task total ticks : %Lius\n\r"

(int32) (stats.task total ticks)*stats.hns per tick);
printf ("task min ticks : %Lius\n\r"

(int32) (stats.task min ticks) *stats.hns per tick);
printf ("task max ticks : $Lius\n\r"

(int32) (stats.task max ticks)*stats.hns per tick);
printf ("\n\r");
}

void The second rtos task () {
int i, count = 0;
while (TRUE) {
if (rtos_overrun(the second rtos task)) {
printf ("The Second Task has Overrun\n\r\n\r");
count=0;
}
else
count++;

for (i=0;i<count;i++)
delay ms(50);

rtos_yield();
}
}
void main () {
rtos run ();

L1117 7000777777077 7777707777777 707777777777777777777777777777777

/// This file demonstrates how to create a basic command ///
/// line using the serial port withought having to stop ///

/// RTOS operation, this can also be considered a /17
/17 semi kernal for the RTOS. /77

387

Example Programs

/17 /17
/// this demo makes use of the PIC18F452 prototyping board ///
L1107 7777 77777777 777777777777777777777777777777777777777

#include <18F452.h>

#use delay(clock=20000000)

#use rs232(baud=9600,xmit=PIN C6,rcv=PIN C7)

#use rtos(timer=0,minor cycle=100ms)

#define RED PIN B5

#define GREEN PIN A5

#include <string.h>

// this character array will be used to take input from the prompt
char input [30 1;

// this will hold the current position in the array
int index;

// this will signal to the kernal that input is ready to be processed
intl input ready;

// different commands

char enl [] = "enablel";

char en2 [] = "enable2";

char disl [] "disablel";

char dis2 [] = "disable2";

#task (rate=1000ms, max=100ms)

void The first rtos task ();

#task (rate=1000ms, max=100ms)

void The second rtos task ();

#task (rate=500ms, max=100ms)

void The kernal ();

// serial interupt

#int rda

void serial interrupt ()

{

if (index<29) {
input [index] = getc (); // get the value in the serial recieve
reg
putc (input [index]); // display it on the screen
if (input[index]==0x0d) { // if the input was enter
putc('\n');
input [index] = '\0'; // add the null character
input ready=TRUE; // set the input read variable to true
index=0; // and reset the index
}
else if (input[index]==0x08) {
if (index > 1) {
putc (' ");
putc (0x08) ;
index-=2;
}
}
index++;
}
else {
putc ('"\n');
putc ('"\r');
input [index] = '\0';
index = 0;
input ready = TRUE;

388

Example Programs

}
}
void The first rtos task () |
output low(RED); delay ms(50); output high (RED) ;
}
void The second rtos task () {
output low (GREEN); delay ms(20); output high (GREEN) ;
}

void The kernal () {
while (TRUE) {
printf ("INPUT:> ");

while (!input ready)
rtos_yield ();

printf ("%$S\n\r%S\n\r", input , enl);
if (!strcmp(input , enl))
rtos _enable (The first rtos task);
else if (!strcmp(input , en2))
rtos_enable (The second rtos task);
else if (!strcmp(input , disl))
rtos disable (The first rtos task);
else if (!strcmp (input , dis2))
rtos disable (The second rtos_task);
else
printf ("Error: unknown command\n\r");
input ready=FALSE;
index=0;
}
}
void main () {
// initialize input variables
index=0;

input ready=FALSE;

// initialize interrupts
enable interrupts (int rda);
enable interrupts(global);
rtos run();

389

;o
L\

SOFTWARE LICENSE AGREEMENT

SOFTWARE LICENSE AGREEMENT

By opening the software diskette package, you agree to abide by the following provisions. If you
choose not to agree with these provisions promptly return the unopened package for a refund.

1. License- Custom Computer Services ("CCS") grants you a license to use the software
program ("Licensed Materials") on a single-user computer. Use of the Licensed Materials on a
network requires payment of additional fees.

2. Applications Software- Derivative programs you create using the Licensed Materials
identified as Applications Software, are not subject to this agreement.

3. Warranty- CCS warrants the media to be free from defects in material and workmanship and
that the software will substantially conform to the related documentation for a period of thirty
(30) days after the date of your purchase. CCS does not warrant that the Licensed Materials will
be free from error or will meet your specific requirements.

4. Limitations- CCS makes no warranty or condition, either expressed or implied, including but
not limited to any implied warranties of merchantability and fitness for a particular purpose,
regarding the Licensed Materials.

Neither CCS nor any applicable licensor will be liable for an incidental or consequential
damages, including but not limited to lost profits.

5. Transfers- Licensee agrees not to transfer or export the Licensed Materials to any country
other than it was originally shipped to by CCS.

The Licensed Materials are copyrighted

© 1994-2010 Custom Computer Services Incorporated
All Rights Reserved Worldwide

P.O. Box 2452

Brookfield, WI 53008

391

