NFC Tag LSI Application Note

Version 1.5

Trademark Usage

•Wi-Fi is a registered trademark of the Wi-Fi Alliance.

•Bluetooth is a registered trademark of the Bluetooth SIC, Inc.

•FeliCa is a trademark of Sony Corporation.

•FeliCa is the contactless IC card technology developed by Sony Corporation.

•Windows is a registered trademark of Microsoft Corporation in the United States and other countries.

•Android is a trademark of Google Inc.

·Eclipse is a trademark of Eclipse Foundation, Inc.

•MIFARE is a trademark of NXP Semiconductors.

•Osaifu-Keitai is a trademark or registered trademark of NTT DOCOMO, INC. in Japan and/or other countries.

Panasonic ____

•'taspo' is a registered trademark of the Tobacco Institute of Japan.

•Suica is a registered trademark of East Japan Railway Company.

•Edy is a registered trademark of Rakuten Edy, Inc.

•All other trademarks are the property of their respective owners.

NFC Tag LSI Application Note Version 1.5

Contents(1/2) Chapter 1 Introduction 1.1 Purpose 1.2 Organization Chapter 2 About NFC Tag LSI 2.1 Overview

2.1 Overview		P5
2.2 Key Applications		P5
2.3 List of Specifications		P6
2.4 Features		P6
2.4.1 Three Communication Modes		P6
2.4.1.1 RF Communication Mode		Ρ7
2.4.1.2 Serial Communication Mode		Ρ7
2.4.1.3 Tunnel Communication Mode		Ρ7
2.4.2 Functionality to Reduce Power and Utilize I	nterfaces Flexibly	P8
2.4.2.1 Batteryless Communication		P8
2.4.2.2 Built-in Non-volatile Memory		P8
2.4.2.3 Interrupt from RF Signal		P8
2.4.3 High Functionality		P8
2.4.3.1 Encryption		P8
2.4.3.2 NDEF Format		P8
2.5 Hardware Configuration		P9
2.5.1 Internal Configuration of the LSI		P9
2.5.2 Pin Configuration		P9

.....P4

P4

Chapter 3 Designing NFC Tag System Hardware

3.1 Hardware Design Flow	 P11
3.2 Determining the System Configuration	 P11
3.3 Determining the Block Configuration	 P12
3.4 Designing the NFC Tag Block Circuit	 P13
3.5 Designing the NFC Tag Block Pattern	 P14

Chapter 4 Designing NFC Tag System Software

4.1 Software Required for NFC Tag	 P15
4.2 RF Communication Mode Operation Flow	 P16
4.3 Serial Communication Mode Operation Flow	 P17
4.4 Tunnel Communication Mode Operation Flow	 P18

Contents(2/2)

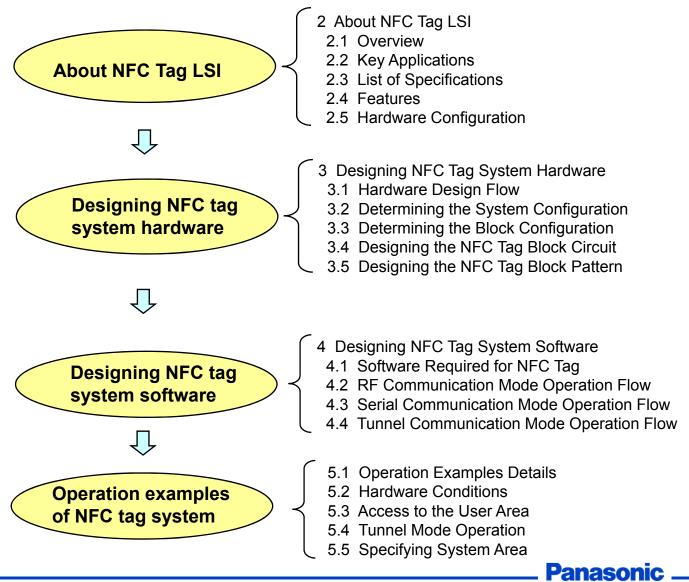
Chapter 5 Operation Examples

5.1 Operation Examples Details		P19
5.2 Hardware Conditions		
5.3 Access to the User Area		P20
5.3.1 Access from the Host Controller (Serial)		P21
5.3.1.1 Operation Flow Details		P22
5.3.2 Access from Smartphone (FeliCa)		P25
5.3.2.1 Operation Flow Details		P26
5.3.2.2 Transmission/Reception Data Details		P27
5.3.3 Access from Smartphone (TYPE-B)		P30
5.3.3.1 Operation Flow Details		P31
5.3.3.2 Transmission/Reception Data Details		P32
5.4 Tunnel Mode Operation		P35
5.4.1 Operation from Smartphone (FeliCa)		P36
5.4.1.1 Operation Flow Details		P37
5.4.1.2 Transmission/Reception Data Details		P41
5.4.1 Operation from Smartphone (TYPE-B)		P44
5.4.2.1 Operation Flow Details		P45
5.4.2.2 Transmission/Reception Data Details		P46
5.5 Specifying System Area		
e		
5.5.1.1 Operation Flow Details		P51
5.5.2 Setting from Smartphone (FeliCa)		P53
5.5.2.1 Operation Flow Details		P54
•		P55
5.5.3 Setting from Smartphone (TYPE-B)		P58
5.5.3.1 Operation Flow Details		P59
5.5.3.2 Transmission/Reception Data Details		P60
Appendix		
		P63
Appendix 2 Serial Communication Demonstration		P67
Appendix 3 Tunnel Communication Demonstration		P68
Appendix 4 Environment to Provide Application Softwa		P69
	· · · · · · · · · · · · · · · · · · ·	P70
Appendix 6 Design Data of NFC Tag Antenna Board .		P73
		P75

1. Introduction

1.1 Purpose

This is an introduction guide for the NFC Tag LSI, which covers the following.


- Introduction and Overview of NFC Tag LSI
- Information necessary for setting up a system with the NFC Tag LSI

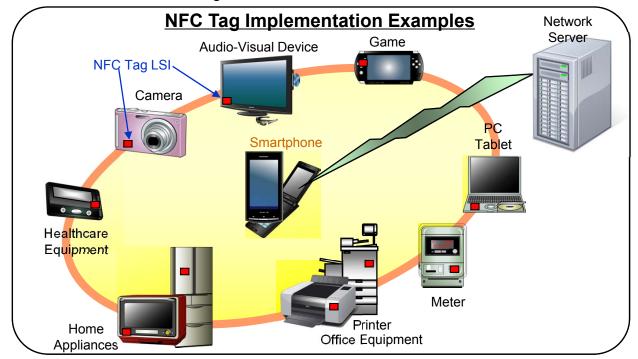
This includes typical usage examples.

When using this chip in your own environment, refer to the reference data that are introduced in this document.

1.2 Organization

This document is organized as follows:

2 About NFC Tag LSI


2.1 Overview

NFC-tag LSI is an NFC tag LSI, which is capable of communication with smartphone or other reader/writers.

It features built-in RF interface and wired serial interface, and includes a non-volatile memory that allows bidirectional access.

This LSI allows existing applications to easily perform RF communication.

In other words, mounting the NFC tag LSI in various applications enables them to be connected each other through NFC communication.

2.2 Key Applications

The NFC tag LSI intends for audio-visual devices, home appliances, and other applications. When this LSI is mounted in various applications, the following operations are allowed using smartphone or other reader/writers.

Controlling home appliances and audio-visual devices from smartphone

Smartphone can read/write information from/to applications with built-in NFC tag LSI.

• When the application is in error state, the error is reported using the data stored in the built-in non-volatile memory.

This LSI's built-in non-volatile memory allows data to be read/written from/to a smartphone while the application's battery is off.

Fast data communication with handover

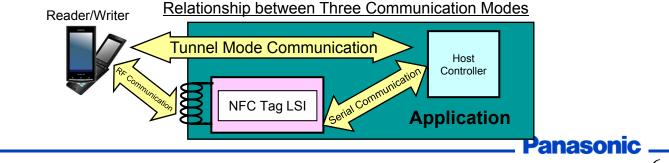
Only paring is performed in NFC communication and high capacity data communication is allowed in Bluetooth and Wi-Fi.

2.3 List of Specifications

The NFC Tag LSI has a functionality optimized for RF interface implementation on applications. Its key specifications are listed in the table below.

List of Specifications

	Function		N	C tag LSI	
Part No.		MN63Y1212	MN63Y1213	MN63Y1208	MN63Y1210A
Package		HSC	DN8	QFN16	SSOP16
Operating	g voltage		1.7 V	′ to 3.6 V	1.8 V to 5.5 V
Built-in n	on-volatile memory		4 K	bit FeRAM	
RF commu-	Supported communication specification	ISO/IEC14443 TypeB(NFC-B) JIS X 6319-4 FeliCa(NFC-F)			
	NFC Forum tag	Type4, Type3			Туре3
nication	Batteryless communication	Yes			
	Encryption	Yes (AES)			No
Wired commu- nication	Interface specification		I2C (20 k⊢	lz to 100 kHz)	CLK Synchronous Serial (Up to 1 MHz)/ UART(Up to 38.4 kbps)
	Interrupt	Yes			
RF and w	vired direct communications	Yes (tunnel communication mode)			

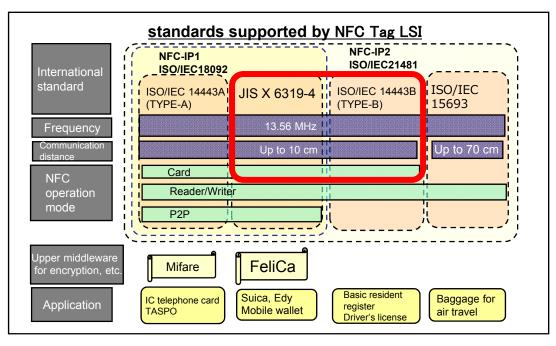

2.4 Features

Based on the list of specifications described in Section 2.3, this section provides the features of NFC Tag LSI.

2.4.1 Three Communication Modes

The NFC Tag LSI allows itself or its application's host controller to perform the following data communications with smartphone or other reader/writers.

- RF communication mode: Reader/Writer ⇔ NFC Tag LSI
- Serial communication mode: Host controller ⇔ NFC Tag LSI
- Tunnel communication mode: Reader/Writer
 Host controller


NFC Tag LSI Application Note Version 1.5

2.4.1.1 RF Communication Mode

The NFC Tag LSI supports 2 RF communication standards: ISO/IEC14443 TTPE-B and JIS X 6319-4 (FeliCa).

The standards above are typical in the world of communication, so the NFC Tag LSI supports applications for global market.

The area enclosed by a red line in the table below shows the NFC standards supported by the NFC Tag LSI.

2.4.1.2 Serial Communication Mode

MN63Y1208 and MN63Y1213 provide a serial communication interface with host controller, which is compatible with I2C.

The specifications of I2C supported is as follows: Operating frequency: 100 kHz Operating mode: Slave mode Data format: 7-bit addressing

MN63Y1210A provides a serial communication interface with host controller, which is compatible with CLK Synchronous Serial and UART.

2.4.1.3 Tunnel Communication Mode

Operation mode used when performing direct data communication between reader/writer and application's host controller via the NFC Tag LSI. In this mode, reader/writer accesses the virtual memory area of the host controller.

2.4.2 Functionality to Reduce Power and Utilize Interfaces Flexibly

The NFC Tag LSI has a functionality to minimize standby power and utilize both RF and serial communication interfaces flexibly.

2.4.2.1 Batteryless Communication

The NFC Tag LSI can operate as a non-volatile memory while no power is supplied from its application. (An alternating magnet field from a sender produces the power necessary for operating the LSI.)

The NFC Tag LSI can add RF communication function to applications without increasing standby power.

It can also operates even while its application's power is off.

2.4.2.2 Built-in Non-volatile Memory

The NFC Tag LSI has a built-in ferroelectric memory (FeRAM) of 4 kbits as non-volatile memory.

The memory allows for RF and serial communications with time lag.

For example, data, which is written to the NFC Tag LSI's built-in memory from a reader/writer while the application's power is off, can be read by the host controller when the application's power is turned on.

2.4.2.3 Interrupt from RF Signal

It is possible to output an interrupt signal to the host controller, based on RF signal. This function can be used even in batteryless communication.

For example, a reader/writer can control the system's power-on wirelessly.

Interrupt signal generation conditions can be set in the NFC Tag LSI's non-volatile memory.

However, the condition cannot be changed for MN63Y1210A.

2.4.3 High Functionality

The NFC Tag LSI also has a functionality to meet higher usage requirements.

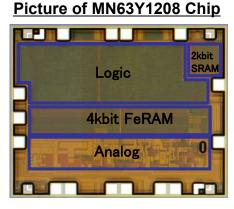
2.4.3.1 Encryption

RF communication is vulnerable to interception because signals travel outside of applications.

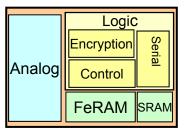
In order to address this issue, this LSI provides AES encryption for RF communication. However, MN63Y1210A does not have encryption circuit.

2.4.3.2 NDEF Format

The NFC Tag LSI supports the NDEF data format specified in the NFC Forum tag. The support for the standard data format allows a link to certain URL and other settings for a wide variety of NFC-enabled devices.


2.5 Hardware Configuration

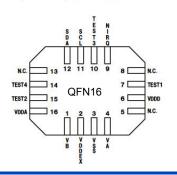
2.5.1 Internal Configuration of the LSI


The hardware of MN63Y1208 includes the following functional blocks.

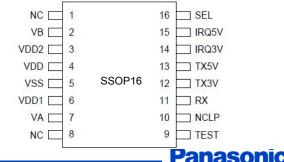
Analog block: RF interface circuit, power circuit, clock generation circuit Logic block: Control circuit, encryption circuit, I2C interface circuit FeRAM block: 4-kbit FeRAM (Ferroelectric memory) SRAM block: 2-kbit SRAM

MN63Y1210A does not have encryption circuit and I2C interface circuit, but instead contains UART and CLK synchronous serial interface circuit.

NFC Tag Block



2.5.2 Pin Configuration


The pin information on MN63Y1208, MN63Y1212, MN63Y1213, and MN63Y1210A are as follows: Pin configuration and package of MN63Y1210A

Pin configuration and package of MN63Y1208

Pin No.	Name	I/O	Output type	Description
1	VB	I/O	-	Connected to coil
2	VDDEX	-	Power	Contact power supply (Apply 1.7 V through 3.6 V.)
3	VSS	-	GND	Ground
4	VA	I/O	-	Connected to coil
5	N.C.	-	-	Not connected
6	VDDD	-	Power	Internal digital power supply (Connect a capacitor between this pin and VSS.)
7	TEST1	Input	-	Test control (Normally connected to VSS)
8	N.C.	-	-	Not connected
9	NIRQ	Output	Open Drain	Interrupt request output
10	TEST3	Input	-	Test control (Normally connected to VSS)
11	SCL	Input	-	Host interface (I2C: 100 kHz)
12	SDA	I/O	Open Drain	Host interface (I2C: 100 kHz)
13	N.C.	-	-	Not connected
14	TEST4	Input	-	Test control (Normally connected to VSS)
15	TEST2	Input	-	Test control (Normally connected to VSS)
16	VDDA	-	Power	Internal analog power supply (Connect a capacitor between this pin and VSS.)

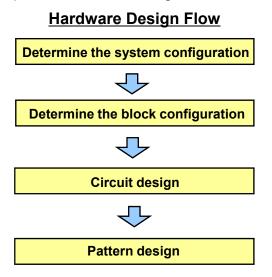
Pin No.	Name	I/O	5V tolerant	Output type	Description
1	NC	-	-	-	Not connected
2	VB	I/O	-	-	Connected to coil
3	VDD2	-	-	Power	Serial interface power supply (Apply 1.8 V through 3.6 V or 4.5 V through 5.5 V.
4	VDD	-	-	Power	Internal digital power supply (Connect a capacitor between this pin and VSS.)
5	VSS	-	-	GND	Ground
6	VDD1	-	-	Power	Internal analog power supply (Connect a capacitor between this pin and VSS.)
7	VA	I/O	-	-	Connected to coil
8	NC	-	-	-	Not connected
9	TEST	Input	No	-	Test control (Normally connected to VSS)
10	NCLP	-	No	-	Clamp control
11	RX	Input	Yes	-	Data reception (UART: RX, Clock sync: SCK)
12	TX3V	I/O	No	Open Drain	Data transmission for 3 V (UART: TX, Clock sync: I/O)
13	TX5V	I/O	Yes	Open Drain	Data transmission for 5 V (UART: TX, Clock sync: I/O)
14	IRQ3V	Output	No	Open Drain	Interrupt request output for 3 V
15	IRQ5V	Output	Yes	Open Drain	Interrupt request output for 5 V
16	SEL	Input	No	-	Serial interface selection

9

Pin configuration and package of MN63Y1212

Pin No.	Name	I/O	I/O type	Description
1	VB	I/O	-	Connected to coil
2	N.C.	-	-	TEST pin. Left this pin open or connect this pin to ground.
3	VSS	-	GND	Ground
4	VA	I/O	-	Connected to coil
5	NIRQ	Output	Open Drain	Interrupt request output When using this pin: Pull this pin up to the power supply associated with NIRQ. When not using this pin: Left it open or connect it to ground.
6	N.C.	-	-	TEST pin. Left this pin open or connect this pin to ground.
7	N.C.	-	-	TEST pin. Left this pin open or connect this pin to ground.
8	VDDA	-	Power	Internal analog power supply (Connect a capacitor between this pin and VSS.)
			V D A 8	

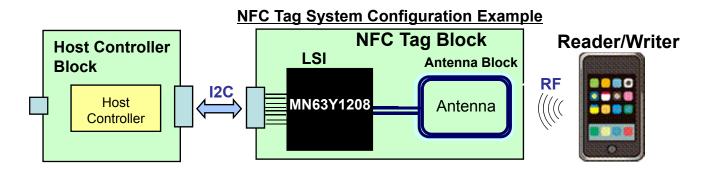
Pin configuration and package of MN63Y1213


Pin No.	Name	I/O	Output type	Description	
1	VB	I/O	-	Connected to coil	
2	VDDEX	-	Power	Contact power supply (Apply 1.7 V through 3.6 V.)	
3	VSS	-	GND	Ground	
4	VA	I/O	-	Connected to coil	
5	NIRQ	Output	Open Drain	Interrupt request output	
6	SCL	Input	-	Host interface (I2C: 100 kHz)	
7	SDA	I/O	Open Drain	Host interface (I2C: 100 kHz)	
8	VDDA	-	Power	Internal analog power supply (Connect a capacitor between this pin and VSS.)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					

3. Designing NFC Tag System Hardware

This chapter describes the design of an NFC tag system hardware with MN63Y1208.

3.1 Hardware Design Flow


The flow of designing a hardware is summarized below. Subsequent descriptions follow this design flow.

3.2 Determining the System Configuration

First, determine the system configuration based on requirements for NFC tag system and the communication mode of the NFC tag LSI.

A typical system configuration example used in this document is illustrated below.

The figure above is based on all communication modes. The blocks required vary with the communication mode used.

·I2C communication: Host control block, NFC tag block (LSI)

•RF communication: Reader/Writer, NFC tag block (LSI, antenna)

• Tunnel mode communication: Reader/Writer, host control block, NFC tag block (LSI, antenna)

Panasonic _

3.3 Determining the Block Configuration

Next, determine the basic block configuration.

Required functions and hardware examples by block are as follows:

Required Functions and Hardware Example by Block

Block		Required Functions	Necessary Hardware	
Host cont	Host control Interface voltage: 1.7 V to 3.6 V Microcontroller I2C communication function (100 kHz) (NFC Tag LSI power supply control signal) Microcontroller (Interrupt function) I2C signal processing, RF signal processing MN63Y1208 tag LSI, and		Microcontroller	
NFC LSI tag		I2C signal processing, RF signal processing	e	
	Antenna	RF signal reception	Antenna, and capacitor for resonant frequency adjustment	
Reader/Writer		NFC Forum -compliant communication	Smartphone with built-in NFC function	

Host control block:

Select the controller supporting the following functions.

- I/O voltage: 1.8 V or 3.3 V
- I2C communication function
- (As needed) GPIO with a high output current capacity of at least 500 μA for battery off
- (As needed) interrupt function for detecting interrupt from RF signal

LSI of NFC tag block:

NFC tag LSI and peripheral components are required.

For more information, see Section 3.4.

Antenna of NFC tag block:

Adjusted antenna and resonant capacitor are required.

For more information, see the following URL.

http://www.semicon.panasonic.co.jp/en/tool/nfcdesignnavigator/index.html

Reader/Writer:

Reader/Writer for NFC communication

For Reference:

We provide a demonstration environment, in which block configuration is as follows:

- Host control block: Host board with our on-board microcontroller (MN101EF63G)
- NFC tag block: ANT4030_02_0505_B0_L (our NFC tag board)

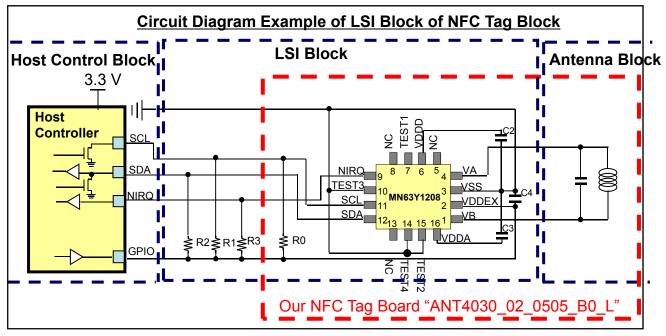
For reference circuit, see Section 3.4.

LSI: For more information, see Section 3.4.

Antenna: Our antenna board for demonstration

Application software for reader/writer: Android application software for smartphone

NFC Tag LSI Application Note Version 1.5


3.4 Designing the NFC Tag Block Circuit

A circuit diagram example using MN63Y1208 is shown below. For information about antenna block, see the following URL.

http://www.semicon.panasonic.co.jp/en/tool/nfcdesignnavigator/index.html

For information about connections, see the figure below.

For information about the tag LSI's peripheral components, see the table below.

NFC Tag LSI's Peripheral Components

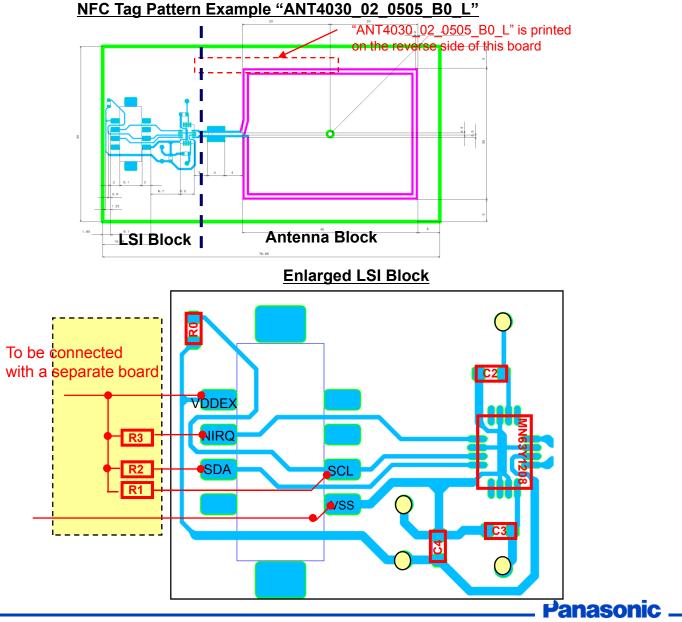
External Components	Recommended Value	Description
R1, R2	3.3 kΩ	Pullup resistors for I2C signal line Determine the values based on data rate, wiring capacitance, and current capacity. Unmounted on our NFC tag board "ANT4030_02_0505_B0_L."
R3	3.3 kΩ	Pullup resistor for interrupt signal line Determine the values based on wiring capacitance and current capacity. Unmounted on our NFC tag board "ANT4030_02_0505_B0_L."
C2, C3, C4	0.1 μF	Capacitors between power supplies for stabilizing the tag LSI operation. Their values are fixed. C2 is connected to VDDD; C3 to VDDA, C4 to VDDEX.
R0	100 kΩ	Pullup resistor to prevent the undefined state of SCL leading to malfunction. Necessary when R1 is connected to the NFC tag LSI.

Note: R1, R2, and R3 on the tag LSI's peripheral circuit is unnecessary for RF communication. When using our NFC tag board "ANT4030_02_0505_B0_L," mount these resistors on the host control block side of the board.

NFC Tag LSI Application Note Version 1.5

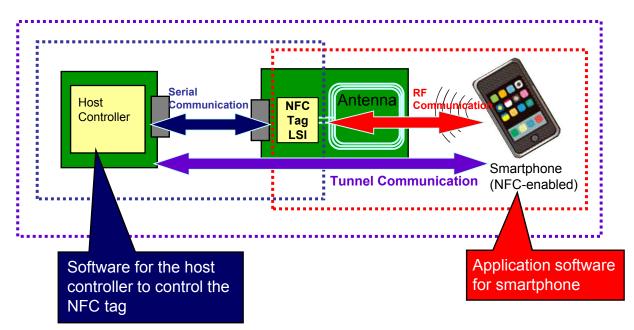
3.5 Designing the NFC Tag Block Pattern

In designing a pattern of the NFC tag block, the antenna block and LSI block must be combined. This section describes the LSI block.


For information on the antenna block, see the following URL. http://www.semicon.panasonic.co.jp/en/tool/nfcdesignnavigator/index.html

When designing a pattern of the LSI block, keep in mind the following precautions.

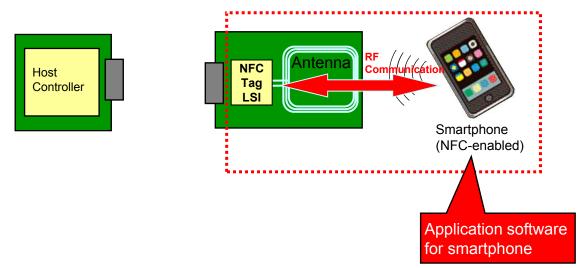
Place capacitors C2, C3, and C4 within 20 mm from the chip.


(For resistors R1, R2, and R3, there is no problem to exceed this limit.)

An example of the pattern for the NFC tag evaluation board "ANT4030_02_0505_B0_L" we provide is shown below.

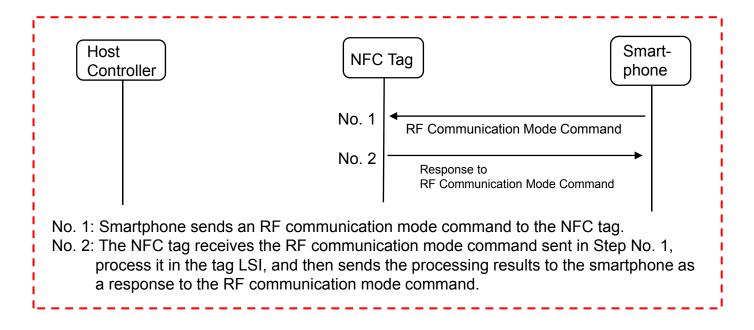
4. Designing NFC Tag System Software

4.1 Software Required for NFC Tag


To operate an NFC tag, a software for the host controller to control the NFC tag and an application software for smartphone (Reader/Writer) are required.

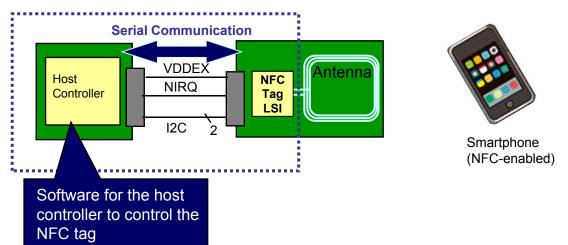
The NFC tag system has 3 communication modes, each of which requires different software.

RF communication mode: Application software for smartphone See Section 4.2. Serial communication mode: Software for the host controller to control the NFC tag See Section 4.3. Tunnel communication mode: Both software described above See Section 4.4.

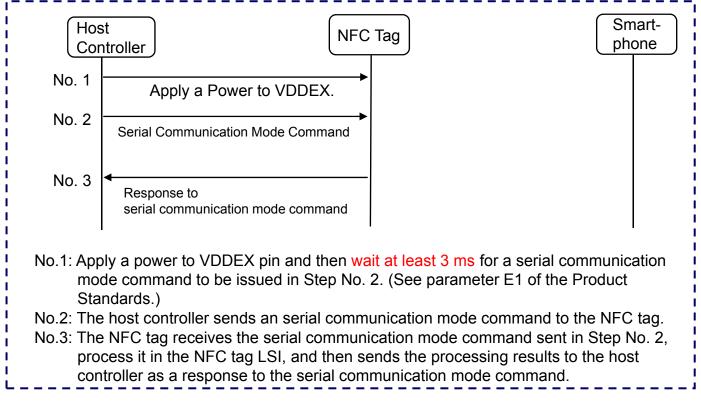


4.2 **RF** Communication Mode Operation Flow

In RF communication mode, even if no voltage is supplied to the NFC tag LSI, generating a magnetic field from a smartphone (Reader/Writer) activates the NFC tag, allowing the smartphone to access the NFC tag LSI's built-in FeRAM.


The figure below illustrates the operation flow of the smartphone and the NFC tag.

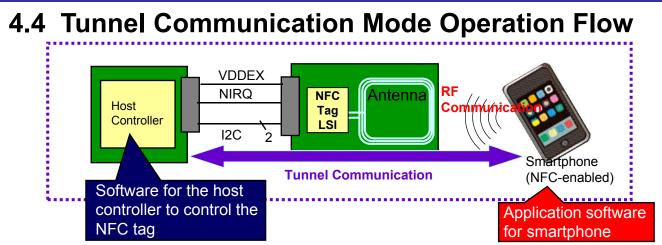
We provide sample demonstration application software for smartphone. For detailed settings and operations, refer to the source code of the sample software. In addition, for an outline of how to use the sample demonstration software, see the Appendix.



4.3 Serial Communication Mode Operation Flow

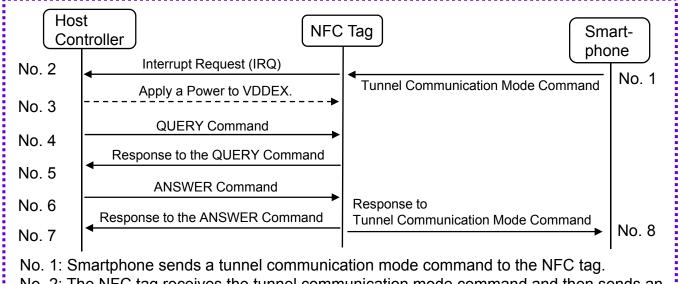
In serial communication mode, supplying a power from the host controller activates the NFC tag, allowing the host controller to access the NFC tag LSI's built-in FeRAM.

The figure below illustrates the operation flow of the host controller and the NFC tag.



We provide sample demonstration software for host controller.

For detailed settings and operations, refer to the source code of the sample software.


In addition, for an outline of how to use the sample demonstration software, see the Appendix.

Using the tunnel communication mode allows communication between the host controller and a smartphone via the NFC tag, however requiring the following: software for the host controller and application software for smartphone.

The figure below illustrates the operation flow in tunnel communication mode.

No. 2: The NFC tag receives the tunnel communication mode command and then sends an Interrupt request (IRQ) to the host controller.

- No. 3: When a power is not applied to VDDEX pin, the host controller applies it to the pin.
- No. 4: The host controller sends a QUERY command to the NFC tag.
- No. 5: The NFC tag sends a response to the QUERY command to the host controller.
- No. 6: The host controller sends an ANSWER command to the NFC tag to report the results.
- No. 7: The NFC tag receives the ANSWER command and then sends a response to the command to the host controller.

No. 8: Following the response in Step No. 7, the NFC tag sends the content of the ANSWER command to smartphone as a response to the tunnel communication mode command.

We provide sample demonstration software for host controller and sample demonstration application software for smartphone. For detailed settings and operations, refer to the source code of the sample software. In addition, for an outline of how to use those software, see the Appendix.

Panasonic -

5. Operation Examples

This chapter specifically describes the operations of a system with NFC tag, which uses hardware described in Chapter 3 and software described in Chapter 4. Unless otherwise specified, MN63Y1208 is used for these examples.

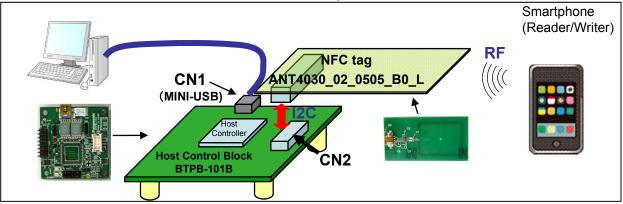
5.1 Operation Example Details

To describe the operation examples, the following sections are provided.

- •5.3 Access to the User Area
 - Access from host controller (serial) and smartphone (FeliCa, TYPE-B)
 - •5.4 Tunnel Mode Operation

Operation with smartphone (FeliCa, TYPE-B)

•5.5 Specifying System Area Setting with host controller (serial) and smartphone (FeliCa, TYPE-B)


5.2 Hardware Conditions

This operation examples use the following hardware examples and connection examples.

	Devices	Used	in	this	Exampl	es
--	----------------	------	----	------	--------	----

Block	Devices used	Description	Comment
Host controller	Our demonstration board: BTPB-101B	A device with built-in host controller that is accessible to NFC tag in serial communication	See the Appendix 5, "BTPB-01B Specification."
NFC tag	Tag antenna board: ANT4030_02_0505_B0_L (With on-board MN63Y1208)	A board on which the NFC tag LSI and components for interface are implemented	See the Appendix 6 "ANT4030_02_0505_B0_ LSpecification."
Reader/Writer	AndroidOS smartphone supporting NFC	A device to access a tag in RF communication	_

Connection Example

Reverse the ANT4030_02_0505_B0_L and connect it to the CN2 (white connector) of the BTPB-101B.

Power is supplied to the BTPB-101B through CN1.

In this demonstration environment, the PC controls the BTPB-101B to simplify the access to the NFC tag.

NFC Tag LSI Application Note Version 1.5

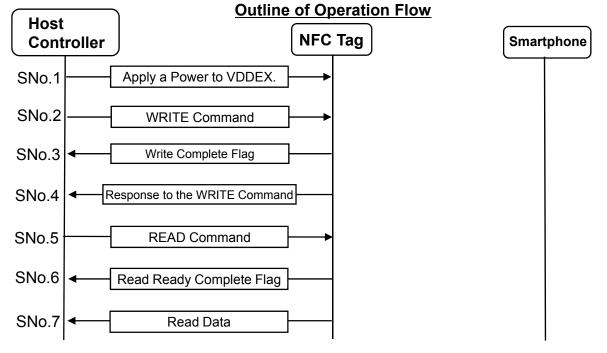
5.3 Access to the User Area

This section uses a simple example to describe how to access an NFC tag. Since FeliCa uses 16 bytes, and TYPE-B and serial communication use 1 byte for each access, the following communication process is applied.

Communication Process

FeliCa	Write a data of 0xA5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5
	to the block 0(the addresses of 0x000 to 0x00F) of the NFC tag.
	, v v v v v v v v v v v v v v v v v v v
	Read data from the block 0(the addresses of 0x000 to 0x00F) of the NFC tag.
Serial, T	YPE-B
	Write a data of 0xA5 to the address 0x0000 of the NFC tag.
	Ļ
	Read data from the address 0x0000 of the NFC tag

In the initial state of NFC tag, the following three communication modes are available: RF communication (FeliCa, TYPE-B) and serial communication. However, using the subsequent setting, you can restrict communication. In such a case, note that a certain communication may be disabled.



5.3.1 Access from the Host Controller (Serial)

The serial communication between the NFC tag with MN63Y1208 and the host controller is compliant with the I2C specification.

Its corresponding protocol is as follows: 7-bit addressing mode and operating frequency of 100 kHz.

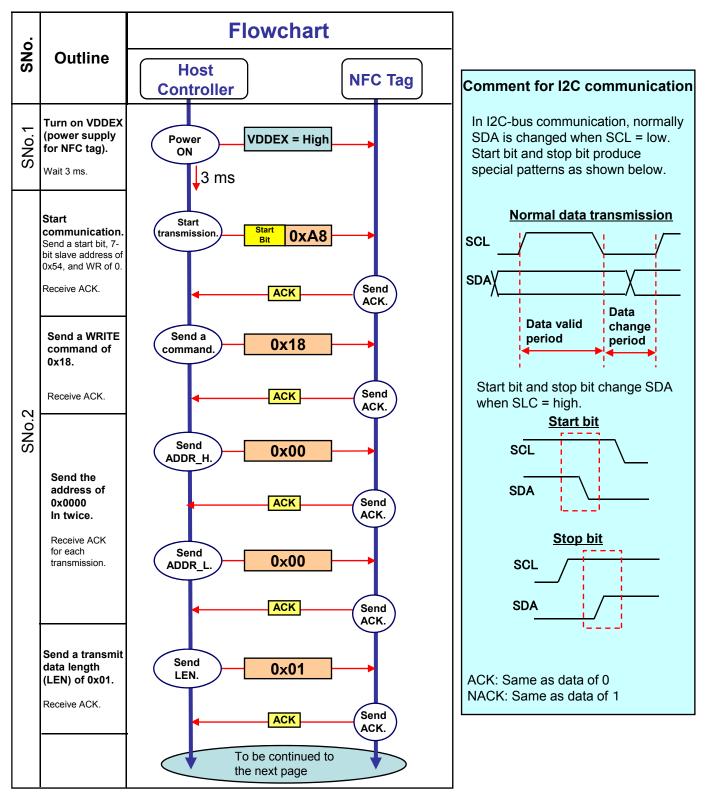
The outline of the operation flow is shown in the figure below.

SNo.1: Apply a power to VDDEX pin and then wait 3 ms for a command to be received. (See parameter E1 of the Product Standards.)

- SNo.2: The host controller sends a WRITE command to the NFC tag. After receiving the command, the NFC tag processes the command.
- SNo.3: After completing the command processing, the NFC tag returns an NIRQ as a write complete flag.

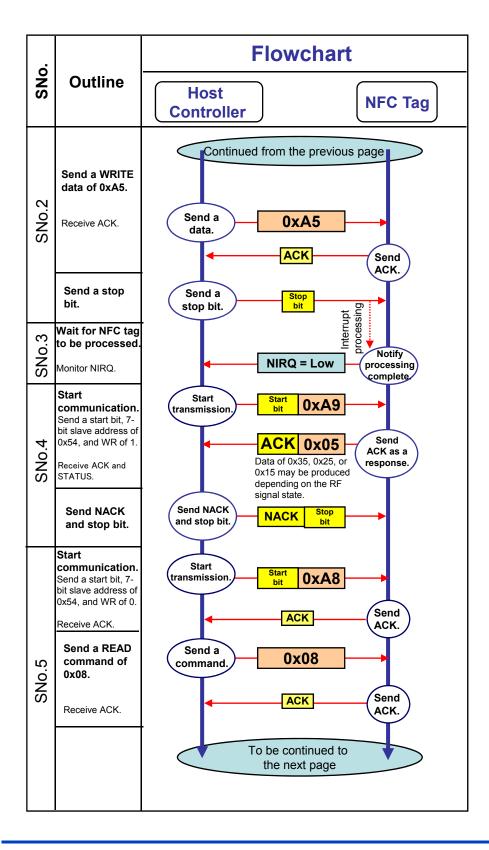
SNo.4: The NFC tag sends the processing results to the host controller as a response to the write command.

SNo.5: The host controller sends a READ command to the NFC tag. After receiving the command,

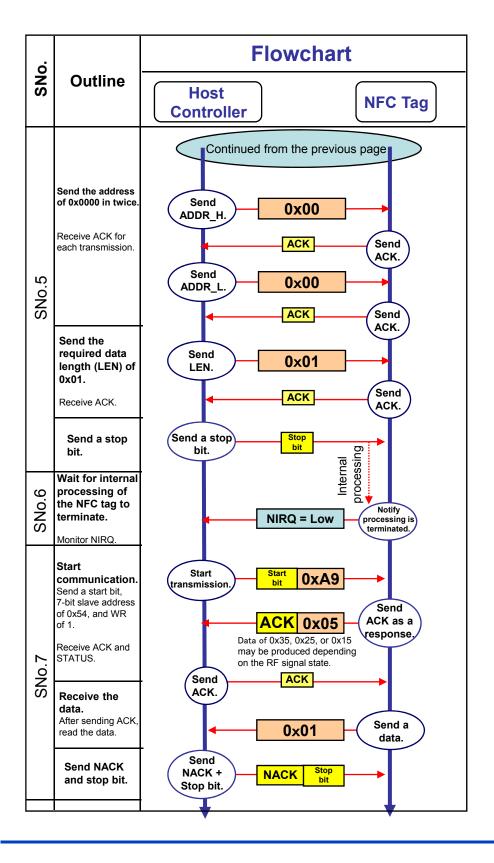

the NFC tag processes the command.

SNo.6: After completing the command processing, the NFC tag returns an NIRQ as a read ready complete flag. SNo.7: the NFC tag sends a read data to the host controller as a response to the read command.

5.3.1.1 Operation Flow Details (1/3)


The detailed operation flow is shown in the figure below.

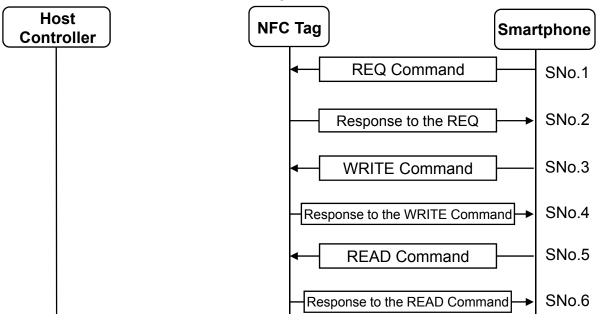
Panasonic .


22

5.3.1.1 Operation Flow Details (2/3)

Panasonic ______23

5.3.1.1 Operation Flow Details (3/3)


Panasonic _

5.3.2 Access from Smartphone (FeliCa)

RF communication between smartphone (FeliCa) and NFC tag is compliant with the JISX6319-4 standard.

The data transfer rates supported are 212 kbps and 424 kbps, but anti-collision is not supported.

The outline of the operation flow is shown in the figure below.

Outline of Operation Flow

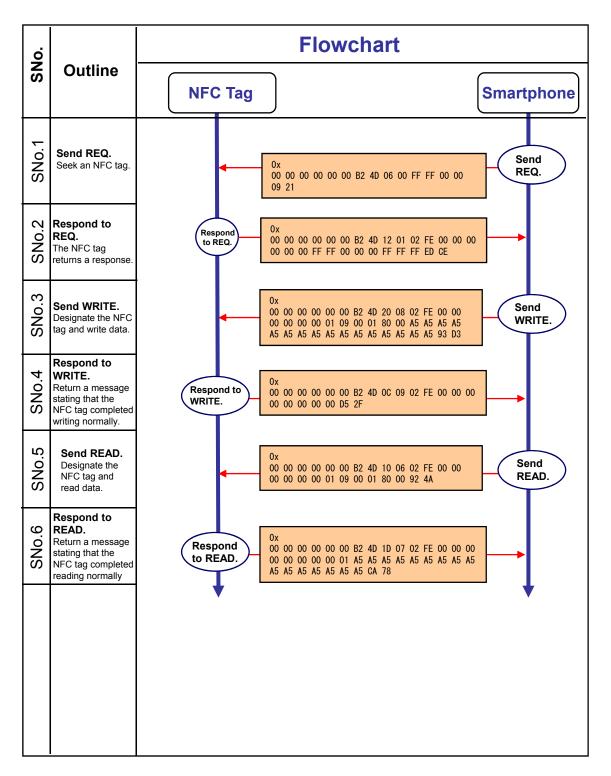
SNo.1: Smartphone sends a REQ command and waits for a response.

If NFC tag does not exist, the response to be returned in SNo.2 is not returned and SNo.1 is repeated.

- SNo.2: The NFC tag returns a response to the REQ command sent in SNo.1. The smartphone recognizes the NFC tag.
- SNo.3: The smartphone sends a WRITE command.

The NFC tag receives the WRITE command and processes it.

- SNo.4: The NFC tag sends the processing results to the smartphone.
- SNo.5: The smartphone sends a READ command. The NFC tag receives the READ command and processes it.
- SNo.6: The NFC tag sends the read data to the smartphone.


Note: In Android terminal, the OS supports the processing of SNo. 1 and SNo. 2.

Panasonic .

25

5.3.2.1 Operation Flow Details

The detailed operation flow is shown in the figure below. For waveform specification, see the JISX6319-4 standard.

Panasonic ______26

5.3.2.2 Transmission/Reception Data Details (1/3)

This section describes the transmit and receive data shown in the operation flow. For more information, see the User's Manual.

REQ

			Start	Field					I	nformat	ion Fiel	d		End F	ield
PREAMBLE SYNC CODE						LEN	CMD	S) CO		REQ CODE		CR	C		
00	00 00 00 00 00 00 B2 4D						4D	06	00	FF FF C		00	00	09	21

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x06	Byte length of information field
CMD	Command	0x00	Code of REQ command
SYS CODE	System code	0xFFFF	Responds independent of the system area SC.
REQ CODE	Request code	0x00	Processed as "no request"
SLOT	Time slot	0x00	Always set to 00 in this LSI.
CRC	CRC calculated value	0x0921	CRC calculated value of information field

Response to REQ

			Star	t Field	ł										Info	ormat	ion F	ield								End	Field
	F	PREA	MBL	E			NC DE	LEN CM PICC CODE DATA FIELD												CF	۶C						
00	00	00	00	00	00	B2	4D	12	01	02 FE 00 00 00 00 00 00							FF	FF	00	00	00	FF	FF	FF	ED	CE	

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x12	Byte length of information field
CMD	Command	0x01	Response code to REQ
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
РММ	Response time descriptor	0xFFFF000000FFFFFF	Time until NFC tag returns a response
CRC	CRC calculated value	0xEDCE	CRC calculated value of information field

5.3.2.2 Transmission/Reception Data Details (2/3)

WRITE

		ç	Sta	rt	Fiel	d				Information Field															
	F	PREA	ME	BLE	Ξ			NC DE	LEN												~				
00	00	00	0	0	00	00	B2	4D	20	08	02	FE	00	00	00	00	00	00	01	09	00	01	80	00	

		End
		Field
	DATA	CRC
~		
	A5 A	93 D3

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x20	Byte length of information field
CMD	Command	0x08	Code of WRITE command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
SVSNUM	Number of service files	0x01	Number of service files
SVS	Service file identifier	0x0900	Service identifier
BLK NUM	Number of blocks	0x01	Number of write blocks
BLK List	Block list	0x8000	Specifies write block.
DATA	Write data	0x A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	Write data
CRC	CRC calculated value	0x93D3	CRC calculated value of information field

Response to WRITE

		S	Start	Fiel	d						I	nfor	mat	ion	Field	Ł				End Field		
	PREAMBLE SYN COD							LEN	CMD			Ρ	ICC	COE	θE			STA 1	TUS 2	CF	RC	
00	00	00	00	00	00	B2	4D	0C	09	02	FE	00	00	00	00	00	00	00	00	D5	2F	

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x0C	Byte length of information field
CMD	Command	0x09	Response code to WRITE command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
STATUS1	Status flag 1	0x00	00: Normal termination
STATUS2	Status flag 2	0x00	00: Normal termination
CRC	CRC calculated value	0xD52F	CRC calculated value of information field

Panasonic ________28

5.3.2.2 Transmission/Reception Data Details (3/3)

READ

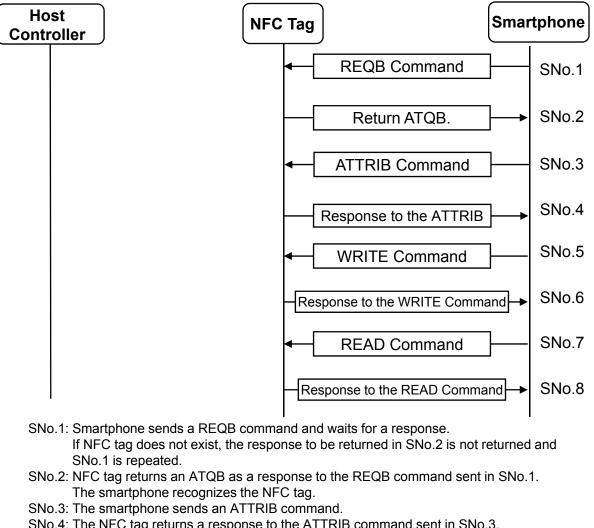
		S	Start	Fiel	d									nfor	mat	ion	Field	t						E	nd
																								Fie	əld
	Р	REA	MBL	.E		SY	NC	LEN	ENCM PICC CODE SVS SVS BIK Block C												CF	RC			
						CO	DE																		
00	00	00	00	00	00	B2	4D	10	06	02	FE	00	00	00	00	00	00	01	09	00	01	80	00	92	4A

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x10	Byte length of information field
CMD	Command	0x06	Code of READ command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
SVSNUM	Number of service files	0x01	Number of service files
SVS	Service file identifier	0x0900	Service identifier
BLK NUM	Number of blocks	0x01	Number of read blocks
BLK List	Block list	0x8000	Specifies read block.
CRC	CRC calculated value	0x924A	CRC calculated value of information field

Response to READ

Г			S	tart	t Fie	ld															Inf	orm	atio	n Fi	eld													Er	id
																																						Fie	ld
		PI	REA	MBI	LE		S١	′NC	LE	CM			Pl	CC	COI	DE			STA	TUS	Blk								DA	TA								CF	C
							CC	DDE	Ν	D											NUM																		
00	0	00	00	00	00	00	B2	4D	1D	07	02	FE	00	00	00	00	00	00	00	00	01	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	CA	78

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x1D	Byte length of information field
CMD	Command	0x07	Response code to READ command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
STATUS1	Status flag 1	0x00	00: Normal termination
STATUS2	Status flag 2	0x00	00: Normal termination
DATA	Read data	0x A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	Read data
CRC	CRC calculated value	0xCA78	CRC calculated value of information field



5.3.3 Access from Smartphone (TYPE-B)

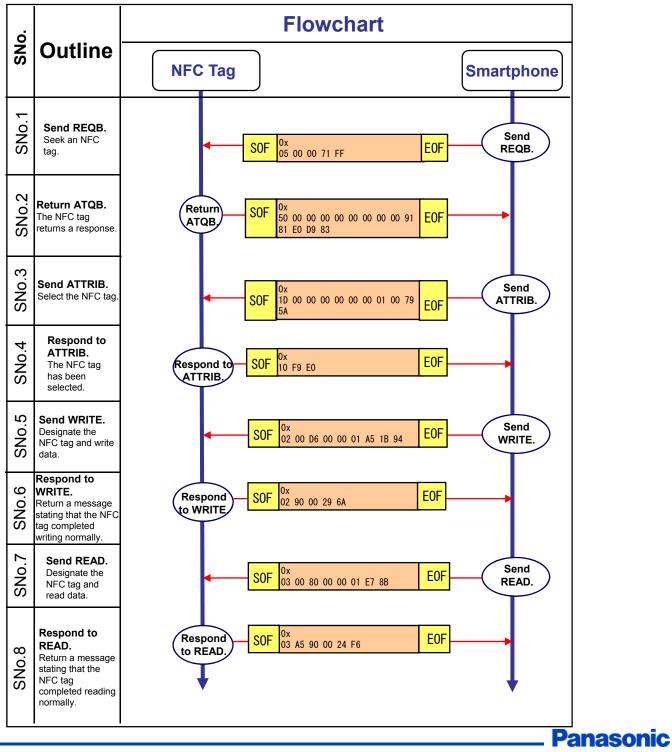
RF communication between smartphone (TYPE-B) and NFC tag is compliant with the ISO/IEC14443 standard.

The data transfer rates supported are 106 kbps and 212kbps, but anti-collision is not supported.

The outline of the operation flow is shown in the figure below.

Outline of Operation Flow

- SNo.4: The NFC tag returns a response to the ATTRIB command sent in SNo.3. The NFC tag is activated.
- SNo.5: The smartphone sends a WRITE command.
 - The NFC tag receives the WRITE command and processes it.
- SNo.6: The NFC tag sends the processing results to the smartphone.
- SNo.7: The smartphone sends a READ command.
 - The NFC receives the READ command and processes it.
- SNo.8: The NFC tag sends the read data to the smartphone.


Note: In Android terminal, the OS supports the processing of SNo. 1 to SNo. 4.

5.3.3.1 Operation Flow Details

The detailed operation flow is shown in the figure below.

For waveform specification and SOF/EOF patterns, see the ISO/IEC14443 standard. Data is sent in units of 10 bits, to which values of 0 and 1 have been given as the first and last bits, respectively, in units of 8 bytes.

These specifications are also specified in the ISO/IEC 14443 standard.

5.3.3.2 Transmission/Reception Data Details (1/3)

REQB

SOF	CMD	AFI	PAR AM	CF	RC	EOF
	05	00	00	71	FF	

Name	Description	Pattern	Comment
CMD	Command	0x05	REQB/WUPB command
AFI	Application Family Identifier	0x00	Overall response. See the ISO/IEC14443 standard.
PARAM	Parameter	0x00	Selects REQB.
CRC	CRC calculated value	0x71FF	CRC calculated value

ATQB (Response to REQB)

SOF	RES CODE		PUPI								ocol	Info	CF	EOF	
	50	00	00	00	00	00	00	00	00	91	81	E0	D9	83	

Name	Description	Pattern	Comment
RES CODE	Response code	0x50	ATQB (response to REQB)
PUPI	PICC identifier	0x0000000	Lower 4 bytes of IDM
Application Data	Application Data	0x0000000	Not used
Protocol Info	Protocol Info	0x9181E0	Parameter. See the User's Manual.
CRC	CRC calculated value	0xD983	CRC calculated value

ATTRIB

	CMD		lden	tifier			PAF	RAM		CF		
SOF					-	1	2	3	4			EOF
	1D	00	00	00	00	00	00	01	00	79	5A	

Name	Description	Pattern	Comment
CMD	Command code	0x1D	ATTRIB command
Identifier	PICC identifier	0x0000000	Specifies the PUPI of ATQB.
PARAM1	Parameter 1	0×00	See the User's Manual.
PARAM2	Parameter 2	0×00	See the User's Manual.
PARAM3	Parameter 3	0×01	See the User's Manual.
PARAM4	Parameter 4	0×00	See the User's Manual.
CRC	CRC calculated value	0x795A	CRC calculated value

5.3.3.2 Transmission/Reception Data Details (2/3)

Response to ATTRIB

	RES	CF	RC	
SOF	CODE			EOF
	10	F9	E0	

Name	Description	Pattern	Comment
RES CODE	Response code	0x10	Response to ATTRIB
CRC	CRC calculated value	0xF9E0	CRC calculated value

WRITE

SOF	PCB	CLA	INS	Add	ress	LEN	DATA	CF	RC	EOF
	02	00	D6	00	00	01	A5	1B	94	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x02	I-block
CLA	CLA	0x00	Class byte; fixed value
INS	WRITE	0xD6	Instruction byte; WRITE = 0xD6
Address	Start address	0x0000	Address at which to start writes
LEN	Data length	0x01	Write data length (byte)
Data	Write data	0xA5	Write data
CRC	CRC calculated value	0x1B94	CRC calculated value

Response to WRITE

SOF PCB		SW		000		
	PCB	1	2	CRC		EOF
	02	90	00	29	6A	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x02	I-block
SW1	Status word 1	0x90	0x9000: No error
SW2	Status word 2	0x00	
CRC	CRC calculated value	0x296A	CRC calculated value

5.3.3.2 Transmission/Reception Data Details (3/3)

READ

SOF	PCB	CLA	INS	Add	ress	LEN	CF	RC	EOF
	03	00	B0	00	00	01	E7	8B	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x03	I-block
CLA	CLA	0x00	Class byte; fixed value
INS	READ	0xB0	Instruction byte; READ = 0xB0
Address	Start address	0x0000	Address at which to start reads
LEN	Data length	0x01	Read data length (byte)
CRC	CRC calculated value	0xE78B	CRC calculated value

Response to READ

РСВ		DATA	SW		CRC		
SOF	РСВ		1	2	U	40	EOF
	03	A5	90	00	24	F6	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x03	I-block
Data	Read data	0xA5	Read data
SW1	Status word 1	0x90	0x9000: No error
SW2	Status word 2	0x00	
CRC	CRC calculated value	0x24F6	CRC calculated value

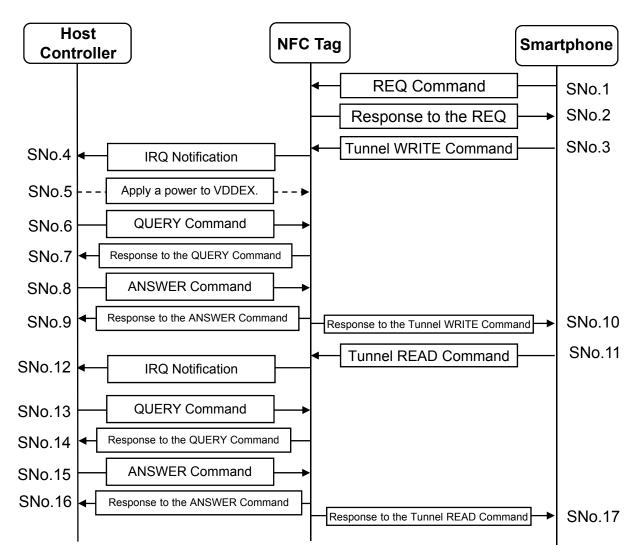
5.4 Tunnel Mode Operation

This section specifically describes how to access between the host controller and smartphone through an NFC tag while in Tunnel mode.

For information about Tunnel mode, see Section 4.4.

Since FeliCa uses 16 bytes, and TYPE-B uses 1 byte for each access, the following communication process is applied.

Detail of Communication

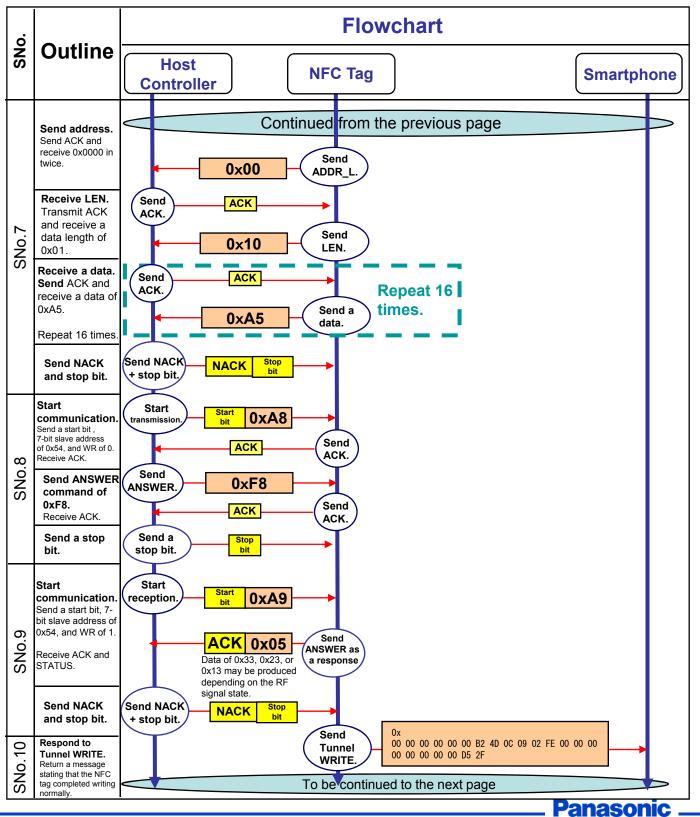

FeliCa	Write a data of 0xA5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5A5
	Read data from the block 0(the addresses of 0x0000 to 0x000F) of the host controller.
TYPE-B	
	Write a data of 0xA5 to the address 0x0000 of the host controller. ↓
	Read data from the address 0x0000 of the host controller.

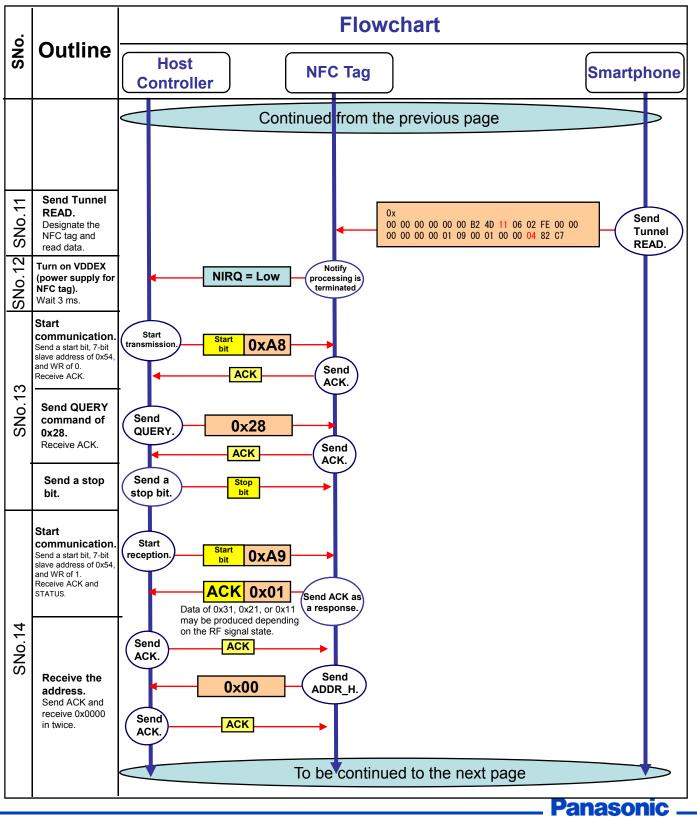
In the initial state of NFC tag, the following three communication modes are available: RF communication (FeliCa, TYPE-B) and serial communication. However, using the subsequent setting, you can restrict communication. In such a case, note that a certain communication may be disabled.

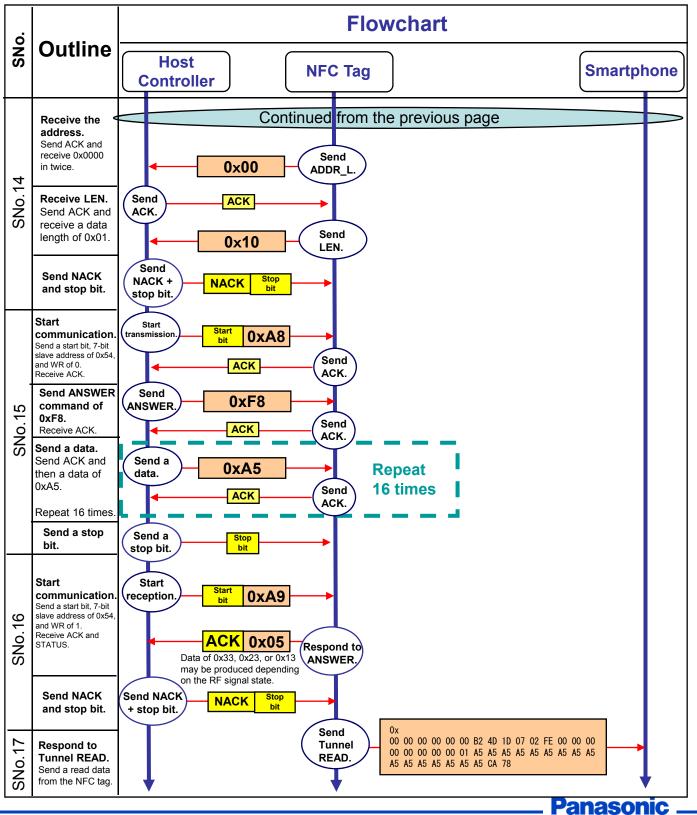
5.4.1 Operation from Smartphone (FeliCa)

The outline of the operation flow is shown in the figure below.

SNo.1 to SNo.2: Same as for Section 5.3.2.


- SNo.3: Smartphone sends a Tunnel WRITE command.
- SNo.4: NFC tag notifies the host controller using NIRQ.
- SNo.5: Apply a power to VDDEX pin and wait 3 ms for a command to be received. (See parameter E1 of the Product Standards.)
- SNo.6: The host controller sends a QUERY command to the NFC tag.
- SNo.7: The NFC tag sends a response to the QUERY command to the host controller.
- SNo.8: The host controller sends an ANSWER command to the NFC tag to report the results.
- SNo.9: The NFC tag receives the ANSWER command and then sends a response to the command to the host controller.
- SNo.10: The NFC tag sends a response to the Tunnel WRITE command to the Smartphone.
- SNo.11: The smartphone sends a Tunnel READ command.
- $\mathsf{SNo.12}$ to $\mathsf{SNo.16}$: Same as for $\mathsf{SNo.4}$ and $\mathsf{SNo.6}$ through $\mathsf{SNo.9}$.
- SNo.17: The NFC tag sends a response to the Tunnel READ command to the smartphone.


5.4.1.1 Operation Flow Details (1/4)


5.4.1.1 Operation Flow Details (2/4)

5.4.1.1 Operation Flow Details (3/4)

5.4.1.1 Operation Flow Details (4/4)

5.4.1.2 Transmission/Reception Data Details (1/3)

This section describes the transmit and receive data shown in the operation flow. For more information, see the User's Manual.

REQ

			Start	Field					I	nformat	ion Fiel	d		End F	Field
		PREA	MBLE			SYNC	CODE	LEN	CMD	-	YS DE	REQ CODE	SLOT	CR	C
00	00	00	00	00	00	B2	4D	06	00	FF	FF	00	00	09	21

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x06	Byte length of information field
CMD	Command	0x00	Code of REQ command
SYS CODE	System code	0xFFFF	Responds independent of the system area SC.
REQ CODE	Request code	0x00	Processed as "No request."
SLOT	Timeslot	0x00	Always set to 00 in this LSI.
CRC	CRC calculation value	0x0921	CRC calculated value of information field

Response to REQ

			Start	Field											Info	ormat	ion F	ield								End	Field
	F	PREA	MBL	E		SY CO	NC DE	LEN	CM D			F	PICC	CODI	Ξ					C	ATA	FIELI	D			CF	۶C
00	00	00	00	00	00	B2	4D	12	01	02	FE	00	00	00	00	00	00	FF	FF	00	00	00	FF	FF	FF	ED	CE

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x12	Byte length of information field
CMD	Command	0x01	Response code to REQ
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
PMM	Response time descriptor	0xFFFF000000FFFFFF	Time until NFC tag returns a response
CRC	CRC calculated value	0xEDCE	CRC calculated value of information field

5.4.1.2 Transmission/Reception Data Details (2/3)

Tunnel WRITE

~

			ç	Sta	art	Fie	d									Inf	orm	atio	n Fi	eld							
		Ρ	REA	٩M	1BL	E			NC DE	LEN	CMD			PIC	CC	CO	DE			SVS NUM	S١	-	Blk NUM		ock	List	~
00	0	00	00	(00	00	00	B2	4D	21	08	02	FE	00	00	00	00	00	00	01	09	00	01	00	00	04	

																	Er Fie	
~								D/	٩TA								CF	RC
	A5	A5	A5	A5	A5	A5	A5	A5	46	68								

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x21	Byte length of information field; changed in tunnel mode
CMD	Command	0x08	Code of WRITE command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
SVSNUM	Number of service files	0x01	Number of service files
SVS	Service file identifier	0x0900	Service file identifier
BLK NUM	Number of blocks	0x01	Number of write blocks
BLK List	Block list	0x000004	Specifies write block. Changed in tunnel mode.
DATA	Write data	0x A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	Write data
CRC	CRC calculated value	0x4668	CRC calculated value of information field

Response to Tunnel WRITE (Same Format as for Response to Normal WRITE)

		S	start	Fiel	d							nfor	mat	ion	Field	ł				Er	۱d
																				Fie	eld
	P	REA	MBL	E		SY	NC	LEN	CMD			Р	ICC	COD)E			STA	TUS	CF	RC
						CO	DE											1	2		
00	00	00	00	00	00	B2	4D	0C	09	02	FE	00	00	00	00	00	00	00	00	D5	2F

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x0C	Byte length of information field
CMD	Command	0x09	Response code to WRITE command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
STATUS1	Status flag 1	0x00	00: Normal termination
STATUS2	Status flag 2	0x00	00: Normal termination
CRC	CRC calculated value	0xD52F	CRC calculated value of information field

Panasonic ______42

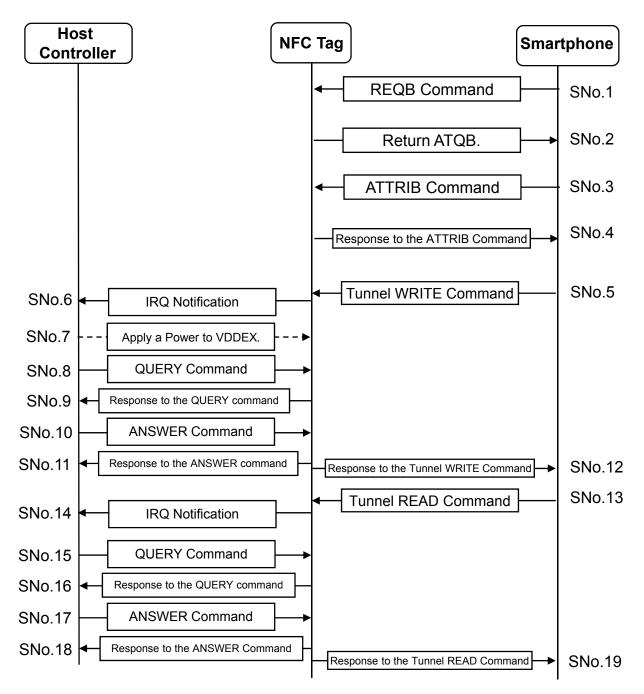
5.4.1.2 Transmission/Reception Data Details (3/3)

Tunnel READ

			S	Start	Fiel	d									Inf	orm	atio	n Fie	eld							Er	nd
																										Fie	eld
		Р	REA	MBL	.E		SY	NC	LEN	СМ			PI	CC	CO	DE			SVS	S١	/S	Blk	Blo	ock	List	CF	RC
							CO	DE		D									NUM			Νυм					
00)	00	00	00	00	00	B2	4D	10	06	02	FE	00	00	00	00	00	00	01	09	00	01	00	00	04	82	C7

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x11	Byte length of information field; changed in tunnel mode
CMD	Command	0x06	Code of READ command
PICC CODE	PICC identifier	0x02FE0000000000000	IDM default value of NFC tag
SVSNUM	Number of service files	0x01	Number of service files
SVS	Service file identifier	0x0900	Service file identifier
BLK NUM	Number of blocks	0x01	Number of read blocks
BLK List	Block list	0x000004	Specifies read block. Changed in tunnel mode.
CRC	CRC calculated value	0x82C7	CRC calculated value of information field

Response to Tunnel READ (Same Format as for Response to Normal READ)

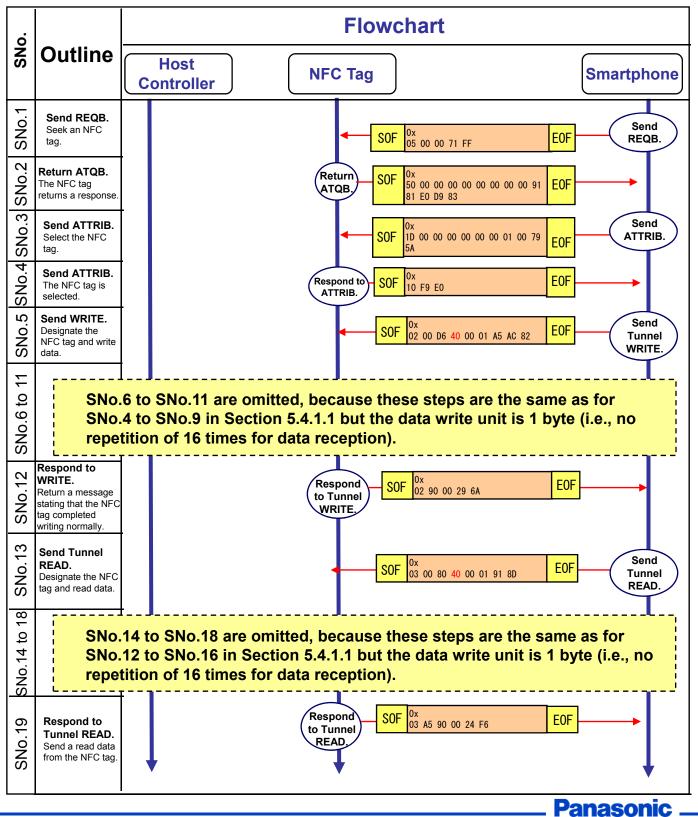

Г			S	tart	Fiel	ld															Inf	orm	atio	n Fi	eld													En	d
																																						Fie	ld
		PR	EAI	MBL	.E		SY	NC	LE	СМ			PI	CC	COL	DE			STA	TUS	Blk								DA	ΤA								CF	С
							CC	DE	Ν	D											NUM																		
00	0 0	0 0	00	00	00	00	B2	4D	1D	07	02	FE	00	00	00	00	00	00	00	00	01	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	A5	CA	78

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x1D	Byte length of information field
CMD	Command	0x07	Response code to READ command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
STATUS1	Status flag 1	0x00	00: Normal termination
STATUS2	Status flag 2	0x00	00: Normal termination
DATA	Read data	0x A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5 A5	Read data
CRC	CRC calculated value	0xCA78	CRC calculated value of information field

Panasonic _

5.4.2 Operation from Smartphone (TYPE-B)

The outline of the operation flow is shown in the figure below.



SNo.1 to SNo.4: Same as SNo.1 to SNo.4 described in Section 5.3.3 SNo.5 to SNo.19: Same as SNo.3 to SNo.17 described in Section 5.4.1

44

Panasonic .

5.4.2.1 Operation Flow Details

5.4.2.2 Transmission/Reception Data Details (1/3)

REQB

SOF	CMD	AFI PAR AM		CF	EOF	
	05	00	00	71	FF	

Name	Description	Pattern	Comment
CMD	Command	0x05	REQB/WUPB command
AFI	Application Family Identifier	0x00	Overall response. See the ISO/IEC14443 standard.
PARAM	Parameter	0x00	Select REQB.
CRC	CRC calculated value	0x71FF	CRC calculated value

ATQB (Response to REQB)

RES CODE		PL	IPI		Ар	plicat	ionDa	ata	Prot	otocol Info				EOF
50	00	00	00	00	00	00	00	00	91	81	E0	D9	83	

Name	Description	Pattern	Comment
RES CODE	Response code	0x50	ATQB (response to REQB)
PUPI	PICC identifier	0x0000000	Lower 4 bytes of IDM
Application Data	Application Data	0x0000000	Not used
Protocol Info	Protocol Info	0x9181E0	Parameter. See the User's Manual.
CRC	CRC calculated value	0xD983	CRC calculated value

ATTRIB

	CMD	D Identifier					PARAM			CRC		
SOF				_	-	1	2	3	4		EOF	
	1D	00	00	00	00	00	00	01	00	79	5A	

Name	Description	Pattern	Comment	
CMD	Command code	0x1D	ATTRIB command	
Identifier	PICC identifier	0x0000000	Specifies the PUPI of ATQB.	
PARAM1	Parameter 1	0x00	See the User's Manual.	
PARAM2	Parameter 2	0x00	See the User's Manual.	
PARAM3	Parameter 3	0x01	See the User's Manual.	
PARAM4	Parameter 4	0x00	See the User's Manual.	
CRC	CRC calculated value	0x795A	CRC calculated value	

5.4.2.2 Transmission/Reception Data Details (2/3)

Response to ATTRIB

	RES	CF		
SOF	CODE			EOF
	10	F9	E0	

Name	Description	Pattern	Comment
RES CODE	Response code	0x10	Response to ATTRIB
CRC	CRC calculated value	0xF9E0	CRC calculated value

Tunnel WRITE

SOF	PCB	CLA	INS	Add	ress	LEN	DATA	CF	RC	EOF
	02	00	D6	40	00	01	A5	AC	82	

Name	Description	Pattern	Comment		
PCB	Protocol Control Byte	0x02	I-block		
CLA	CLA	0x00	Class byte; fixed value		
INS	WRITE	0xD6	Instruction byte; WRITE = 0xD6		
Address	Start address	0x4000	Address at which to start writes; changed in tunnel mode		
LEN	Data length	0x01	Write data length (byte)		
Data	Write data	0xA5	Write data		
CRC	CRC calculated value	0xAC82	CRC calculated value		

Response to Tunnel WRITE (Same Format as for Response to Normal WRITE)

	PCB	S	W	0		
SOF		1	2	CRC		EOF
	02	90	00	29	6A	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x02	I-block
SW1	Status word 1	0x90	0x9000: No error
SW2	Status word 2	0x00	
CRC	CRC calculated value	0x296A	CRC calculated value

Panasonic ______47

5.4.2.2 Transmission/Reception Data Details (3/3)

Tunnel READ

SOF	PCB	CLA	INS	Add	ress	LEN	CF	RC	EOF
	03	00	B0	40	00	01	91	8D	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x03	l-block
CLA	CLA	0x00	Class byte; fixed value
INS	READ	0xB0	Instruction byte; READ = 0xB0
Address	Start address	0x4000	Address at which to start reads; changed in tunnel mode
LEN	Data length	0x01	Read data length (byte)
CRC	CRC calculated value	0x918D	CRC calculated value

Response to Tunnel READ (Same Format as for Response to Normal READ)

	PCB	DATA	SI	N	0	20	
SOF			1	2	U	RC	EOF
	03	A5	90	00	24	F6	

Name	Description	Pattern	Comment
PCB	Protocol Control Byte	0x03	I-block
Data	Read data	0xA5	Read data
SW1	Status word 1	0x90	0x9000: No error
SW2	Status word 2	0x00	
CRC	CRC calculated value	0x24F6	CRC calculated value

5.5 Specifying System Area

Before using the NFC tag, the system area of the NFC tag LSI must be specified. Before setting, the system area is not validated and set to the initial values fixed in hardware.

In the initial state fixed in hardware of the NFC tag LSI, 3 communication modes are available: RF communication (TYPE-B, FeliCa) and serial communication.

This section provides how to specify the system area using the three communication modes of RF communication (TYPE-B, FeliCa) and serial communication.

Examples of setting for writes is based on the initial state fixed in hardware. See the table below.

For more information about parameters, see the User's Manual.

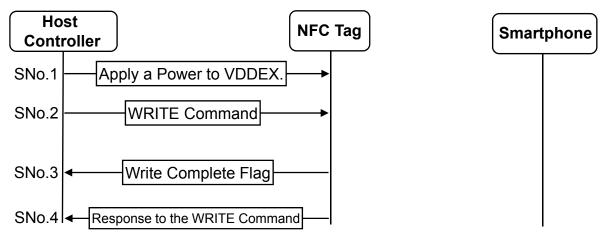
Detail of Communication

Serial, TYPE-B, and FeliCa

Write the following setting parameters to the blocks of 29 to31(the addresses of 0x01D0 to 0x01FF) in the NFC tag.

_			_	_	<u></u>					, <u> </u>					_			
Block	Address		x0	x1	x2	x3	x4	x5	x6	х7	x8	x9	хA	хB	xC	хD	хE	xF
29	0x01DX	Parameter name				-	-	-	-	C	ONFIG	3						
		Value	00	00	00	00	00	00	00	00	01	23	45	67	89	AB	CD	EF
30	0x01EX	Parameter name	ter SC IDM PMM		AFI	FWI	Н	W										
		Value	AA	FF	02	FE	00	00	00	00	00	00	FF	FF	00	E0	00	54
31	0x01FX	Parameter name		RC	RF	-		RC	DSI			SECU	JRITY		TN PRM	HW2	CON	FIG2
		Value	00	00	00	00	00	00	00	00	00	00	00	00	47	F0	00	2E

Parameters for Setting Examples


Outline of Parameters

Item	Name	Data size	Description
Setting value	CONFIG	16 bytes	For more information, see the User's Manual.
FeliCa	SC	2 bytes	System code of JISX6319-4
communication	IDM	8 bytes	PICC identifier of JISX6319-4
parameter	PMM	2 bytes	Response time of JISX6319-4
TYPE-B	AFI	1 byte	Based on the AFI setting of ISO/IEC14443TYPE-B
communication parameter	FWI	1 byte	Based on the AFI setting of ISO/IEC14443TYPE-B
Access	RORF	4 bytes	Restricts writes in RF communication.
restriction	ROSI	4 bytes	Restricts writes in serial communication.
	SECURITY	4 bytes	Specifies the plaintext access in RF communication.
Response	TNPRM	1 byte	Specifies the tunnel mode wait time.
setting	HW	2 bytes	Selects the RF communication specification for response.
			IDM setting, I2C slave address setting
	HW2	1 byte	Specifies the NIRQ generation source.
Setting value	CONFIG2	2 bytes	For more information, see the User's Manual.

49

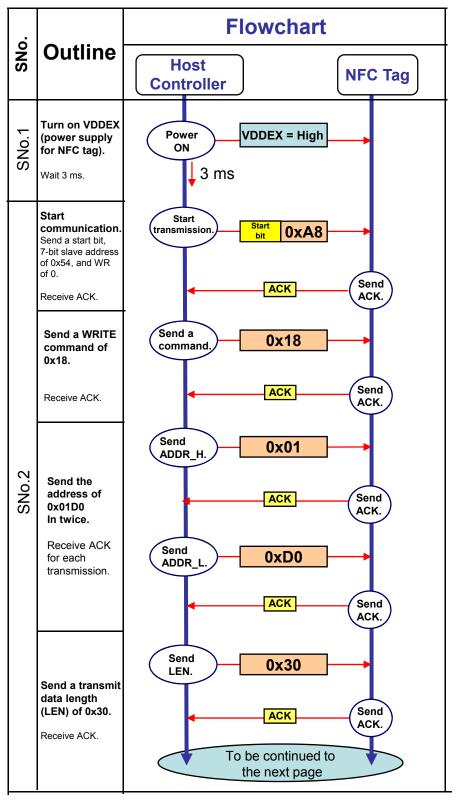
Panasonic

5.5.1 Setting from Host Controller (Serial)

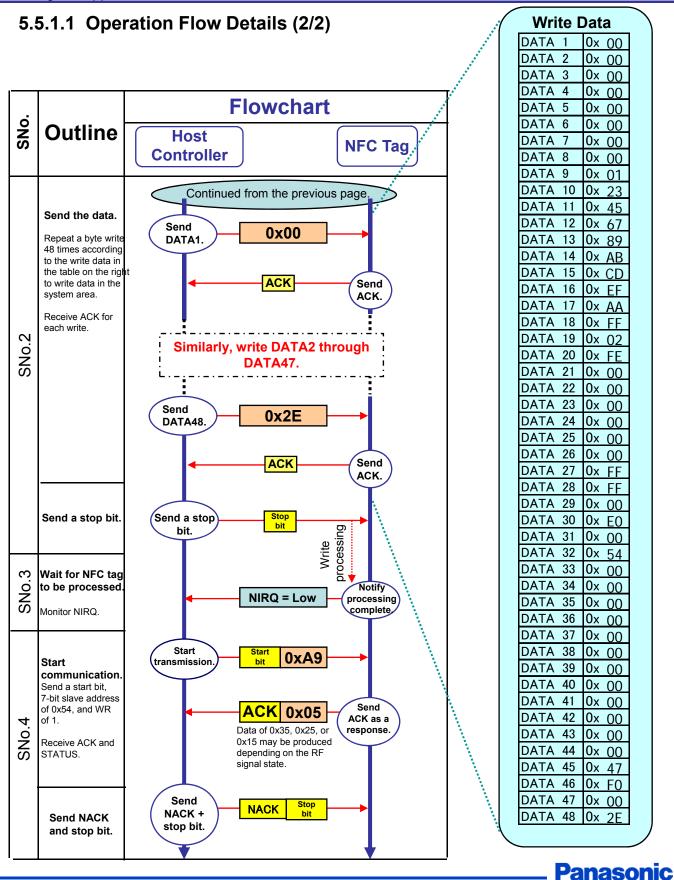
The outline of the operation flow is shown in the figure below.

SNo.1: Apply a power to VDDEX pin and then wait 3 ms for a command to be received. (See parameter E1 of the Product Standards.)

SNo.2: The host controller sends a WRITE command to the NFC tag. After receiving the command, the NFC tag processes the command.


SNo.3: After completing the command processing, the NFC tag returns an NIRQ as a write complete flag.

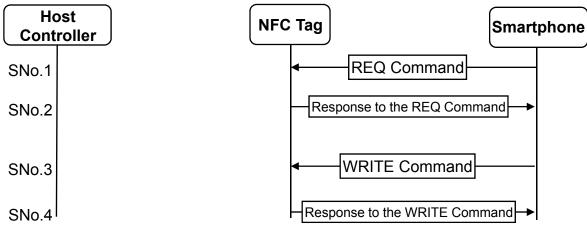
SNo.4: The NFC tag sends the processing results to the host controller as a response to the write command.



5.5.1.1 Operation Flow Details (1/2)

The detailed operation flow is shown in the figure below.

Panasonic ______51



52

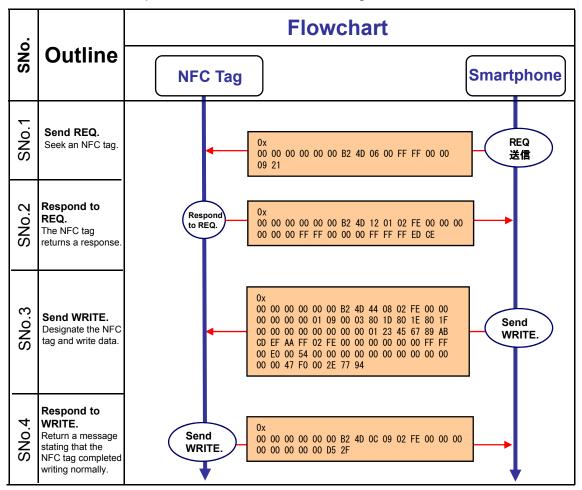
5.5.2 Setting from Smartphone (FeliCa)

This section describes how to specify the system area of the NFC tag from Smartphone (FeliCa).

The outline of the operation flow is shown in the figure below.

SNo.1: Smartphone sends a REQ command and waits for a response.

- If NFC tag does not exist, the response to be returned in SNo.2 is not returned and SNo.1 is repeated.
- SNo.2: The NFC tag returns a response to the REQ command sent in SNo.1. The smartphone recognizes the NFC tag.
- SNo.3: The smartphone sends a WRITE command.


The NFC tag receives the WRITE command and processes it.

SNo.4: The NFC tag sends the processing results to the smartphone.

Note: In Android terminal, the OS supports the processing of SNo. 1 and SNo. 2.

5.5.2.1 Operation Flow Details

5.5.2.2 Transmission/Reception Data Details (1/3)

This section describes the transmit and receive data shown in the operation flow. For more information, see the User's Manual.

REQ

			Start	Field					I	nformat	ion Fiel	d		End	Field
		PREA	MBLE			SYNC	CODE	LEN	CMD	S` CO	YS DE	REQ CODE	SLOT	CF	RC
00	00	00	00	00	00	B2	4D	06	00	FF	FF	00	00	09	21

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x06	Byte length of information field
CMD	Command	0x00	Code of REQ command
SYS CODE	System code	0xFFFF	Responds independent of the system area SC.
REQ CODE	Request code	0x00	Processed as "No request"
SLOT	Timeslot	0x00	Always set to 00 in this LSI.
CRC	CRC calculated value	0x0921	CRC calculated value of information field

Response to REQ

			Star	t Field	ł										Info	ormat	ion F	ield								End	Field
	F	PREA	MBL	E			NC DE	LEN	CM D			F	PICC	CODI	E					D	ATA	FIELI	D			CF	۶C
00	00	00	00	00	00	B2	4D	12	01	02	FE	00	00	00	00	00	00	FF	FF	00	00	00	FF	FF	FF	ED	CE

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x12	Byte length of information field
CMD	Command	0x01	Response code to REQ
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
PMM	Response time descriptor	0xFFFF000000FFFFFF	Time until NFC tag returns a response
CRC	CRC calculated value	0xEDCE	CRC calculated value of information field

5.5.2.2 Transmission/Reception Data Details (2/3)

WRITE

		S	Start	Fiel	d	_		Information Field LENCMD PICC_CODE SVS Blk Block_List																			
	Ρ	REA	MBL	E			NC DE	LEN	CMD			PI	CC	CO	DE			SVS	S١	/S	Blk			Block	< Lis	t	
							DE											NUM			NUM	· ·	1	2	2	:	3 i
00	00	00	00	00	00	B2	4D	44	08	02	FE	00	00	00	00	00	00	01	09	00	01	80	1D	80	1E	80	1F

DATA

 CONFIG
 SC
 IDM

 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 00
 <td

											DA	TA											E	nd
~															_								Fie	eld
\sim	PN	MN	AFI	FWI	H	W		RC	RF			RC)SI		9	SECL	IRIT	Y	TNP	HW2	CON	VFIG	CF	RC
								_											RM		2	2		
	FF	FF	00	E0	00	54	00	00	00	00	00	00	00	00	00	00	00	00	47	F0	00	2E	77	94

Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x44	Byte length of information field
CMD	Command	0x08	Code of WRITE command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
SVSNUM	Number of service files	0x03	Number of service files
SVS	Service file identifier	0x0900	Service file identifier
BLK NUM	Number of blocks	0x01	Number of write blocks
BLK List	Block list	0x801D、0x801E、0x801F	Specifies write block.
DATA	Write data	0x 00 00 00 00 00 00 00 00 00 01 23 45 67 89 AB CD EF AA FF 02 FE 00 00 00 00 00 00 FF FF 00 E0 00 54 00 00 00 00 00 00 00 00 00 00 00 00 47 F0 00 2E	Write data
CRC	CRC calculated value	0x7794	CRC calculated value of information field

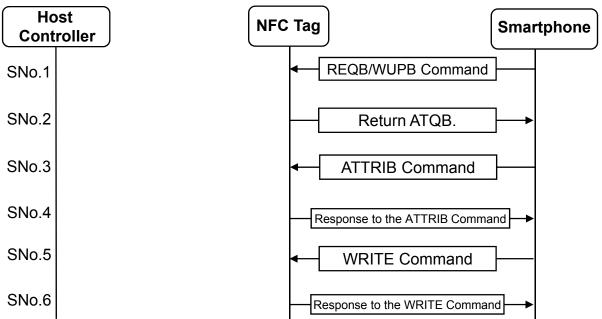
~

Panasonic __

5.5.2.2 Transmission/Reception Data Details (3/3)

Response to WRITE

		ç	Start	Fiel	d							Info	rmat	ion l	Field					Er	nd
																		Fie	eld		
	F	PREA	MBL	E		SY		LEN	ENCMD PICC CODE STATUS									CF	RC		
						CO	DE			1 2											
00	00	00	00	00	00	B2	4D	0C	09	02 FE 00 00 00 00 00 00 00 00 00							D5	2F			


Name	Description	Pattern	Comment
PREAMBLE	Preamble	0x00000000000	Fixed value given when starting communication
SYNC CODE	Synchronous code	0xB24D	Fixed value given when starting communication
LEN	Information field length	0x0C	Byte length of information field
CMD	Command	0x09	Response code to WRITE command
PICC CODE	PICC identifier	0x02FE000000000000	IDM default value of NFC tag
STATUS1	Status flag 1	0x00	00: Normal termination
STATUS2	Status flag 2	0x00	00: Normal termination
CRC	CRC calculated value	0xD52F	CRC calculated value of information field

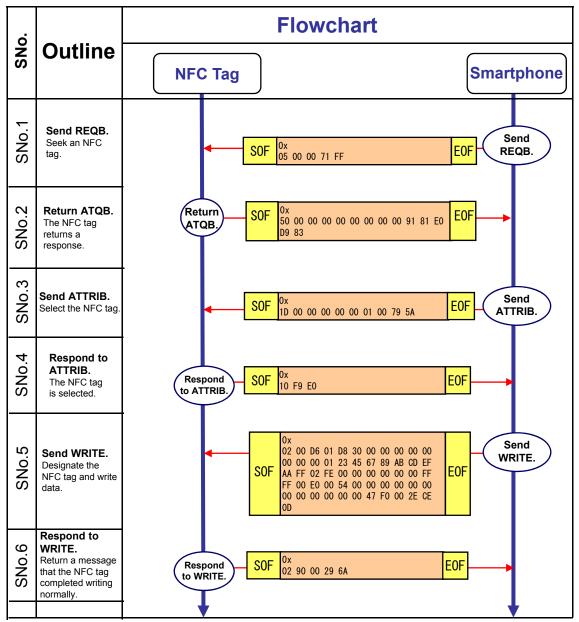
5.5.3 Setting from Smartphone (TYPE-B)

This section describes how to specify the system area of the NFC tag from smartphone (TYPE-B).

The outline of the operation flow is shown in the figure below.

- SNo.1: Smartphone sends a REQB command and waits for a response. If NFC tag does not exist, the response to be returned in SNo.2 is not returned and SNo.1 is repeated.
- SNo.2: The NFC tag returns an ATQB as a response to the REQB command sent in SNo.1. The smartphone recognizes the NFC tag.
- SNo.3: The smartphone sends an ATTRIB command.
- SNo.4: The NFC tag returns a response to the ATTRIB command sent in SNo.3. The NFC tag is activated.
- SNo.5: The smartphone sends a WRITE command.
 - The NFC tag receives the WRITE command and processes it.
- SNo.6: The NFC tag sends the processing results to the smartphone.

Note: In Android terminal, the OS supports the processing of SNo. 1 to SNo. 4.


Panasonic ______58

5.5.3.1 Operation Flow Details

The detailed operation flow is shown in the figure below.

For waveform specification and SOF/EOF patterns, see the ISO/IEC14443 standard. Data is sent in units of 10 bits, to which values of 0 and 1 have been given as the first and last bits, respectively, in units of 8 bytes.

These specifications are also specified in the ISO/IEC 14443 standard.

Panasonic ______59

5.5.3.2 Transmission/Reception Data Details (1/2)

REQB

SOF	CMD	AFI	PAR AM	CF	SC	EOF	
	05	00	00	71	FF		

Name	Description	Pattern	Comment
CMD	Command	0x05	REQB/WUPB command
AFI	Application Family Identifier	0x00	Overall response. See the ISO/IEC14443 standard.
PARAM	Parameter	0x00	Selects REQB.
CRC	CRC calculated value	0x71FF	CRC calculated value

ATQB (Response to REQB)

SOF	RES CODE		PL	IPI		Ар	plicat	ionDa	ata	Prot	ocol	Info	CF	RC	EOF
	50	00	00	00	00	00	00	00	00	91	81	E0	D9	83	

Name	Description	Pattern	Comment
RES CODE	Response code	0x50	ATQB (response to REQB)
PUPI	PICC identifier	0x0000000	Lower 4 bytes of IDM
Application Data	Application Data	0x0000000	Not used
Protocol Info	Protocol Info	0x9181E0	Parameter. See the User's Manual.
CRC	CRC calculated value	0xD983	CRC calculated value

ATTRIB

	CMD		Iden	tifier			PAF	RAM		CF	RC	
SOF				_		1	2	3	4			EOF
	1D	00	00	00	00	00	00	01	00	79	5A	

Name	Description	Pattern	Comment
CMD	Command code	0x1D	ATTRIB command
Identifier	PICC identifier	0x0000000	Specifies the PUPI of ATQB.
PARAM1	Parameter 1	0x00	See the User's Manual.
PARAM2	Parameter 2	0x00	See the User's Manual.
PARAM3	Parameter 3	0x01	See the User's Manual.
PARAM4	Parameter 4	0x00	See the User's Manual.
CRC	CRC calculated value	0x795A	CRC calculated value

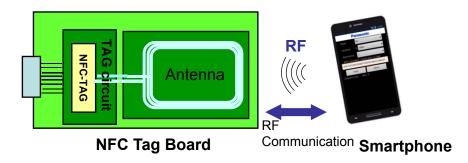
5.5.3.2 Transmission/Reception Data Details (2/2)

Response to ATTRIB

RES C CODE 10 F9	E0	EOF																
Name		Desc	riptio	n			Pa	ttern			Co	nment						_
RES CODE		Resp	onse o	code			0x	10			Res	ponse	to AT	TRIB				_
CRC		CRC	calcul	ated value			0x	F9E0			CR	C calcu	lated	value				
F	CB CLA INS Address LEN 02 00 D6 01 D0 30																	
	DATA CONFIG SC IDM																	
~																		
0	00 00 00 00 00 00 00 00 00 01 23					23 45	67 8	89 AB (DEF	AA F	F 02 F	E 00	00 0	00 00	00	00		
Γ								DATA										
~	PMM AFI FWI HW ROI					RORF			ROSI		SE	CURITY	Y	TNP RM	HW2	CON	FIG2	
	FF FF	= 00	E0	00 54	00	00 00	00 0	00 0	0 00	00	00 00	47	F0	00	2E	C		
Name		Descri	ption				Patt	ern			Comm	ent					1	
PCB		Protoco	ol Cont	rol Byte			0x02	2			I-block						1	
CLA	Protocol Control Byte CLA					0x00)			Class	oyte; fix	ked va	lue			1		
INS	WRITE					0xD6	6			Instruc	tion by	te; WI	RITE =	= 0xD	6			
Address	ss Start address					0x01D0			Address at which to start writes					S	1			
LEN		Data le	ngth				0x30			Write data length (byte)						1		
Data	Data Write data					0x 00 00 00 00 00 00 00 00 00 01 23 45 67 89 AB CD EF AA FF 02 FE 00 00 00 00 00 00 FF FF 00			Write data									

 CRC
 CRC calculated value
 0xCE 0D
 CRC calculated value

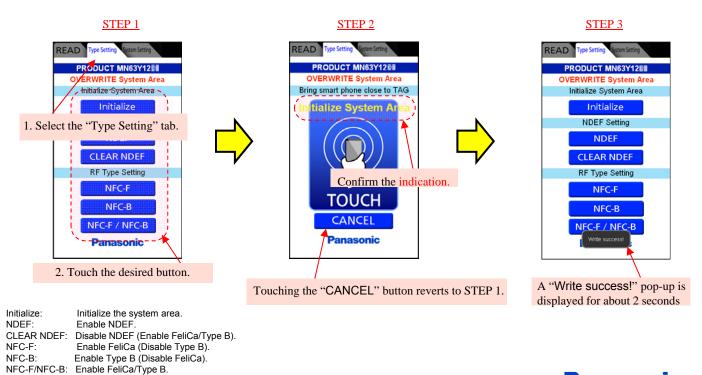
Response to WRITE


I		PCB	S	W		RC				
I	SOF		1	2			EOF			
L		02	90	00	29	6A				
	N	lame			Desc	riptio	n		Pattern	Comment
	Р	СВ			Proto	col Co	ontrol B	Byte	0x02	I-block
	S	SW1			Statu	is wor	d 1		0x90	0x9000: No error
	S	SW2			Statu	is wor	d 2		0x00	
	С	RC			CRC	calcu	lated v	alue	0x296A	CRC calculated value

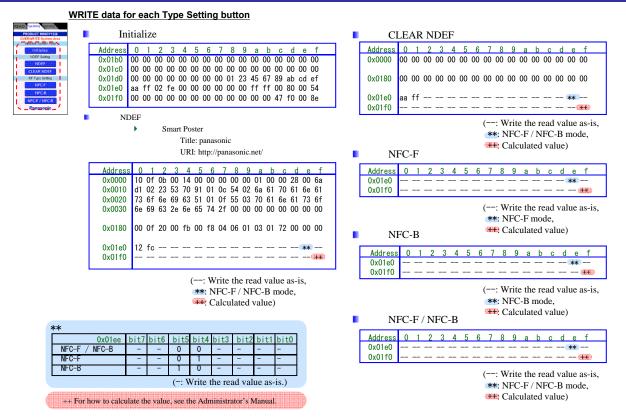
Panasonic ____

Appendix

Appendix 1 RF Communication Demonstration

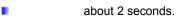

This demo shows an RF communication between NFC tag and smartphone. Below is an outline of the demo with MN63Y1208 sample application software.

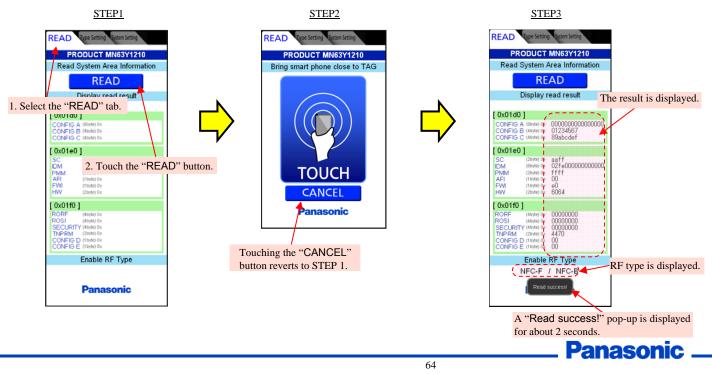
How to Use the Application Software for Tag Type Setting (System Area Setting)


Software name for Smartphone : 1208Tag Setting apk : Panasonic_TagSetting1208_v[xxx].apk ("[xxx]" is version No.)

(1) Set the NFC tag in a desired communication format.

- STEP 1: Select the "Type Setting" tab and touch the desired button.
- STEP 2: A TOUCH screen appears, and bring a smartphone close to the NFC tag.
- STEP 3: A "Type Setting" screen appears automatically. And a "Write success!" pop-up is displayed for about 2 seconds.



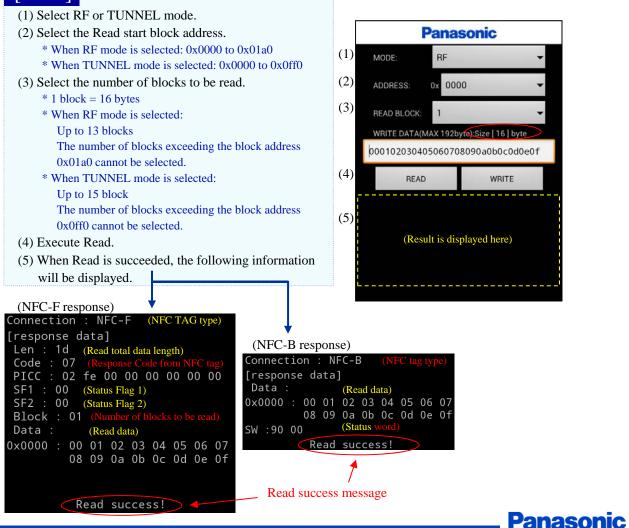

Panasonic .

(2) Read the system area of the NFC tag.

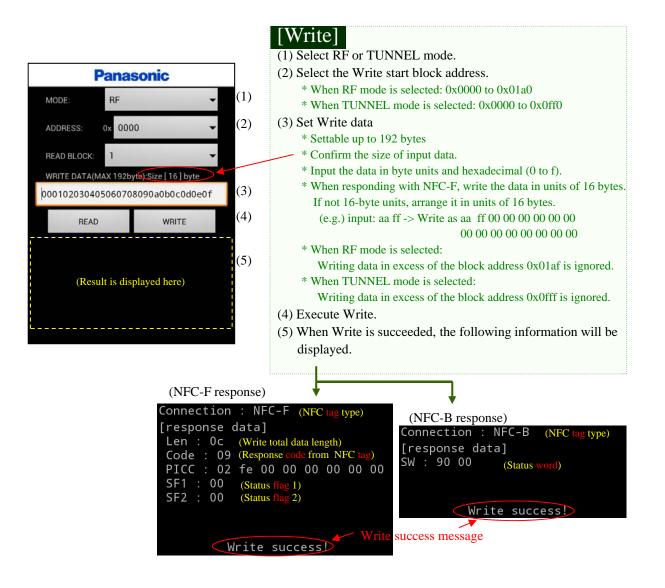
- STEP 1: Select the "READ" tab and touch the "READ" button.
- STEP 2: A TOUCH screen appears, and bring a smartphone close to the NFC tag.
- STEP 3: A "READ" screen appears automatically and the result is displayed. A "Read success!" pop-up is displayed for

How to Use the Application Software for Tag Communication (User Area Read/Write)

Software name for Smartphone : Tag ReaderWriter apk : Panasonic_TagReaderWriterFBRT_v[xxx].apk ("[xxx]" is version No.)

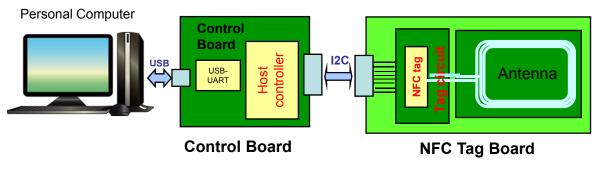

Launch the TagReaderWriter_typeFB application software to read/write from/to the user area of the NFC tag through a communication with tag. The read process is as follows:

- **STEP 1:** Launch an application with either of the following ways.
 - Select an application and launch it.
 - Bring a smartphone close to NFC tag and activate it.
- **STEP 2**: While bringing a smartphone close to NFC tag,


execute Read/Write in the following procedures.

• If it reacts to NFC tag, [READ] and [WRITE] buttons will become effective and the type of the reacted NFC tag will be displayed.

[Read]



65

Panasonic _____66

Appendix 2 Serial Communication Demonstration

Serial Communication Demonstration Scenario Environment (MN63Y1208)

An outline of the serial communication demonstration environment (MN63Y1208) is shown in the figure above. This demo shows the following: the GUI provided on the PC communicates with the host controller on the control board via USB, and the host controller communicates with the NFC tag board through I2C. As a result, it is possible to read/write from/to the NFC tag memory area, from the GUI on the PC. The demo runs as shown below.

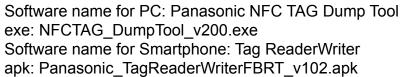
Software name for PC: Panasonic NFC TAG Dump Tool exe: NFCTAG DumpTool v[xxx].exe ("[xxx]" is version No.) Select (1) Tag power supply mode, and (2) Log mode. Enable All Log Tunnel Disable Log (The file transfer application TagFileTx is disabled.) * When you want to perform a file transfer with log not displayed, select "Enable File Transfer Log." Memory Connecting to target board NFC-Tag Memory STEP 1 File Transfer Read/Write memory Select a virtual COM port. STEP 5 (for connection to the board) Input the memory address. (in 16-byte units and hexadecimal) STEP 2 * Clicking on a cell inputs an address automatically 1 2 3 4 5 5 7 8 9 4 8 Press the "Connect" button. STEP 6 Input the data length in hexadecimal. STEP 3 Press the reset switch of the board. [NFC-Tag Memory] Read 0x01 to 0x= 0x01 to 0x200 [1 to 512 bytes] 0x01 to 0xFB [1 to 251 bytes] 00003 00F0 0100 0110 0120 0120 0120 [Tunnel Memory] 0x01 to 0x1000 [1 to 4096 bytes] Read Write 0x01 to 0xFF [1 to 255 bytes] STEP 4 A starting log appears. STEP 7

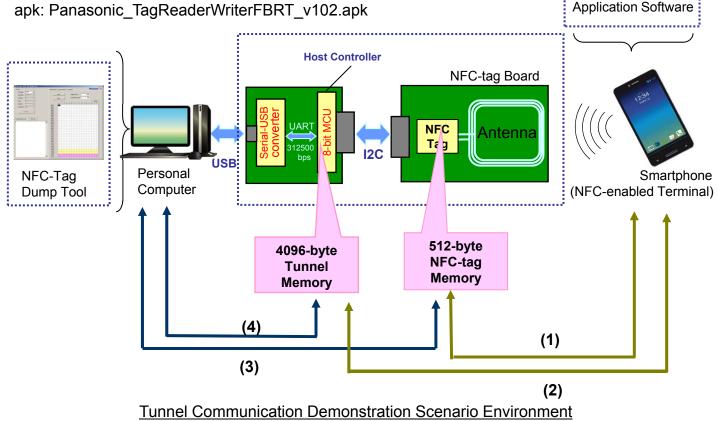
USER AREA

CONFIG AREA

SYSTEM AREA

Copy(Ctrl+C) and paste(Ctrl+V) are possible with cells selected.




Press the "Read" or "Write" button.

before writing data, set it in a cell.

Appendix 3 Tunnel Communication Demonstration

An outline of the tunnel communication demonstration environment is shown in the figure below. This demo shows the following: the GUI provided on the PC communicates with the host controller on the control board via USB; the host controller communicates with the NFC-tag board through I2C; and the NFC tag communicates with NFC-enabled terminal through an antenna. As a result, it is possible to communicate with NFC-enabled terminals, from the GUI on the PC. The demo runs as shown below.

Operating Sequence

- (1) Read/write from/to the NFC-tag memory via NFC from smartphone.
- (2) Read/write from/to the tunnel memory via NFC from smartphone.
- (3) Read/write from/to the NFC-tag memory from PC (or Host Controller).
- (4) Read/write from/to the tunnel memory from PC.

* Tunnel memory = Memory inside the Host Controller

Panasonic

68

Android Sample

Appendix 4 Environment to Provide Application Software for Smartphone

We can provide the separate "NFC-Tag Android Application Implementation Manual." Our development environment for operation verification and how to get software are as follows:

♦ Our Verification Environment

[Development Environment] Intel® Core™2 Duto CPU@3.16GHz, 3.50GB RAM Microsoft Windows XP Professional Version 2002 Service Pack 2 Eclipse Version:Indigo Service Release 2 SDK Platform Android 2.3.3(API 10)

Getting the Android SDK

Download the SDK corresponding to your OS from the site of http://developer.android.com/sdk/index.html

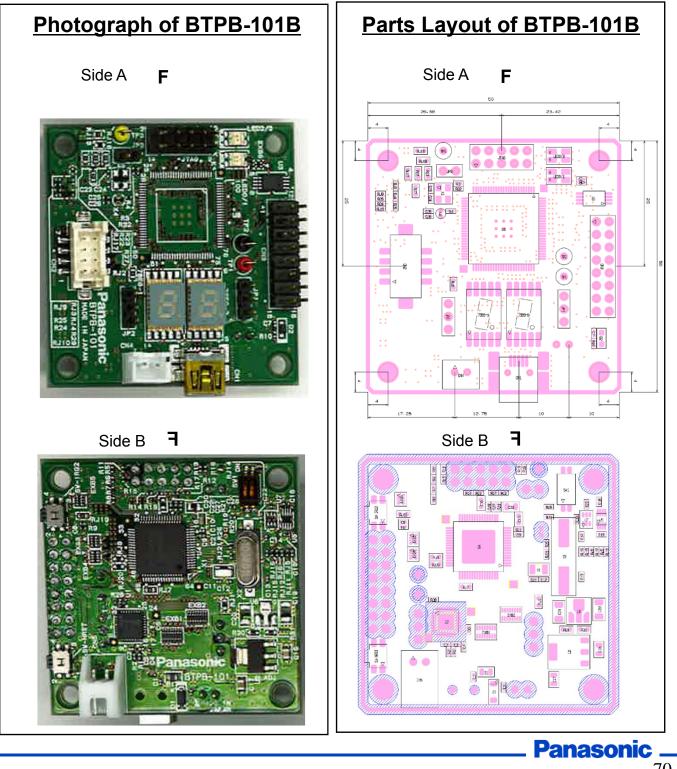
Android SDK | Android Developers .

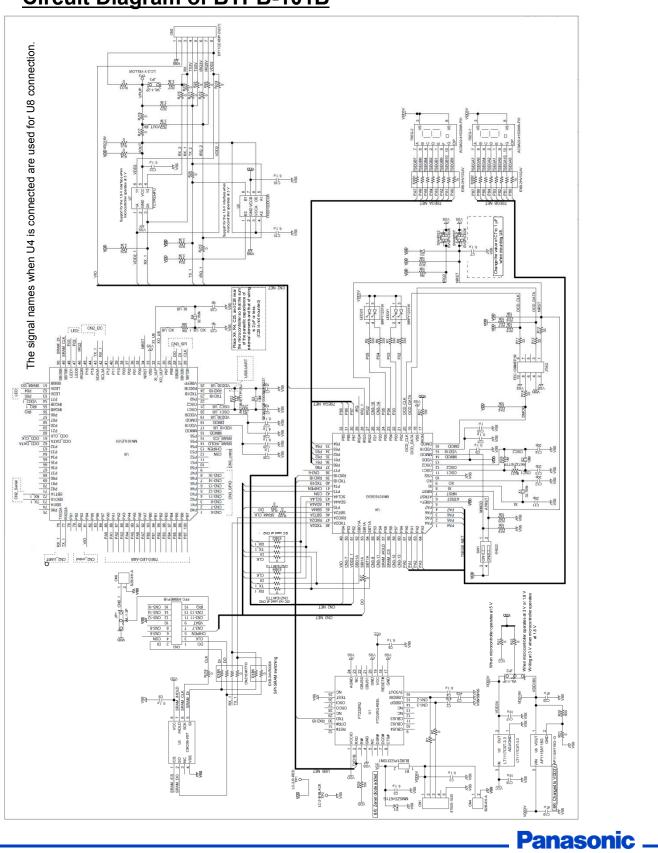
♦ Getting the JDK

Download the JDK from the site of http://www.oracle.com/technetwork/java/javase/downloads/index.html

Java SE Downloads.

Click the "DOWNLOAD" button of JDK.





Appendix 5 BTPB-101B Design Data

This section summarizes the design data for the microcontroller board that is used in the host control example of this document.

The board is also used for a demonstration board provided by us.

Circuit Diagram of BTPB-101B

	D escription	0														
Name	Description	Count		-					Numbe	er			-	-		
23K256-I/ST	SPI-SRAM		U3												_	Ļ
67503-1020 4000400 4100WA 501	USB connector		CN1	7SEG-2												ł
ACSA02-41SGWA-F01 AP1115AY18G-13	7-segment LED 1.8-V LDO		7SEG-1	/SEG-Z		-							-		-	⊦
B2B-XH-A	Power supply connector		CN4			-	-								-	ŀ
BLM21PG331SN1	Forrite		B1													ŀ
BRPY1201W	LED		LED0/1	LED2/3		-							-			t
C3216X5R1E476M	47 μ		C19	C20												t
CNZ1E4KTTD	4 jumpers in series		EXB3	EXB4	EXB5											t
CX3225GB10000D0HEQZ1	10M		X 3	E/(B)	2/100											
DF11CZ-8DP-2V(27)	CN2 connector		CN2													t
EVQPUJ02K	Switch	2	SW-IRQ2	SW-NRST												İ.
EXB-24VR000X	2 jumpers in series		EXB6													Г
EXB-2HV102JV	Eight 1-kΩ resistors in series	2	EXB1	EXB2												
FFC-10BMEP1B	Connector for D-WIRE	1	JTAG													
FFC-16BMEP1B	Connector for CN3		CN3													
FT232RQ-REEL	USB-serial conversion IC		U1													
GRM1555C1H100JZ01D	10 pF capacitor		0 C23	<u>C24</u>												
GRM1555C1H200JZ01D	20 pF capacitor		C11	C12	C13	C14										
GRM1555C1H470JZ01D	47 pF capacitor		2 C2	C3												
GRM1555C1H9R0DA01D	9 pF capacitor) C25	C26												
GRM188B31E105KA75DD	1 μ F capacitor		C10	C30												
GRM21BF51E475ZA01L 2125/25V	4.7 μF capacitor		0 C28				_								_	-
GRM21BR61E106KA73L 2125/25V/10%	10 μ F capacitor		C16	C17											_	-
KHS22	Switch		SW1													⊢
LC-2-B-BLACK LC-2-R-RED	Tap pin		TP2 TP1	-												-
LC-2-R-RED LC-2-Y-YELLOW	Tap pin		TP3													⊢
LT1117CST-3.3	Tap pin 3.3-V LDO		1P3 U2				_									-
MMSZ5V6T1G	Diode		D1				_									-
MN101EG63G	Microcontroller		U4													-
1/8	Microcontroller (option)		04													-
NKD SD3 10.000MHz 16pF	10 MHz oscillator		X2	-												
RB501V-40TE-17	1S1588		D2													
RK73B1ETTP103J	10 kΩ resistor		R9	R10	R15	R16	R17	R18	R19	R20	R21	R28				
RK73B1ETTP105J	1 MΩ resistor		R26	R32												
RK73B1ETTP271J	270 Ω resistor) R 3													
RK73B1ETTP330J	33 Ω resistor	4	1 R11	R12	R13	R14										1
RK73B1ETTP331J	330 Ω resistor		4 R5	R6	R7	R8										
RK73B1ETTP332J	3.3 kΩ resistor		R24	R25	R29											
RK73B1ETTP363J	36 kΩ resistor) R 4													
RK73B1JTTD332J	3.3 kΩ resistor		8 R22	R23	R27											
RK73B1JTTD601J	600 Ω resistor) R30													
RK73Z1ETTP	Jumper		R1	R2	RJ3				RJ9				RJ14	RJ15	RJ16	R
RK73Z1JTTD	Jumper		R31	RJ1	RJ2	RJ7	RJ8	RJ13	RJ17	RJ18	RJ19	RJ20				
S2B-XH-A	Power supply connector		CN5	ļ	L		I	L				L	<u> </u>	<u> </u>	L	L
ST3215SB32768H5HPWAA ±20ppm 12.5pF TC7PG34FU			X1													⊢
TC/PG34FU TMK105BJ104KV-F	Buffer (option)			C4	05	06	C7	<u></u>	<u></u>	C15	C18	C21	C22	C27	0.20	⊢
TXS0102DCUR	0.1 µ F capacitor		C1	C4	C5	C6	07	60	C9	619	618	UZI	622	62/	C29	⊢
VT-200-F12.5-32.768KHz	Bidirectional level shifter 32.768 kHz oscillator) US) X4			-	-									⊢
V1-200-F12.5-32.768KHz WL-1-2P	Jumper		JP3		-	-	-						-	-	-	⊢
WL-1-2P WL-1-3P	Jumper Jumper		JP3 JP1	JP2	-		-									⊢

Photograph

Appendix 6 Design Data of NFC Tag Antenna Board

This section summarizes the design data for the MN63Y1208 antenna board that is used for NFC tag in this document. The board is also used for a demonstration board provided by us. For more information, see the following URL.

http://www.semicon.panasonic.co.jp/en/products/detail/?cat=CBE7000&part=MN63Y1208

MN63Y1208 1 _ IC NFC tag LSI 1 HRS DF11CZ-8DP-2V(27) Connector CN1 3 C2 GRM188R71E104KA01D Power supply stabilization capacitor 0.1 µF C3 C4 GRM188R71H331KA01D Resonance adjustment Capacitor 1 330 pF C1 RK73B1JTTP104J SCL pullup resistor 1 100 kΩ R0

Panasonic _

Antenna Boards

We provide the antenna boards below.

Antenna board name	Antenna form	LSI	Remarks
ANT4030_02_0505_B0_L	40 x 30 2 turns	MN63Y1208	
ANT4030_02_0505_B0_L_1213_V0	40 x 30 2 turns	MN63Y1213	
ANT2020_03_0505_B0_L_1213_V0	20 x 20 3 turns	MN63Y1213	
NFC-TAG-MN63Y12120A	40 x 28 1 turn	MN63Y1210A	NFC-TAG-CABLE01 is needed when connecting to BTPB-101B

Appendix 7 Related Documents and Hardware

We provide the following documents and hardware to help you to evaluate the NFC-tag LSI and implement it into your system.

Overview and LSI Specifications

Name	Туре	Description	Corresponding LSI
NFC-TAG_Application_note_V*.pdf	Document	This document (NFC-tag LSI User's Guide)	ALL
MN63Y1208-E1_USER_MANUAL_V*.pdf	Document	Product specifications and function description manual	
MN63Y1208-E1_ADMIN_MANUAL_NDA_V*.pdf MN63Y1208-E1_ADMIN_MANUAL_nonNDA_V*.pdf	Document	Non-NDA edition: System area setting manual NDA edition: Also describes the cipher function.	MN63Y1208
MN63Y1208-E1_Product_Standard_Ver*.pdf	Document	Electrical characteristics	
MN63Y1212-E1_USER_MANUAL_V*.pdf	Document	Product specifications and function description manual	
MN63Y1212-E1_ADMIN_MANUAL_NDA_V*.pdf MN63Y1212-E1_ADMIN_MANUAL_nonNDA_V*.pdf	Document	Non-NDA edition: System area setting manual NDA edition: Also describes the cipher function.	MN63Y1212
MN63Y1212-E1_Product_Standard_Ver*.pdf	Document	Electrical characteristics	
MN63Y1213-E1_USER_MANUAL_V*.pdf	Document	Product specifications and function description manual	
MN63Y1213-E1_ADMIN_MANUAL_NDA_V*.pdf MN63Y1213-E1_ADMIN_MANUAL_nonNDA_V*.pdf	Document	Non-NDA edition: System area setting manual NDA edition: Also describes the cipher function.	MN63Y1213
MN63Y1213-E1_Product_Standard_Ver*.pdf	Document	Electrical characteristics	
MN63Y1210A-E1_ADMIN_MANUAL_V*.pdf	Document	Product specifications and function description manual	
MN63Y1210A-E1_ADMIN_MANUAL_V*.pdf	Document	System area setting manual	MN63Y1210A
MN63Y1210A-E1_Product_Standard_Ver*.pdf	Document	Electrical characteristics	

Demonstration and Evaluation

Name	Туре	Description	Corresponding LSI	
Development_kit_Installation_Manual_vXXX(E).pdf	Document	Panasonic NFC-tag development kit installation manual		
Android_Application_User_Manual(E)_vXXX.pdf	oid_Application_User_Manual(E)_vXXX.pdf Document Application user's manual for Android smartphone			
NFCTAG_DumpTool_vXXX.exe	Sample software for the BTPB-101 demo board with a microcontroller			
MN63YXXXX_XXXX MCU Sample VerXXX.lzh			ALL	
Panasonic_TagFileTx_vXXX.apk	Software	re Demo software for Tunnel Mode and Bluetooth Handover file transfer		
Panasonic_TagReaderWriterFBRT_vXXX.apk	Software	Demo software to access to NFC tag for Android smartphone		
Panasonic_TagSetting1208_vXXX.apk	Software	Demo software to set MN63Y1208 for Android smartphone	MN63Y1208	
Panasonic_TagSetting1212_vXXX.apk	Software	Demo software to set MN63Y1212 for Android smartphone	MN63Y1212	
Panasonic_TagSetting1213_vXXX.apk	Software	Demo software to set MN63Y1213 for Android smartphone	MN63Y1213	
Panasonic_TagSetting1210_v1XXX.apk	Software	Demo software to set MN63Y1210A for Android smartphone	MN63Y1210A	

SDK (Software Development Kit) NDA required

Name	Туре	Description	Corresponding	
Android Sample Software Module Specification_V****(E).pdf		Manual for sample programs to control NFC tag for Android smartphone	ALL	
Panasonic_TagTestApp_Sample01_v***.lzh	Software	Sample programs to control NFC tag for Android smartphone		
Android NDEF Test Specification_v***(E).pdf	Document	Manual for sample programs of Android NDEF test application		
Panasonic_NdefTest_v***.apk Panasonic_NdefTest_v***.lzh	Software	Sample programs of Android NDEF test application	ALL	
MN63Y1208_1213 Module Specification_v***(E).pdf			MN(02)/4000	
MN63Y1208_1213 MCU Sample Ve***.lzh	Software	Microcontroller sample programs to control MN63Y1208	MN63Y1208	
MN63Y1208_1213 Module Specification_v***(E).pdf Docume		Manual for microcontroller sample programs to control MN63Y1213	MN(00)/4040	
MN63Y1208_1213 MCU Sample Ve***.lzh	Software	Microcontroller sample programs to control MN63Y1213	MN63Y1213	
MN63Y1210_Module Specification_v***(E).pdf	Document	Manual for microcontroller sample programs to control MN63Y1210A		
MN63Y1210 MCU Sample Ver***.lzh	Software	Microcontroller sample programs to control MN63Y1210A	MN63Y1210A	

Hardware

Name	Туре	Description	Corresponding LSI
MN63Y1208-E1	Hardware	Sample LSI for NFC tag (MN63Y1208)	MN63Y1208
MN63Y1212-E1	Hardware	Sample LSI for NFC tag (MN63Y1212)	MN63Y1212
MN63Y1213-E1	Hardware	Sample LSI for NFC tag (MN63Y1213)	MN63Y1213
MN63Y1210A-E1 (MN63Y1210AF)	Hardware	Sample LSI for NFC tag (MN63Y1210A)	MN63Y1210A
BTPB-101B (V200)	Hardware	Hardware board of host controller for demo and evaluation (With on-board MN101EF63G)	ALL
ANT4030_02_0505_B0_L	Hardware	Hardware board of MN63Y1208 for demo and evaluation (Antenna module)	MN63Y1208
ANT4030_02_0505_B0_L_1213_V0	Hardware	Hardware board of MN63Y1213 for demo and evaluation (40x30mm Antenna)	MN63Y1213
ANT2020_03_0505_B0_L_1213_V0	Hardware	Hardware board of MN63Y1213 for demo and evaluation (20x20mm Antenna)	MN63Y1213
NFC-TAG-MN63Y1210A	Hardware	Hardware board of MN63Y1210A for demo and evaluation (Antenna module)	MN63Y1210A

Panasonic _______76

No.	Date	Version	Comment
1	Oct. 31, 2012	1.00	Initial edition
2	Nov. 21, 2012	1.10	Added the information about MN63Y1210
3	Dec. 19, 2012	1.20	Added operation examples (Chapter 5)
4	Jan. 28, 2013	1.21	Modified Appendix 7
5	Aug. 08, 2013	1.40	Modified "Response to WRITE" value "PCB" and "CRC" Modified "Response to READ" value "PCB" and "CRC"
6	Feb. 25, 2014	1.50	All pages: Deleted "Don't copy" All pages: Changed MN63Y1210→MN63Y1210A All pages: Added MN63Y1212/1213 P6: Added table for MN63Y1212/1213 P10: Added package diagram for MN63Y1212/1213 P12, 13, 14: Changed "Antenna Design Guide" → "NFC Design Navigator" on WEB Appendix: Updated figures

Revision History

Request for your special attention and precautions in using the technical information and semiconductors described in this book

- (1) If any of the products or technical information described in this book is to be exported or provided to non-residents, the laws and regulations of the exporting country, especially, those with regard to security export control, must be observed.
- (2) The technical information described in this book is intended only to show the main characteristics and application circuit examples of the products. No license is granted in and to any intellectual property right or other right owned by Panasonic Corporation or any other company. Therefore, no responsibility is assumed by our company as to the infringement upon any such right owned by any other company which may arise as a result of the use of technical information described in this book.
- (3) The products described in this book are intended to be used for general applications (such as office equipment, communications equipment, measuring instruments and household appliances), or for specific applications as expressly stated in this book. Consult our sales staff in advance for information on the following applications:

• Special applications (such as for airplanes, aerospace, automotive equipment, traffic signaling equipment, combustion equipment, life support systems and safety devices) in which exceptional quality and reliability are required, or if the failure or malfunction of the products may directly jeopardize life or harm the human body.

It is to be understood that our company shall not be held responsible for any damage incurred as a result of or in connection with your using the products described in this book for any special application, unless our company agrees to your using the products in this book for any special application.

- (4) The products and product specifications described in this book are subject to change without notice for modification and/or improvement. At the final stage of your design, purchasing, or use of the products, therefore, ask for the most up-to-date Product Standards in advance to make sure that the latest specifications satisfy your requirements.
- (5) When designing your equipment, comply with the range of absolute maximum rating and the guaranteed operating conditions (operating power supply voltage and operating environment etc.). Especially, please be careful not to exceed the range of absolute maximum rating on the transient state, such as power-on, power-off and mode-switching. Otherwise, we will not be liable for any defect which may arise later in your equipment.

Even when the products are used within the guaranteed values, take into the consideration of incidence of break down and failure mode, possible to occur to semiconductor products. Measures on the systems such as redundant design, arresting the spread of fire or preventing glitch are recommended in order to prevent physical injury, fire, social damages, for example, by using the products.

(6) Comply with the instructions for use in order to prevent breakdown and characteristics change due to external factors (ESD, EOS, thermal stress and mechanical stress) at the time of handling, mounting or at customer's process. When using products for which damp-proof packing is required, satisfy the conditions, such as shelf life and the elapsed time since first opening the packages.

(7) This book may be not reprinted or reproduced whether wholly or partially, without the prior written permission of our company.

20100202