

Arduino Cookbook
by Michael Margolis

Copyright © 2011 Michael Margolis and Nicholas Weldin. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editors: Simon St. Laurent and Brian Jepson
Production Editor: Teresa Elsey
Copyeditor: Audrey Doyle
Proofreader: Teresa Elsey

Indexer: Lucie Haskins
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
March 2011: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Arduino Cookbook, the image of a toy rabbit, and related trade dress are trademarks
of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-80247-9

[LSI]

1299267108

Table of Contents

Preface . xiii

1. Getting Started . 1
1.1 Installing the Integrated Development Environment (IDE) 4
1.2 Setting Up the Arduino Board 6
1.3 Using the Integrated Development Environment (IDE) to Prepare

an Arduino Sketch 8
1.4 Uploading and Running the Blink Sketch 11
1.5 Creating and Saving a Sketch 13
1.6 Using Arduino 15

2. Making the Sketch Do Your Bidding . 19
2.1 Structuring an Arduino Program 20
2.2 Using Simple Primitive Types (Variables) 21
2.3 Using Floating-Point Numbers 23
2.4 Working with Groups of Values 25
2.5 Using Arduino String Functionality 28
2.6 Using C Character Strings 30
2.7 Splitting Comma-Separated Text into Groups 32
2.8 Converting a Number to a String 34
2.9 Converting a String to a Number 36

2.10 Structuring Your Code into Functional Blocks 38
2.11 Returning More Than One Value from a Function 41
2.12 Taking Actions Based on Conditions 44
2.13 Repeating a Sequence of Statements 45
2.14 Repeating Statements with a Counter 47
2.15 Breaking Out of Loops 49
2.16 Taking a Variety of Actions Based on a Single Variable 50
2.17 Comparing Character and Numeric Values 52
2.18 Comparing Strings 54
2.19 Performing Logical Comparisons 55

v

2.20 Performing Bitwise Operations 56
2.21 Combining Operations and Assignment 58

3. Using Mathematical Operators . 61
3.1 Adding, Subtracting, Multiplying, and Dividing 61
3.2 Incrementing and Decrementing Values 62
3.3 Finding the Remainder After Dividing Two Values 63
3.4 Determining the Absolute Value 64
3.5 Constraining a Number to a Range of Values 65
3.6 Finding the Minimum or Maximum of Some Values 66
3.7 Raising a Number to a Power 67
3.8 Taking the Square Root 68
3.9 Rounding Floating-Point Numbers Up and Down 68

3.10 Using Trigonometric Functions 69
3.11 Generating Random Numbers 70
3.12 Setting and Reading Bits 72
3.13 Shifting Bits 75
3.14 Extracting High and Low Bytes in an int or long 77
3.15 Forming an int or long from High and Low Bytes 78

4. Serial Communications . 81
4.1 Sending Debug Information from Arduino to Your Computer 86
4.2 Sending Formatted Text and Numeric Data from Arduino 89
4.3 Receiving Serial Data in Arduino 92
4.4 Sending Multiple Text Fields from Arduino in a Single Message 95
4.5 Receiving Multiple Text Fields in a Single Message in Arduino 98
4.6 Sending Binary Data from Arduino 101
4.7 Receiving Binary Data from Arduino on a Computer 105
4.8 Sending Binary Values from Processing to Arduino 107
4.9 Sending the Value of Multiple Arduino Pins 109

4.10 How to Move the Mouse Cursor on a PC or Mac 112
4.11 Controlling Google Earth Using Arduino 115
4.12 Logging Arduino Data to a File on Your Computer 121
4.13 Sending Data to Two Serial Devices at the Same Time 124
4.14 Receiving Serial Data from Two Devices at the Same Time 128
4.15 Setting Up Processing on Your Computer to Send

and Receive Serial Data 131

5. Simple Digital and Analog Input . 133
5.1 Using a Switch 136
5.2 Using a Switch Without External Resistors 139
5.3 Reliably Detecting the Closing of a Switch 141
5.4 Determining How Long a Switch Is Pressed 144

vi | Table of Contents

5.5 Reading a Keypad 149
5.6 Reading Analog Values 152
5.7 Changing the Range of Values 154
5.8 Reading More Than Six Analog Inputs 155
5.9 Displaying Voltages Up to 5V 158

5.10 Responding to Changes in Voltage 161
5.11 Measuring Voltages More Than 5V (Voltage Dividers) 162

6. Getting Input from Sensors . 165
6.1 Detecting Movement 167
6.2 Detecting Light 170
6.3 Detecting Motion (Integrating Passive Infrared Detectors) 171
6.4 Measuring Distance 173
6.5 Measuring Distance Accurately 176
6.6 Detecting Vibration 180
6.7 Detecting Sound 181
6.8 Measuring Temperature 185
6.9 Reading RFID Tags 187

6.10 Tracking the Movement of a Dial 190
6.11 Tracking the Movement of More Than One Rotary Encoder 193
6.12 Tracking the Movement of a Dial in a Busy Sketch 195
6.13 Using a Mouse 197
6.14 Getting Location from a GPS 201
6.15 Detecting Rotation Using a Gyroscope 206
6.16 Detecting Direction 208
6.17 Getting Input from a Game Control Pad (PlayStation) 211
6.18 Reading Acceleration 213

7. Visual Output . 217
7.1 Connecting and Using LEDs 220
7.2 Adjusting the Brightness of an LED 223
7.3 Driving High-Power LEDs 224
7.4 Adjusting the Color of an LED 226
7.5 Sequencing Multiple LEDs: Creating a Bar Graph 229
7.6 Sequencing Multiple LEDs: Making a Chase Sequence (Knight

Rider) 232
7.7 Controlling an LED Matrix Using Multiplexing 234
7.8 Displaying Images on an LED Matrix 236
7.9 Controlling a Matrix of LEDs: Charlieplexing 239

7.10 Driving a 7-Segment LED Display 245
7.11 Driving Multidigit, 7-Segment LED Displays: Multiplexing 248
7.12 Driving Multidigit, 7-Segment LED Displays Using MAX7221 Shift

Registers 250

Table of Contents | vii

7.13 Controlling an Array of LEDs by Using MAX72xx Shift Registers 253
7.14 Increasing the Number of Analog Outputs Using PWM Extender

Chips (TLC5940) 255
7.15 Using an Analog Panel Meter As a Display 259

8. Physical Output . 261
8.1 Controlling the Position of a Servo 264
8.2 Controlling One or Two Servos with a Potentiometer

or Sensor 266
8.3 Controlling the Speed of Continuous Rotation Servos 267
8.4 Controlling Servos from the Serial Port 269
8.5 Driving a Brushless Motor (Using a Hobby Speed Controller) 271
8.6 Controlling Solenoids and Relays 272
8.7 Making an Object Vibrate 273
8.8 Driving a Brushed Motor Using a Transistor 276
8.9 Controlling the Direction of a Brushed Motor

with an H-Bridge 277
8.10 Controlling the Direction and Speed of a Brushed Motor with an

H-Bridge 280
8.11 Using Sensors to Control the Direction and Speed of Brushed

Motors (L293 H-Bridge) 282
8.12 Driving a Bipolar Stepper Motor 287
8.13 Driving a Bipolar Stepper Motor (Using the EasyDriver Board) 290
8.14 Driving a Unipolar Stepper Motor (ULN2003A) 293

9. Audio Output . 297
9.1 Playing Tones 299
9.2 Playing a Simple Melody 301
9.3 Generating More Than One Simultaneous Tone 303
9.4 Generating Audio Tones and Fading an LED 305
9.5 Playing a WAV File 308
9.6 Controlling MIDI 311
9.7 Making an Audio Synthesizer 314

10. Remotely Controlling External Devices . 317
10.1 Responding to an Infrared Remote Control 318
10.2 Decoding Infrared Remote Control Signals 321
10.3 Imitating Remote Control Signals 324
10.4 Controlling a Digital Camera 327
10.5 Controlling AC Devices by Hacking a Remote Controlled Switch 330

11. Using Displays . 333
11.1 Connecting and Using a Text LCD Display 334

viii | Table of Contents

11.2 Formatting Text 337
11.3 Turning the Cursor and Display On or Off 340
11.4 Scrolling Text 342
11.5 Displaying Special Symbols 345
11.6 Creating Custom Characters 347
11.7 Displaying Symbols Larger Than a Single Character 349
11.8 Displaying Pixels Smaller Than a Single Character 352
11.9 Connecting and Using a Graphical LCD Display 355

11.10 Creating Bitmaps for Use with a Graphical Display 359
11.11 Displaying Text on a TV 361

12. Using Time and Dates . 367
12.1 Creating Delays 367
12.2 Using millis to Determine Duration 368
12.3 More Precisely Measuring the Duration of a Pulse 372
12.4 Using Arduino As a Clock 373
12.5 Creating an Alarm to Periodically Call a Function 380
12.6 Using a Real-Time Clock 384

13. Communicating Using I2C and SPI . 389
13.1 Controlling an RGB LED Using the BlinkM Module 392
13.2 Using the Wii Nunchuck Accelerometer 397
13.3 Interfacing to an External Real-Time Clock 401
13.4 Adding External EEPROM Memory 404
13.5 Reading Temperature with a Digital Thermometer 408
13.6 Driving Four 7-Segment LEDs Using Only Two Wires 412
13.7 Integrating an I2C Port Expander 416
13.8 Driving Multidigit, 7-Segment Displays Using SPI 418
13.9 Communicating Between Two or More Arduino Boards 421

14. Wireless Communication . 425
14.1 Sending Messages Using Low-Cost Wireless Modules 425
14.2 Connecting Arduino to a ZigBee or 802.15.4 Network 431
14.3 Sending a Message to a Particular XBee 438
14.4 Sending Sensor Data Between XBees 440
14.5 Activating an Actuator Connected to an XBee 446

15. Ethernet and Networking . 451
15.1 Setting Up the Ethernet Shield 453
15.2 Obtaining Your IP Address Automatically 455
15.3 Resolving Hostnames to IP Addresses (DNS) 458
15.4 Requesting Data from a Web Server 462
15.5 Requesting Data from a Web Server Using XML 466

Table of Contents | ix

15.6 Setting Up an Arduino to Be a Web Server 469
15.7 Handling Incoming Web Requests 471
15.8 Handling Incoming Requests for Specific Pages 474
15.9 Using HTML to Format Web Server Responses 479

15.10 Serving Web Pages Using Forms (POST) 483
15.11 Serving Web Pages Containing Large Amounts of Data 486
15.12 Sending Twitter Messages 493
15.13 Sending and Receiving Simple Messages (UDP) 496
15.14 Getting the Time from an Internet Time Server 502
15.15 Monitoring Pachube Feeds 507
15.16 Sending Information to Pachube 510

16. Using, Modifying, and Creating Libraries . 515
16.1 Using the Built-in Libraries 515
16.2 Installing Third-Party Libraries 517
16.3 Modifying a Library 518
16.4 Creating Your Own Library 522
16.5 Creating a Library That Uses Other Libraries 527

17. Advanced Coding and Memory Handling . 531
17.1 Understanding the Arduino Build Process 532
17.2 Determining the Amount of Free and Used RAM 535
17.3 Storing and Retrieving Numeric Values in Program Memory 537
17.4 Storing and Retrieving Strings in Program Memory 540
17.5 Using #define and const Instead of Integers 542
17.6 Using Conditional Compilations 543

18. Using the Controller Chip Hardware . 547
18.1 Storing Data in Permanent EEPROM Memory 551
18.2 Using Hardware Interrupts 554
18.3 Setting Timer Duration 557
18.4 Setting Timer Pulse Width and Duration 559
18.5 Creating a Pulse Generator 562
18.6 Changing a Timer’s PWM Frequency 565
18.7 Counting Pulses 567
18.8 Measuring Pulses More Accurately 569
18.9 Measuring Analog Values Quickly 571

18.10 Reducing Battery Drain 572
18.11 Setting Digital Pins Quickly 574

A. Electronic Components . 579

B. Using Schematic Diagrams and Data Sheets . 585

x | Table of Contents

C. Building and Connecting the Circuit . 591

D. Tips on Troubleshooting Software Problems . 595

E. Tips on Troubleshooting Hardware Problems . 599

F. Digital and Analog Pins . 603

G. ASCII and Extended Character Sets . 607

Index . 611

Table of Contents | xi

CHAPTER 1

Getting Started

1.0 Introduction
The Arduino environment has been designed to be easy to use for beginners who have
no software or electronics experience. With Arduino, you can build objects that can
respond to and/or control light, sound, touch, and movement. Arduino has been used
to create an amazing variety of things, including musical instruments, robots, light
sculptures, games, interactive furniture, and even interactive clothing.

If you’re not a beginner, please feel free to skip ahead to recipes that
interest you.

Arduino is used in many educational programs around the world, particularly by de-
signers and artists who want to easily create prototypes but do not need a deep under-
standing of the technical details behind their creations. Because it is designed to be used
by nontechnical people, the software includes plenty of example code to demonstrate
how to use the Arduino board’s various facilities.

Though it is easy to use, Arduino’s underlying hardware works at the same level of
sophistication that engineers employ to build embedded devices. People already work-
ing with microcontrollers are also attracted to Arduino because of its agile development
capabilities and its facility for quick implementation of ideas.

Arduino is best known for its hardware, but you also need software to program that
hardware. Both the hardware and the software are called “Arduino.” The combination
enables you to create projects that sense and control the physical world. The software
is free, open source, and cross-platform. The boards are inexpensive to buy, or you can
build your own (the hardware designs are also open source). In addition, there is an
active and supportive Arduino community that is accessible worldwide through the
Arduino forums and the wiki (known as the Arduino Playground). The forums and the

1

wiki offer project development examples and solutions to problems that can provide
inspiration and assistance as you pursue your own projects.

The recipes in this chapter will get you started by explaining how to set up the devel-
opment environment and how to compile and run an example sketch.

Source code containing computer instructions for controlling Arduino
functionality is usually referred to as a sketch in the Arduino community.
The word sketch will be used throughout this book to refer to Arduino
program code.

The Blink sketch, which comes with Arduino, is used as an example for recipes in this
chapter, though the last recipe in the chapter goes further by adding sound and col-
lecting input through some additional hardware, not just blinking the light built into
the board. Chapter 2 covers how to structure a sketch for Arduino and provides an
introduction to programming.

If you already know your way around Arduino basics, feel free to jump
forward to later chapters. If you’re a first-time Arduino user, patience
in these early recipes will pay off with smoother results later.

Arduino Software
Software programs, called sketches, are created on a computer using the Arduino inte-
grated development environment (IDE). The IDE enables you to write and edit code
and convert this code into instructions that Arduino hardware understands. The IDE
also transfers those instructions to the Arduino board (a process called uploading).

Arduino Hardware
The Arduino board is where the code you write is executed. The board can only control
and respond to electricity, so specific components are attached to it to enable it to
interact with the real world. These components can be sensors, which convert some
aspect of the physical world to electricity so that the board can sense it, or actuators,
which get electricity from the board and convert it into something that changes the
world. Examples of sensors include switches, accelerometers, and ultrasound distance
sensors. Actuators are things like lights and LEDs, speakers, motors, and displays.

There are a variety of official boards that you can use with Arduino software and a wide
range of Arduino-compatible boards produced by members of the community.

The most popular boards contain a USB connector that is used to provide power and
connectivity for uploading your software onto the board. Figure 1-1 shows a basic
board, the Arduino Uno.

2 | Chapter 1: Getting Started

You can get boards as small as a postage stamp, such as the Arduino Mini and Pro Mini;
larger boards that have more connection options and more powerful processors, such
as the Arduino Mega; and boards tailored for specific applications, such as the LilyPad
for wearable applications, the Fio for wireless projects, and the Arduino Pro for em-
bedded applications (standalone projects that are often battery-operated). Many other
Arduino-compatible boards are also available, including the following:

• Arduino Nano, a tiny board with USB capability, from Gravitech (http://store.grav
itech.us/arna30wiatn.html)

• Bare Bones Board, a low-cost board available with or without USB capability, from
Modern Device (http://www.moderndevice.com/products/bbb-kit)

• Boarduino, a low-cost breadboard-compatible board, from Adafruit Industries
(http://www.adafruit.com/)

• Seeeduino, a flexible variation of the standard USB board, from Seeed Studio
Bazaar (http://www.seeedstudio.com/)

• Teensy and Teensy++, tiny but extremely versatile boards, from PJRC (http://www
.pjrc.com/teensy/)

A comprehensive list of Arduino-compatible boards is available at http://www.freeduino
.org/.

See Also
An overview of Arduino boards: http://www.arduino.cc/en/Main/Hardware.

Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

Figure 1-1. Basic board: the Arduino Uno

1.0 Introduction | 3

1.1 Installing the Integrated Development Environment (IDE)
Problem
You want to install the Arduino development environment on your computer.

Solution
The Arduino software for Windows, Mac, and Linux can be downloaded from http://
arduino.cc/en/Main/Software.

The Windows download is a ZIP file. Unzip the file to any convenient directory—
Program Files/Arduino is a sensible place.

A free utility for unzipping files, called 7-Zip, can be downloaded from
http://www.7-zip.org/.

Unzipping the file will create a folder named Arduino-00<nn> (where <nn> is the ver-
sion number of the Arduino release you downloaded). The directory contains the
executable file (named Arduino.exe), along with various other files and folders. Double-
click the Arduino.exe file and the splash screen should appear (see Figure 1-2), followed
by the main program window (see Figure 1-3). Be patient, as it can take some time for
the software to load.

Figure 1-2. Arduino splash screen (version 0019 in Windows 7)

4 | Chapter 1: Getting Started

The Arduino download for the Mac is a disk image (.dmg); double-click the file when
the download is complete. The image will mount (it will appear like a memory stick
on the desktop). Inside the disk image is the Arduino application. Copy this to some-
where convenient—the Applications folder is a sensible place. Double-click the appli-
cation once you have copied it over (it is not a good idea to run it from the disk image).
The splash screen will appear, followed by the main program window.

Linux installation varies depending on the Linux distribution you are using. See the
Arduino wiki for information (http://www.arduino.cc/playground/Learning/Linux).

To enable the Arduino development environment to communicate with the board, you
need to install drivers.

Figure 1-3. Arduino IDE main window (version 0019 in Windows 7)

1.1 Installing the Integrated Development Environment (IDE) | 5

On Windows, use the USB cable to connect your PC and the Arduino board and wait
for the Found New Hardware Wizard to appear. If you are using Windows Vista or
Windows 7 and are online, you can let the wizard search for drivers and they will install
automatically. On Windows XP, you should specify the location of the drivers. Use the
file selector to navigate to the drivers directory, located in the directory where you
unzipped the Arduino files. When the driver has installed, the Found New Hardware
Wizard will appear again, saying a new serial port has been found. Follow the same
process as before.

It is important that you go through the sequence of steps to install the
drivers two times, or the software will not be able to communicate with
the board.

On the Mac, the latest Arduino boards, such as the Uno, can be used without additional
drivers, but if you are using earlier boards, you will need to install driver software. There
is a package named FTDIUSBSerialDriver, with a range of numbers after it, inside the
disk image. Double-click this and the installer will take you through the process. You
will need to know an administrator password to complete the process.

On Linux, most distributions have the driver already installed, but follow the Linux
link given in this chapter’s introduction for specific information for your distribution.

Discussion
If the software fails to start, check the troubleshooting section of the Arduino website,
http://arduino.cc/en/Guide/Troubleshooting, for help solving installation problems.

See Also
Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

1.2 Setting Up the Arduino Board
Problem
You want to power up a new board and verify that it is working.

Solution
Plug the board into a USB port on your computer and check that the green LED power
indicator on the board illuminates. Standard Arduino boards (Uno, Duemilanove, and
Mega) have a green LED power indicator located near the reset switch.

6 | Chapter 1: Getting Started

An orange LED near the center of the board (labeled “Pin 13 LED” in Figure 1-4) should
flash on and off when the board is powered up (boards come from the factory preloaded
with software to flash the LED as a simple check that the board is working).

Figure 1-4. Basic Arduino board (Uno and Duemilanove)

Discussion
If the power LED does not illuminate when the board is connected to your computer,
the board is probably not receiving power.

The flashing LED (connected to digital output pin 13) is being controlled by code
running on the board (new boards are preloaded with the Blink example sketch). If the
pin 13 LED is flashing, the sketch is running correctly, which means the chip on the
board is working. If the green power LED is on but the pin 13 LED is not flashing, it
could be that the factory code is not on the chip; follow the instructions in Rec-
ipe 1.3 to load the Blink sketch onto the board to verify that the board is working. If
you are not using a standard board, it may not have a built-in LED on pin 13, so check
the documentation for details of your board.

See Also
Online guides for getting started with Arduino are available at http://arduino.cc/en/
Guide/Windows for Windows, http://arduino.cc/en/Guide/MacOSX for Mac OS X, and
http://www.arduino.cc/playground/Learning/Linux for Linux.

A troubleshooting guide can be found at http://arduino.cc/en/Guide/Troubleshooting.

1.2 Setting Up the Arduino Board | 7

1.3 Using the Integrated Development Environment (IDE) to
Prepare an Arduino Sketch
Problem
You want to get a sketch and prepare it for uploading to the board.

Solution
Use the Arduino IDE to create, open, and modify sketches that define what the board
will do. You can use buttons along the top of the IDE to perform these actions (shown
in Figure 1-5), or you can use the menus or keyboard shortcuts (shown in Figure 1-6).

The Sketch Editor area is where you view and edit code for a sketch. It supports com-
mon text editing keys such as Ctrl-F (⌘+F on a Mac) for find, Ctrl-Z (⌘+Z on a Mac)
for undo, Ctrl-C (⌘+C on a Mac) to copy highlighted text, and Ctrl-V (⌘+V on a Mac)
to paste highlighted text.

Figure 1-6 shows how to load the Blink sketch (the sketch that comes preloaded on a
new Arduino board).

After you’ve started the IDE, go to the File→Examples menu and select 1.Basics→Blink,
as shown in Figure 1-6. The code for blinking the built-in LED will be displayed in the
Sketch Editor window (refer to Figure 1-5).

Before the code can be sent to the board, it needs to be converted into instructions that
can be read and executed by the Arduino controller chip; this is called compiling. To
do this, click the compile button (the top-left button with a triangle inside), or select
Sketch→Verify/Compile.

You should see a message that reads “Compiling...” in the message area below the text
editing window. After a second or two, a message that reads “Done Compiling” will
appear. The black console area will contain the following additional message:

Binary sketch size: 1008 bytes (of a 32256 byte maximum)

The exact message may differ depending on the Arduino version; it is telling you the
size of the sketch and the maximum size that your board can accept.

8 | Chapter 1: Getting Started

Figure 1-5. Arduino IDE

Discussion
Source code for Arduino is called a sketch. The process that takes a sketch and converts
it into a form that will work on the board is called compilation. The IDE uses a number
of command-line tools behind the scenes to compile a sketch. For more information
on this, see Recipe 17.1.

1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch | 9

Figure 1-6. IDE menu (selecting the Blink example sketch)

The final message telling you the size of the sketch indicates how much program space
is needed to store the controller instructions on the board. If the size of the compiled
sketch is greater than the available memory on the board, the following error message
is displayed:

Sketch too big; see http://www.arduino.cc/en/Guide/Troubleshooting#size
 for tips on reducing it.

If this happens, you need to make your sketch smaller to be able to put it on the board,
or get a board with higher capacity.

10 | Chapter 1: Getting Started

If there are errors in the code, the compiler will print one or more error messages in the
console window. These messages can help identify the error—see Appendix D on soft-
ware errors for troubleshooting tips.

To prevent accidental overwriting of the examples, the Arduino IDE
does not allow you to save changes to the provided example sketches.
You must rename them using the Save As menu option. You can save
sketches you write yourself with the Save button (see Recipe 1.5).

As you develop and modify a sketch, you should also consider using the File→Save As
menu option and using a different name or version number regularly so that as you
implement each bit, you can go back to an older version if you need to.

Code uploaded onto the board cannot be downloaded back onto your
computer. Make sure you save your sketch code on your computer. You
cannot save changes back to the example files; you need to use Save As
and give the changed file another name.

See Also
Recipe 1.5 shows an example sketch. Appendix D has tips on troubleshooting software
problems.

1.4 Uploading and Running the Blink Sketch
Problem
You want to transfer your compiled sketch to the Arduino board and see it working.

Solution
Connect your Arduino board to your computer using the USB cable. Load the Blink
sketch into the IDE as described in Recipe 1.3.

Next, select Tools→Board from the drop-down menu and select the name of the board
you have connected (if it is the standard Uno board, it is probably the first entry in the
board list).

Now select Tools→Serial Port. You will get a drop-down list of available serial ports on
your computer. Each machine will have a different combination of serial ports, de-
pending on what other devices you have used with your computer.

On Windows, they will be listed as numbered COM entries. If there is only one entry,
select it. If there are multiple entries, your board will probably be the last entry.

1.4 Uploading and Running the Blink Sketch | 11

On the Mac, your board will be listed twice if it is an Uno board:

/dev/tty.usbmodem-XXXXXXX
/dev/cu.usbmodem-XXXXXXX

If you have an older board, it will be listed as follows:

/dev/tty.usbserial-XXXXXXX
/dev/cu.usbserial-XXXXXXX

Each board will have different values for XXXXXXX. Select either entry.

Click on the upload button (in Figure 1-5, it’s the fifth button from the left), or choose
File→Upload to I/O board.

The software will compile the code, as in Recipe 1.3. After the software is compiled, it
is uploaded to the board. If you look at your board, you will see the LED stop flashing,
and two lights (labeled as Serial LEDs in Figure 1-4) just below the previously flashing
LED should flicker for a couple of seconds as the code uploads. The original light should
then start flashing again as the code runs.

Discussion
For the IDE to send the compiled code to the board, the board needs to be plugged
into the computer, and you need to tell the IDE which board and serial port you are
using.

When an upload starts, whatever sketch is running on the board is stopped (if you were
running the Blink sketch, the LED will stop flashing). The new sketch is uploaded to
the board, replacing the previous sketch. The new sketch will start running when the
upload has successfully completed.

Older Arduino boards and some compatibles do not automatically in-
terrupt the running sketch to initiate upload. In this case, you need to
press the Reset button on the board just after the software reports that
it is done compiling (when you see the message about the size of the
sketch). It may take a few attempts to get the timing right between the
end of the compilation and pressing the Reset button.

The IDE will display an error message if the upload is not successful. Problems are
usually due to the wrong board or serial port being selected or the board not being
plugged in.

If you have trouble identifying the correct port on Windows, try unplugging the board
and then selecting Tools→Serial Port to see which COM port is no longer on the display
list. Another approach is to select the ports, one by one, until you see the lights on the
board flicker to indicate that the code is uploading.

12 | Chapter 1: Getting Started

See Also
The Arduino troubleshooting page: http://www.arduino.cc/en/Guide/Troubleshooting

1.5 Creating and Saving a Sketch
Problem
You want to create a sketch and save it to your computer.

Solution
To open an editor window ready for a new sketch, launch the IDE (see Recipe 1.3), go
to the File menu, and select New. Paste the following code into the Sketch Editor win-
dow (it’s similar to the Blink sketch, but the blinks last twice as long):

const int ledPin = 13; // LED connected to digital pin 13

void setup()
{
 pinMode(ledPin, OUTPUT);
}

void loop()
{
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(2000); // wait for two seconds
 digitalWrite(ledPin, LOW); // set the LED off
 delay(2000); // wait for two seconds
}

Compile the code by clicking the compile button (the top-left button with a triangle
inside), or select Sketch→Verify/Compile (see Recipe 1.3).

Upload the code by clicking on the upload button, or choose File→Upload to I/O board
(see Recipe 1.4). After uploading, the LED should blink, with each flash lasting two
seconds.

You can save this sketch to your computer by clicking the Save button, or select
File→Save.

You can save the sketch using a new name by selecting the Save As menu option. A
dialog box will open where you can enter the filename.

Discussion
When you save a file in the IDE, a standard dialog box for the operating system will
open. It suggests that you save the sketch to a folder called Arduino in your My Docu-
ments folder (or your Documents folder on a Mac). You can replace the default sketch

1.5 Creating and Saving a Sketch | 13

name with a meaningful name that reflects the purpose of your sketch. Click Save to
save the file.

The default name is the word sketch followed by the current date. Se-
quential letters starting from a are used to distinguish sketches created
on the same day. Replacing the default name with something meaning-
ful helps you to identify the purpose of a sketch when you come back
to it later.

If you use characters that the IDE does not allow (e.g., the space character), the IDE
will automatically replace these with valid characters.

Arduino sketches are saved as plain text files with the extension .pde. They are auto-
matically saved in a folder with the same name as the sketch.

You can save your sketches to any folder on your computer, but if you use the default
folder (the Arduino folder in your Documents folder) your sketches will automatically
appear in the Sketchbook menu of the Arduino software and be easier to locate.

If you have edited one of the examples from the Arduino download, you
will not be able to save the changed file using the same filename. This
preserves the standard examples intact. If you want to save a modified
example, you will need to select another location for the sketch.

After you have made changes, you will see a dialog box asking if you want to save the
sketch when a sketch is closed.

The § symbol following the name of the sketch in the top bar of the IDE
window indicates that the sketch code has changes that have not yet
been saved on the computer. This symbol is removed when you save the
sketch.

The Arduino software does not provide any kind of version control, so if you want to
be able to revert to older versions of a sketch, you can use Save As regularly and give
each revision of the sketch a slightly different name.

Frequent compiling as you modify or add code is a good way to check for errors as you
write your code. It will be easier to find and fix any errors because they will usually be
associated with what you have just written.

Once a sketch has been uploaded onto the board there is no way to
download it back to your computer. Make sure you save any changes
to your sketches that you want to keep.

14 | Chapter 1: Getting Started

If you open sketches you get from other people that are not in a folder with the same
name as the sketch, the IDE will tell you and you can click OK to put them in a folder
with the same name.

Sketches must be located in a folder with the same name as the sketch.
The IDE will create the folder automatically when you save a new sketch.

1.6 Using Arduino
Problem
You want to get started with a project that is easy to build and fun to use.

Solution
This recipe provides a taste of some of the techniques that are covered in detail in later
chapters.

The sketch is based on the LED blinking code from the previous recipe, but instead of
using a fixed delay, the rate is determined by a light-sensitive sensor called a light de-
pendent resistor or LDR (see Recipe 6.2). Wire the LDR as shown in Figure 1-7.

Figure 1-7. Arduino with light dependent resistor

The following sketch reads the light level of an LDR connected to analog pin 0. The
light level striking the LDR will change the blink rate of the internal LED connected to
pin 13:

1.6 Using Arduino | 15

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
}

void loop()
{
 int rate = analogRead(sensorPin); // read the analog input
 Serial.println(rate);
 rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

Discussion
The value of the 4.7K resistor is not critical. Anything from 1K to 10K can be used. The
light level on the LDR will change the voltage level on analog pin 0. The analogRead
command (see Chapter 6) provides a value that ranges from around 200 when the LDR
is dark to 800 or so when it is very bright. This value determines the duration of the
LED on and off times, so the blink rate increases with light intensity.

You can scale the blink rate by using the Arduino map function as follows:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
}

void loop()
{
 int rate = analogRead(sensorPin); // read the analog input
 // the next line scales the blink rate between the min and max values
 rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

Recipe 5.7 provides more details on using the map function to scale values.

16 | Chapter 1: Getting Started

If you want to view the value of the rate variable on your computer, you can print this
to the Arduino Serial Monitor as shown in the revised loop code that follows. The
sketch will display the blink rate in the Serial Monitor. You open the Serial Monitor
window in the Arduino IDE (see Chapter 4 for more on using the Serial Monitor):

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

// the next two lines set the min and max delay between blinks
const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
 Serial.begin(9600); // initialize Serial
}

void loop()
{
 int rate = analogRead(sensorPin); // read the analog input
 // the next line scales the blink rate between the min and max values
 rate = map(rate, 200,800,minDuration, maxDuration); // convert to blink rate
 Serial.println(rate); // print rate to serial monitor
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

You can use the LDR to control the pitch of a sound by connecting a small speaker to
the pin, as shown in Figure 1-8.

Figure 1-8. Connections for a speaker with the LDR circuit

1.6 Using Arduino | 17

You will need to increase the on/off rate on the pin to a frequency in the audio spectrum.
This is achieved, as shown in the following code, by dividing the rate by 100 in the line
after the map function:

const int ledPin = 13; // LED connected to digital pin 13
const int sensorPin = 0; // connect sensor to analog input 0

const int minDuration = 100; // minimum wait between blinks
const int maxDuration = 1000; // maximum wait between blinks

void setup()
{
 pinMode(ledPin, OUTPUT); // enable output on the led pin
}

void loop()
{
 int sensorReading = analogRead(sensorPin); // read the analog input
 int rate = map(sensorReading, 200,800,minDuration, maxDuration);
 rate = rate / 100; // add this line for audio frequency
 digitalWrite(ledPin, HIGH); // set the LED on
 delay(rate); // wait duration dependent on light level
 digitalWrite(ledPin, LOW); // set the LED off
 delay(rate);
}

See Also
See Chapter 9 for more on creating sound with Arduino.

18 | Chapter 1: Getting Started

	Table of Contents
	Chapter 1. Getting Started
	1.0 Introduction
	Arduino Software
	Arduino Hardware
	See Also

	1.1 Installing the Integrated Development Environment (IDE)
	Problem
	Solution
	Discussion
	See Also

	1.2 Setting Up the Arduino Board
	Problem
	Solution
	Discussion
	See Also

	1.3 Using the Integrated Development Environment (IDE) to Prepare an Arduino Sketch
	Problem
	Solution
	Discussion
	See Also

	1.4 Uploading and Running the Blink Sketch
	Problem
	Solution
	Discussion
	See Also

	1.5 Creating and Saving a Sketch
	Problem
	Solution
	Discussion

	1.6 Using Arduino
	Problem
	Solution
	Discussion
	See Also

