

AIS3624DQ

High-performance motion sensor for automotive applications: ultra-low-power digital output 3-axis accelerometer

Data brief

QFN24 (4x4x1.8 mm)

Features

- Wide supply voltage range, 2.4 V to 3.6 V
- 1.8 V low-voltage-compatible IOs
- Ultra-low-power mode consumption down to 10 μA
- ±6g/±12g/±24g dynamically selectable full scales
- SPI/I²C digital output interface
- 16-bit data output, 12-bit resolution
- 2 independent programmable interrupt generators
- System sleep-to-wakeup function
- Embedded self-test
- Extended temperature range -40 °C to 105 °C
- 10000 g high shock survivability
- ECOPACK[®], RoHS and "Green" compliant (see *Section 3*)
- AEC-Q100 qualification

Description

The AIS3624DQ is an ultra-low-power highperformance three-axis linear accelerometer with a digital serial interface SPI standard output. An I²C compatible interface is also available.

The device features ultra-low-power operational modes that allow advanced power saving and smart sleep-to-wakeup functions.

The AIS3624DQ has dynamically user-selectable full scales of $\pm 6g/\pm 12g/\pm 24g$ and is capable of measuring accelerations with output data rates from 0.5 Hz to 1 kHz.

The self-test capability allows the user to check the functioning of the sensor in the final application.

The device may be configured to generate an interrupt signal by inertial wakeup/free-fall events as well as by the position of the device itself. Thresholds and timing of interrupt generators are programmable by the end user on the fly.

The AIS3624DQ is available in a small quad flat no-lead (QFN) package (4x4 mm footprint) and is guaranteed to operate over an extended temperature range from -40 °C to +105 °C.

This product may be used in a variety of automotive non-safety applications such as:

- Motion-activated functions
- Telematic boxes
- Impact recognition and logging
- Vibration monitoring and compensation

Table 1. Device summary

Order codes	Order codes Temperature range [°C]		Packaging
AIS3624DQ	-40 to +105	QFN24 4x4x1.8 mm	Tray
AIS3624DQTR	-40 to +105	QFN24 4x4x1.8 mm	Tape and reel

DocID026308 Rev 1

1 Block diagram and pin description

1.1 Block diagram

1.2 Pin description

Figure 2. Pin connections

Pin#	Name Function		
1,2	NC	Not connected	
3	INT_2	Inertial interrupt 2	
4	Reserved	Connect to GND	
5	VDD	Power supply	
6	GND	0 V supply	
7	INT_1	Inertial interrupt 1	
8	GND	0 V supply	
9	GND	0 V supply	
10	GND	0 V supply	
11	SPC SCL	SPI serial port clock (SPC) I ² C serial clock (SCL)	
12	CS	SPI enable I ² C/SPI mode selection (0: SPI enabled; 1: I ² C mode)	
13	Reserved	Connect to Vdd	
14	VDD_IO	Power supply for I/O pins	
15	SDO SA0	SPI serial data output (SDO) I ² C less significant bit of the device address (SA0)	
16	SDI SDO SDA	SPI serial data input (SDI) 3-wire interface serial data output (SDO) I ² C serial data (SDA)	
17-24	NC	Not internally connected	

Table 2. Pin description

2 Mechanical and electrical specifications

2.1 Mechanical characteristics

@ Vdd = 3.3 V, T = -40 °C to +105 °C unless otherwise noted^(a)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
FS Measurem		FS bit set to 00		±6		
	Measurement range ⁽¹⁾	FS bit set to 01		±12		g
		FS bit set to 11		±24		
		FS bit set to 00 12-bit representation		2.9		
So Sensitivity	Sensitivity	FS bit set to 01 12-bit representation		5.9		m g /digit
		FS bit set to 11 12-bit representation		11.7		
TCSo	Sensitivity change vs temperature	FS bit set to 00		±0.01		%/°C
TyOff	Typical zero- <i>g</i> level offset accuracy ^{(2),(3)}	FS bit set to 00		±70		mg
TCOff	Zero- <i>g</i> level change vs. temperature	Max delta from 25 °C		±0.4		m g /°C
An	Acceleration noise density	FS bit set to 00		600		µg/√Hz
		FS bit set to 00 X-axis		100		LSb
Vst Si	Self-test output change ⁽⁴⁾⁽⁵⁾⁽⁶⁾	FS bit set to 00 Y-axis		100		LSb
		FS bit set to 00 Z-axis		120		LSb
Тор	Operating temperature range		-40		+105	°C
Wh	Product weight			55		mgram

1. Verified by wafer level test and measurement of initial offset and sensitivity.

2. Typical zero-g level offset value after MSL3 preconditioning.

3. Offset can be eliminated by enabling the built-in high-pass filter.

4. The sign of "Self-test output change" is defined by a sign bit, for all axes.

5. Self-test output changes with the power supply. "Self-test output change" is defined as

OUTPUT[LSb]_(CTRL_REG4 ST bit=1) - OUTPUT[LSb]_(CTRL_REG4 ST bit=0). 1LSb=12g/4096 at 12-bit representation, ±6 g full-scale.

6. Output data reach 99% of final value after 1/ODR+1ms when enabling self-test mode due to device filtering.

a. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.

2.2 Electrical characteristics

@ Vdd = 3.3 V, T = -40°C to $+105^{\circ}\text{C}$ unless otherwise noted^(b)

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Vdd	Supply voltage		2.4		3.6	V
Vdd_IO	I/O pins supply voltage ⁽¹⁾		1.71		Vdd+0.1	V
ldd	Current consumption in normal mode			250		μA
IddLP	Current consumption in low-power mode			10		μA
lddPdn	Current consumption in power-down mode			1		μA
VIH	Digital high-level input voltage		0.8*Vdd_IO			V
VIL	Digital low-level input voltage				0.2*Vdd_IO	V
VOH	High-level output voltage		0.9*Vdd_IO			V
VOL	Low-level output voltage				0.1*Vdd_IO	V
	Output data rate in normal mode	DR bit set to 00		50		Hz
		DR bit set to 01		100		
		DR bit set to 10		400		
		DR bit set to 11		1000		
		PM bit set to 010		0.5		
ODR _{LP}	Output data rate in low-power mode	PM bit set to 011		1		Hz
		PM bit set to 100		2		
		PM bit set to 101		5		
		PM bit set to 110		10		
BW	System bandwidth			ODR/2		Hz
Ton	Turn-on time ⁽²⁾	ODR = 100 Hz		1/ODR+ 1ms		s
Тор	Operating temperature range		-40		+105	°C

1. It is possible to remove Vdd maintaining Vdd_IO without blocking the communication busses. In this condition the measurement chain is powered off.

2. Time to obtain valid data after exiting power-down mode

b. The product is factory calibrated at 3.3 V. Operational power supply (Vdd) over 3.6 V is not recommended.

2.3 Absolute maximum ratings

Stresses above those listed as "absolute maximum ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device under these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Symbol	Ratings	Maximum value	Unit
Vdd	Supply voltage	-0.3 to 4	V
Vdd_IO	I/O pins supply voltage	-0.3 to Vdd+0.1	V
Vin	Input voltage on any control pin (CS, SCL/SPC, SDA/SDI/SDO, SDO/SA0)	-0.3 to Vdd_IO+0.3	V
Δ	Acceleration (any axis, nowered, $V(d = 2.5)/(d = 2.5)$	3000 <i>g</i> for 0.5 ms	
APOW		10000 <i>g</i> for 0.1 ms	
A _{UNP}	Acceleration (any axis, unpowered)	3000 <i>g</i> for 0.5 ms	
	Acceleration (any axis, unpowered)	10000 <i>g</i> for 0.1 ms	
T _{OP}	Operating temperature range	-40 to +105	°C
T _{STG}	Storage temperature range	-40 to +125	°C
ESD	Electrostatic discharge protection	2 (HBM)	kV
		500 (CDM)	V
		200 (MM)	V

Table	5. Absolute	maximum	ratings
TUDIC	o. Absoluto	maximum	ratings

Note:

Supply voltage on any pin should never exceed 4.0 V

This device is sensitive to mechanical shock, improper handling can cause permanent damage to the part.

This device is sensitive to electrostatic discharge (ESD), improper handling can cause permanent damage to the part.

3 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

Figure 3. QFN24: Mechanical data and package dimensions

DocID026308 Rev 1

4 Revision history

Date	Revision	Changes
06-May-2014	1	Initial release

Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2014 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com

DocID026308 Rev 1