

3-Terminal 500mA Negative Voltage Regulator

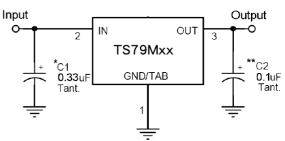
Pin Definition:

- 1. Ground
- 2. Input (tab)
- 3. Output

General Description

The TS79M00 series of fixed output negative voltage regulators are intended as complements to the popular TS78M00 series device. These negative regulators are available in the same seven-voltage options as the TS7900 devices. In addition, one extra voltage option commonly employed in MECL systems is also available in the negative TS79M00 Series. Available in fixed output voltage options from -5.0 to -24 volts, these regulators employ current limiting, thermal shutdown, and safe-area compensation--making them remarkably rugged under most operating conditions. With adequate heat sinking they can deliver output currents in excess of 0.5 ampere.

Features


- Output Voltage: -5 & -12V
- Output current up to 0.5A
- No external components required
- Internal thermal overload protection
- Internal short-circuit current limiting
- Output transistor safe-area compensation
- Output voltage offered in 4% tolerance

Ordering Information

Part No.	Package	Packing
TS79M <u>xx</u> CZ C0G	TO-220	50pcs / Tube
TS79M <u>xx</u> CP ROG	TO-252	2.5Kpcs / 13" Reel

Note: Refer to detail ordering information table.

Standard Application Circuit

A common ground is required between the input and the output voltages. The input voltage must remain typically 2.0V above the output voltage even during the low point on the Input ripple voltage.

XX = these two digits of the type number indicate voltage.

- * = Cin is required if regulator is located an appreciable distance from power supply filter.
- ** = Co is not needed for stability; however, it does improve transient response.

Absolute Maximum Ratings (T_A = 25°C unless otherwise noted)

Parameter	Symbol	Limit	Unit			
Input Voltage	Voltage		Voltage V _{II}		-35	V
Power Dissipation	P_{D}	Internal Limited	W			
Operating Junction Temperature	T _J	T _J 0~+125				
Storage Temperature Range		T _{STG}	-65~+150	°C		
Thermal Resistance - Junction to Case	TO-220)	5	°C/W		
	TO-252	R _{eJC}	6			
T. 10	TO-220	,	65	°C/W		
Thermal Resistance - Junction to Ambient	TO-252	$R_{\Theta JA}$	92			

Note: Follow the derating curve

[&]quot;G" denotes for Halogen Free

3-Terminal 500mA Negative Voltage Regulator

TS79M05 Electrical Characteristics

 $(V_{IN}=-10V, I_{OUT}=350mA, 0°C \le T_J \le 125°C, C_{IN}=0.33\mu F, C_{OUT}=0.1\mu F; unless otherwise specified.)$

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
		$T_J=25$ °C -7.5V \leq V _{IN} \leq -20V, 5mA \leq I _{OUT} \leq 500mA, P _D \leq 5W		-4.80	-5	-5.20	V
Output voltage	V _{OUT}			-4.75	-5	-5.25	
Line Regulation	DEC	T _I =25°C -7.5V≤V _{IN} ≤-25V		ŀ	7	50	
Line Regulation	REG _{LINE}	1 _J =25 C	-8V≤V _{IN} ≤-18V	ŀ	2	30	mV
Load Regulation RE	DEC	T _J =25°C	5mA≤l _{OUT} ≤500mA	ŀ	20	100	
	REG _{LOAD}		250mA≤l _{OUT} ≤200mA		10	50	
Quiescent Current	IQ	I _{OUT} =0, T _J =25°C		-	4	8	
Quiagaant Current Change	A.I.	-7.5V≤V _{IN} ≤-25V		ŀ	ı	1	mA
Quiescent Current Change ΔI _Q		5mA≤l _{OUT} ≤500mA				0.5	
Output Noise Voltage	V_N	10Hz≤f≤100KHz, T _J =25°C			40		μV
Ripple Rejection Ratio	RR	f=120Hz, -8V≤V _{IN} ≤-18V		54	66		dB
Voltage Drop	V_{DROP}	I _{OUT} =500mA, T _J =25°C		1	2		V
Peak Output Current	lo peak	T _J =25°C			2.1		Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT}/\Delta T_{J}$	I _{OUT} =5mA, 0°C≤T _J ≤125°C			-0.1		mV/°C

TS79M12 Electrical Characteristics

 $(V_{IN}$ =-19V, I_{OUT} =350mA, $0^{\circ}C \le T_{J} \le 125^{\circ}C$, C_{IN} =0.33 μ F, C_{OUT} =0.1 μ F; unless otherwise specified.)

Parameter	Symbol	Test Condition		Min	Тур	Max	Unit
		$T_J=25$ °C -14.5 $V \le V_{IN} \le -27V$, $5mA \le I_{OUT} \le 500mA$, $P_D \le 5W$		-11.53	-12	-12.48	V
Output voltage	V _{OUT}			-11.42	-12	-12.60	
Line Degulation	DEC	T 25°C -14.5V≤V _{IN} ≤-30V			10	240	
Line Regulation	REG _{LINE}	T _J =25°C	-15V≤V _{IN} ≤-19V		3	120	mV
Load Bogulation	DEC	T 0500	5mA≤l _{OUT} ≤500mA		12	240	
Load Regulation	REG _{LOAD}	T _J =25°C	250mA≤l _{OUT} ≤200mA		4	120	
Quiescent Current	I_Q	T _J =25°C, I _{OUT} =0			4.3	8	
Ovices and Comment Change	4.1	-14.5V≤V _{IN} ≤-30V 5mA≤I _{OUT} ≤500mA				1	mA
Quiescent Current Change	ΔI_Q					0.5	
Output Noise Voltage	V _N	10Hz≤f≤100KHz, T _J =25°C			75		μV
Ripple Rejection Ratio	RR	f=120Hz, -15V≤V _{IN} ≤-25V		55	70		dB
Voltage Drop	V_{DROP}	I _{OUT} =500mA, T _J =25°C			2		V
Peak Output Current	lo peak	T _J =25°C			2.1		Α
Temperature Coefficient of Output Voltage	$\Delta V_{OUT}/\Delta T_{J}$	I _{OUT} =5mA, 0°C≤T _J ≤125°C			-1		mV/°C

[•] Pulse testing techniques are used to maintain the junction temperature as close to the ambient temperature as possible, and thermal effects must be taken into account separately.

Document Number: DS_P0000268 2 Version: E15

This specification applies only for DC power dissipation permitted by absolute maximum ratings.

3-Terminal 500mA Negative Voltage Regulator

Electrical Characteristics Curves

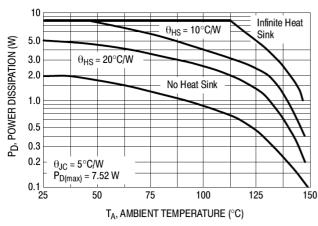


Figure 1. Worse Case Power Dissipation vs. **Ambient Temperature (TO-220)**

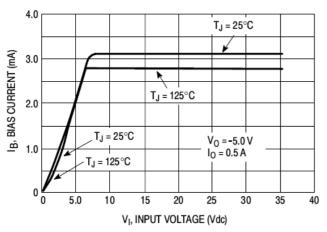


Figure 3. Bias Current vs. Input Voltage

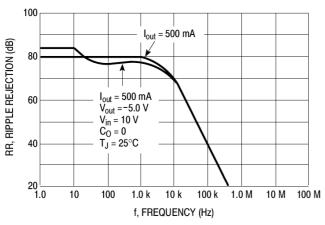


Figure 5. Ripple Rejection vs. Frequency

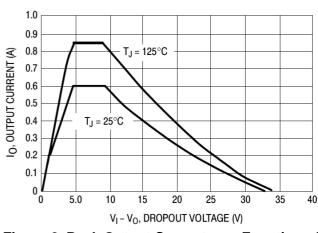


Figure 2. Peak Output Current as a Function of **Input-Output Differential Voltage**

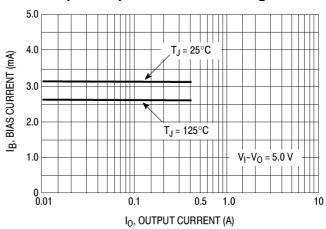


Figure 4. Bias Current vs. Output Current

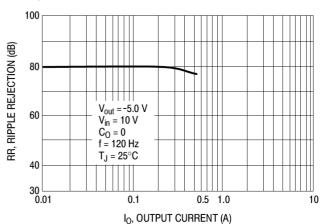


Figure 6. Ripple Rejection vs. Output Voltage

3-Terminal 500mA Negative Voltage Regulator

Application information

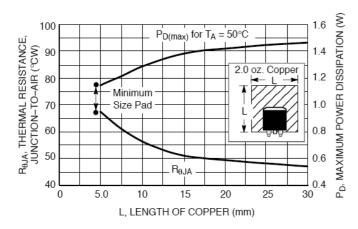
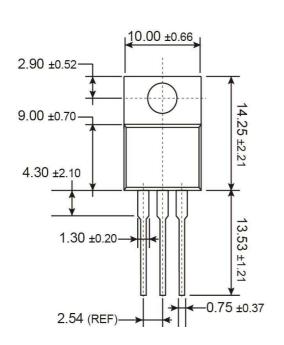
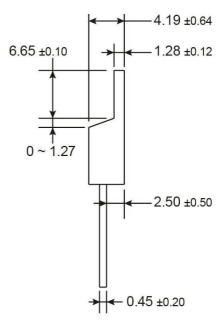


Figure 7. DPAK Thermal Resistance and Maximum Power Dissipation vs. P.C.B Copper Length

Ordering information


Ordering information						
TO-220	TO-252					
TS79M05CZ C0G	TS79M05CP ROG					
	TS79M12CP ROG					
Packing code information						
50pcs / Tube	2.5kpcs / 13" Reel					
	TO-220 TS79M05CZ C0G e information					



3-Terminal 500mA Negative Voltage Regulator

TO-220 Mechanical Drawing

Unit: Millimeters

Marking Diagram

XX = Output Voltage

(**05**=-5V)

= Year Code

M M (I O I C II I

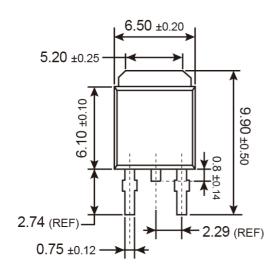
= Month Code for Halogen Free Product

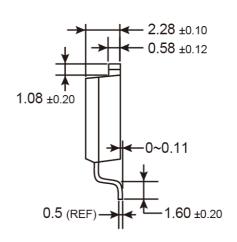
 \mathbf{O} =Jan \mathbf{P} =Feb \mathbf{Q} =Mar \mathbf{R} =Apr

S = May T = Jun U = Jul V = Aug

W = Sep X = Oct Y = Nov Z = Dec

L = Lot Code


CZ = Package Code for TO-220



3-Terminal 500mA Negative Voltage Regulator


TO-252 Mechanical Drawing

Unit: Millimeters

Marking Diagram

XX = Output Voltage (**05**=-5V, **12**=-12V)

Y = Year Code

M = Month Code for Halogen Free Product

O =Jan P =Feb Q =Mar R =Apr S =May T =Jun U =Jul V =Aug W =Sep X =Oct Y =Nov Z =Dec

L = Lot Code

CP = Package Code for TO-252

3-Terminal 500mA Negative Voltage Regulator

Notice

Specifications of the products displayed herein are subject to change without notice. TSC or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, to any intellectual property rights is granted by this document. Except as provided in TSC's terms and conditions of sale for such products, TSC assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of TSC products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify TSC for any damages resulting from such improper use or sale.