MTC1 Series

FEATURES

- UL 60950 recognised for reinforced insulation
- ANSI/AAMI ES60601-1, 1 MOPP/ 2 MOOPs recognised
- 3kVAC isolation test voltage 'Hi Pot Test'
- Continuous short circuit protection
- Output Voltage Trim
- Remote on/off pin
- No electrolytic capacitors
- Operating temperature range -40°C to 100°C
- 2:1 Input Range

PRODUCT OVERVIEW

The MTC1 series of miniature surface mount DC/ DC converters offers a single output voltage from input voltage ranges of 9-18V and 18-36V. The MTC1 series regulated output voltage is adjustable by $\pm 10\%$ and a remote on/off pin is also included for application power saving.

The MTC1 ideally suited to applications which include medical. Industrial, telecommunications, battery powered systems, and process automation.

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

Order Code ¹	Input Voltage	Output Voltage	Output Current	ated Input Current	Effic	iency	Ripple a	nd Noise	М	TTF ²	
	Nom.			ĉ	Min.	Тур.	Тур.	Max.	MIL	Telecordia	
	V	V	mA	mA	%	%	mVp/p	mVp/p	kHrs	kHrs	
MTC1S1203MC	12	3.3	303	110	72	75	25	50	1143	17407	
MTC1S1205MC	12	5	200	110	77	77 78.5 25 50		1129	17407		
MTC1S1212MC	12	12	83	100	77	79	20	40	977	17407	
MTC1S2403MC	24	3.3	303	55	73	75.5	30	55	1042	17109	
MTC1S2405MC	24	5	200	55	74 76.5 25 50		990	17109			
MTC1S2412MC	24	12	83	55	75	77	25	50	833	17109	

INPUT CHARACTERISTICS						
Parameter	Conditions	Min.	Тур.	Max.	Units	
Voltago rongo	12V input types	9	12	18	V	
voltage range	24V input types	18	24	36	v	
Input reflected ripple current	All variants		2		mA p-p	

OUTPUT CHARACTERIS	TICS										
Parameter	Conditions		Min.	Тур.	Max.	Units					
Rated power	All output types				1	W					
Minimal load to meet datas	10			%							
Voltago oct point occurrow	3V, 5V output types		-2.5		2	0/					
voltage set point accuracy	12V output types		-3		2	70					
Line regulation	Low line to high line			±0.05	±0.2	%					
Load regulation	All output types			±0.25	±0.5	%					
		2403 variant			±4						
	Peak deviation (25-75% & 75-25% swing)	2405 variant			±3	$%V_{\text{out}}$					
	d 10 20% Swing)	All other variants			±2						
Transient response		1203		220	220						
	Settling time	1205		260		115					
	(within 5% V _{out} Nom.)	1212, 2403 & 2405		100		μs					
		2412		70							

ISOLATION CHARACTE	RISTICS				
Parameter	Conditions	Min.	Тур.	Max.	Units
lealation toot voltage	Production tested for 1 second	3000			VAC
isolation test voltage	Qualification tested for 1 minute	3000			VAC
Isolation capacitance	All variants		7		pF
Resistance	Viso = 1kVDC	1			GΩ

1. Components are supplied in tape and reel packaging, please refer to package specification section. Orderable part numbers are MTC1SXXXXMC-R7 (30 pieces per reel), or MTC1SXXXXMC-R13 (150 pieces per reel)

2. Calculated using MIL-HDBK-217 FN2 and Telecordia SR-332 calculation model with nominal input voltage at full load.

All specifications typical at T_A=25°C, nominal input voltage and rated output current unless otherwise specified.

www.murata-ps.com

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

GENERAL CHARACTERISTICS ¹					
Parameter	Conditions	Min.	Тур.	Max.	Units
	1203, 2405, 2403 variants		240		
Switching frequency	1205, 2412 variants		260		kHz
	1212 variant		300		
	Module on, pin unconnected or open collector floating				
Domoto on/off nin	Module off (refer to application notes)		2		V
Remote on/on pin	12V input types		1.5		14/201
	24V input types		3.9		TTIVV
TEMPERATURE CHARACTERISTICS					
Parameter	Conditions	Min.	Тур.	Max.	Units
Operation		-40		100	
Storage		-50		125	°C
Case temperature above ambient	100% Load, Nom V _{IN} , Still Air		15		
ABSOLUTE MAXIMUM RATINGS					
Short circuit protection (for SELV input voltage	00)		Continuo		

Short-circuit protection (for SELV input voltages)	Continuous
Remote on/off pin input voltage	6V
Input voltage, MTC1 12V input types	25V
Input voltage, MTC1 24V input types	40V

APPLICATION NOTES

Maximum Output Capacitance

Maximum output capacitance should not exceed:

Output Voltage	Maximum Load Capacitance
V	μF
3.3	470
5	470
12	220

Start-up times

Typical start up times for this series, with a typical input voltage rise time of 2.2µs and output capacitance of 10µF, are shown in the table below. The product series will start into the maximum output capacitance with increased start times. Typical Wave Form:

Dort No.	Start-up times
Fait NU.	ms
MTC1S1203MC	5
MTC1S1205MC	14
MTC1S1212MC	25
MTC1S2403MC	9
MTC1S2405MC	14
MTC1S2412MC	25

						٠												т												
						£.																								
						ł.,																								
						ε.																								
						1	~	•			-	-	***	~	~ ~			+	-	 ~		•••	 	-	-	-	-	-	 •••	-
						а.																								
						з.																								
																														4
						ε.												ч.												
						з.																								
						1																								
						÷.,																								
						1												п.												
-	-	-	-	•	_	e -																								
						5												н.		-	-	٠		-	-			-		
						٤.,											1.144	-6	5		110									
						÷ .									1.1	- 64	~	ч.												
															~															
						2								~																
												~																		
										"	~							п.												
									~																					
								1	· .																					
								r																						
							1	۰.										ч.												
						5	,																							
						Ξ.	£ .																							
						÷.#																								
						Ξ.																								
			-	-														ч.												
						£																								
						Ε.																								
						ε.																								

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

APPLICATION NOTES

Control Pin

The MTC1 converters have a shutdown feature which enables the user to put the converter into a low power state. The control pin connects directly to the base of an internal transistor, and the switch off mechanism for the MTC1 works by forward biasing this NPN transistor. If the pin is left open (high impedance), the converter will be ON (there is no allowed low state for this pin), but once a control voltage is applied with sufficient drive current, the converter will be switched OFF. A suitable application circuit is shown below.

 D_1 (e.g. 1N4001) is required to provide high impedence when the signal is low. From the MTC1 specification, the drive current to operate this function is recommended to be 3mA to 8mA, and hence the value of R, can be derived as follows:

$$R_1 = \frac{V_c - V_D - 0.6}{I_B}$$

Assuming $V_c = 5V, V_p = 0.7V$:

$$R_1 = \frac{5 - 0.7 - 0.6}{5 \times 10^{-3}} = 732\Omega$$
 (E96, 1% resistor)

For 5V TTL signal: Set R1 to be 82Ω or less

Output Voltage Adjustment

The MTC1S series has a trim capability which is located at pin 3, this allows the user to independently adjust the output voltages by $\pm 10\%$. Adjustments to the output voltages can be accomplished via a single fixed resistor as shown in Figures 1 and 2. A single fixed resistor can increase or decrease the output voltage depending on its connection. Fixed resistors should have low temperature coefficient to minimize sensitivity to changes in temperature.

A single resistor connected from the TRIM pin (pin 3) to the +Vout (pin 4), will decrease the output voltage which is shown in figure 1.

A single resistor connected from the TRIM pin (pin 3) to the -Vout (pin 2) will increase the output voltage which is shown in figure 2.

Accuracy of adjustment is subject to tolerances of resistors and factory adjusted output accuracy. Vout is equal to the desired output voltage.

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

TECHNICAL NOTES

ISOLATION VOLTAGE

'Hi Pot Test', 'Flash Tested', 'Withstand Voltage', 'Proof Voltage', 'Dielectric Withstand Voltage' & 'Isolation Test Voltage' are all terms that relate to the same thing, a test voltage, applied for a specified time, across a component designed to provide electrical isolation, to verify the integrity of that isolation.

Murata Power Solutions MTC1 series of DC/DC converters are all 100% production tested at 3kVAC for 1 second and have been qualification tested at 3kVAC for 1 minute. A question commonly asked is, "What is the continuous voltage that can be applied across the part in normal operation?"

The MTC1 series has been recognized by Underwiters Laboratory to 250 Vrms Reinforced Insulation, please see safety approval section below.

REPEATED HIGH-VOLTAGE ISOLATION TESTING

It is well known that repeated high-voltage isolation testing of a barrier component can actually degrade isolation capability, to a lesser or greater degree depending on materials, construction and environment. We therefore strongly advise against repeated high voltage isolation testing, but if it is absolutely required, that the voltage be reduced by 20% from specified test voltage.

SAFETY APPROVAL

ANSI/AAMI ES60601-1

The MTC1 series has been recognised by Underwriters Laboratory (UL) to ANSI/AAMI ES60601-1 and provides 1 MOPP (Means Of Patient Protection) and 2 MOOP (Means Of Operator Protection) based upon a working voltage of 250 Vrms max., between Primary and Secondary. File number E202895 applies.

UL 60950

The MTC1 series has been recognised by Underwriters Laboratory (UL) to UL 60950 for reinforced insulation to a working voltage of 250 Vrms. File number E151252 applies.

FUSING

The MTC1 Series of converters are not internally fused so to meet the requirements of UL an anti-surge input line fuse should always be used with ratings as defined below. Input Voltage, 12V: 0.5A

Input Voltage, 24V: 0.25A

All fuses should be UL recognized and rated to 125V.

RoHS COMPLIANCE INFORMATION, MSL

This series is compatible with RoHS soldering systems with a peak reflow solder temperature of 245°C as per J-STD-020D.1. The pin termination finish on this product series is Gold with Nickel Pre-plate. The series is backward compatible with Sn/Pb soldering systems. The series has a Moisture Sensitivity Level (MSL) 1.

CHARACTERISATION TEST METHODS

Ripple & Nois	se Characterisation	Method
---------------	---------------------	--------

Ripple and noise measurements are performed with the following test configuration.

C1	1µF X7R multilayer ceramic capacitor, voltage rating to be a minimum of 3 times the output voltage of the DC/DC converter
C2	10μ F tantalum capacitor, voltage rating to be a minimum of 1.5 times the output voltage of the DC/DC converter with an ESR of less than $100m\Omega$ at 100 kHz
C3	100nF multilayer ceramic capacitor, general purpose
R1	450Ω resistor, carbon film, \pm 1% tolerance
R2	50Ω BNC termination
T1	3T of the coax cable through a ferrite toroid
RLOAD	Resistive load to the maximum power rating of the DC/DC converter. Connections should be made via twisted wires
Measured va	ues are multiplied by 10 to obtain the specified values.

Differential Mode Noise Test Schematic

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

EFFICIENCY VS LOAD

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

DERATING GRAPHS

MTC1S1212MC- 12Vin

MTC1S2403MC- 24Vin

MTC1S2405MC- 24Vin

MTC1S2412MC- 24Vin

www.murata-ps.com

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

DERATING GRAPHS

MTC1S1205MC- 9Vin 120 100 80 % No Airflow Load, 60 1001fm 40 ←400lfm 20 0 70 75 85 95 100 80 90 Temperature, C

MTC1S1212MC- 9Vin

MTC1S2403MC- 18Vin

MTC1S2405MC- 18Vin

MTC1S2412MC- 18Vin

www.murata-ps.com

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

DERATING GRAPHS

MTC1S1212MC- 18Vin

MTC1S2403MC- 36Vin

MTC1S2405MC- 36Vin

MTC1S2412MC- 36Vin

www.murata-ps.com

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

EMC FILTERING AND SPECTRA

FILTERING

The module includes a basic level of filtering. With the addition of an input capacitor of 680nF and input inductor 10µH that are typically required to meet EN 55022 Curve A Quasi-Peak EMC limit, as shown in the following plots.

Frequency (Hz)

Frequency (Hz)

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

MTC1 Series

Isolated 1W SM 2:1 Input Single Output DC/DC Converters

Murata Power Solutions, Inc.

11 Cabot Boulevard, Mansfield, MA 02048-1151 U.S.A. ISO 9001 and 14001 REGISTERED

Murata Power Solutions, Inc. makes no representation that the use of its products in the circuits described herein, or the use of other technical information contained herein, will not infringe upon existing or future patent rights. The descriptions contained herein do not imply the granting of licenses to make, use, or sell equipment constructed in accordance therewith. Specifications are subject to change without notice. © 2016 Murata Power Solutions, Inc.

www.murata-ps.com/support