Main	
Range of product	Harmony XALF Harmony XB5
Product or component type	Head for non-illuminated push-button
Device short name	ZB5
Bezel material	Plastic
Mounting diameter	22 mm
Sale per indivisible quantity	1
Shape of signaling unit head	Round
Type of operator	Spring return
Operator profile	Black flush, white down arrow
Complementary	
CAD overall width	29 mm
CAD overall height	29 mm
CAD overall depth	28 mm
Product weight	0.018 kg
Mechanical durability	10000000 cycles
Station name	XALD 1... 5 cut-outs XALK 2... 5 cut-outs
Electrical composition code	C1 for <= 9 contacts using single blocks in front mounting C2 for <= 9 contacts using single and double blocks in front mounting C11 for <= 3 contacts using single blocks in front mounting C15 for 1 contacts using single blocks in front mounting SF1 for <= 3 contacts using single blocks in front mounting SR1 for <= 3 contacts using single blocks in rear mounting
Environment	
Protective treatment	TH
Ambient air temperature for storage	$-40 . . .70^{\circ} \mathrm{C}$

Ambient air temperature for operation	$-40 . . .70^{\circ} \mathrm{C}$
Overvoltage category	Class II conforming to IEC 60536
IP degree of protection	IP69 IP67 IP66 conforming to IEC 60529 IP69K
NEMA degree of protection	NEMA 13 NEMA 4X
Resistance to high pressure washer	7000000 Pa at $55^{\circ} \mathrm{C}$, distance: 0.1 m
IK degree of protection	IK03 conforming to IEC 50102
Standards	EN/IEC 60947-5-1 UL 508 EN/IEC 60947-5-4 EN/IEC 60947-1 JIS C 4520 CSA C22.2 No 14
Product certifications	DNV BV GL UL listed LROS (Lloyds register of shipping) RINA CSA
Shock resistance	30 gn (duration $=18 \mathrm{~ms}$) for half sine wave acceleration conforming to IEC 60068-2-27 50 gn (duration $=11 \mathrm{~ms}$) for half sine wave acceleration conforming to IEC 60068-2-27
Vibration resistance	$5 \mathrm{gn}(\mathrm{f}=2 \ldots . .500 \mathrm{~Hz}$) conforming to IEC 60068-2-6

Contractual warranty
Warranty period 18 months

Connection by Screw Clamp Terminals or Plug-in Connectors or on Printed Circuit Board

(1) Diameter on finished panel or support
(2) For selector switches and Emergency stop buttons, use of an anti-rotation plate type ZB5AZ902 is recommended.
(3) $\varnothing 22.5 \mathrm{~mm}$ recommended $\left(\varnothing 22.3_{0^{+0.4}}\right.$) / $\varnothing 0.89 \mathrm{in}$. recommended ($\varnothing 0.88 \mathrm{in} .0^{+0.016}$)

Connections	a in mm	a in in.	b in mm	b in in.
By screw clamp terminals or plug-in connector	40	1.57	30	1.18
By Faston connectors	45	1.77	32	1.26
On printed circuit board	30	1.18	30	1.18

Detail of Lug Recess

(1) Diameter on finished panel or support
(2) For selector switches and Emergency stop buttons, use of an anti-rotation plate type ZB5AZ902 is recommended.
(3) $\varnothing 22.5 \mathrm{~mm}$ recommended $\left(\varnothing 22.3_{0}{ }^{+0.4}\right) / \varnothing 0.89 \mathrm{in}$. recommended $\left(\varnothing 0.88 \mathrm{in} .0^{+0.016}\right)$

Panel Cut-outs (Viewed from Installer's Side)

A: $\quad 30 \mathrm{~mm}$ min. / $1.18 \mathrm{in} . \min$.
B: $\quad 40 \mathrm{~mm}$ min. / $1.57 \mathrm{in} . \mathrm{min}$.

Printed Circuit Board Cut-outs (Viewed from Electrical Block Side)

Dimensions in mm

A: $\quad 30 \mathrm{~mm}$ min.
B: $\quad 40 \mathrm{~mm}$ min.

A: $\quad 1.18 \mathrm{in} . \mathrm{min}$.
B: $\quad 1.57$ in. min.

General Tolerances of the Panel and Printed Circuit Board

The cumulative tolerance must not exceed $0.3 \mathrm{~mm} / 0.012 \mathrm{in}$.: $\mathrm{T} 1+\mathrm{T} 2=0.3 \mathrm{~mm}$ max.

Installation Precautions

- Minimum thickness of circuit board: $1.6 \mathrm{~mm} / 0.06 \mathrm{in}$.
- Cut-out diameter: $22.4 \mathrm{~mm} \pm 0.1$ / $0.88 \mathrm{in} . \pm 0.004$
- Orientation of body/fixing collar ZB5AZ009: $\pm 2^{\circ} 30^{\prime}$ (excluding cut-outs marked a and b).
- Tightening torque of screws ZBZ006: 0.6 N.m (5.3 Ibf.in) max.
- Allow for one ZB5AZ079 fixing collar/pillar and its fixing screws:
- every $90 \mathrm{~mm} / 3.54 \mathrm{in}$. horizontally (X), and $120 \mathrm{~mm} / 4.72 \mathrm{in}$. vertically (Y).
- with each selector switch head (ZB5AD•, ZB5AJ•, ZB5AG•).

The fixing centers marked a and b are diagonally opposed and must align with those marked 4 and 5 .

(1) Head ZB5AD•
(2) Panel
(2) Nut
(4) Printed circuit board

Mounting of Adapter (Socket) ZBZ01•

- 12 elongated holes for ZBZ006 screw access
- 21 hole $\varnothing 2.4 \mathrm{~mm} \pm 0.05$ / $0.09 \mathrm{in} . \pm 0.002$ for centring adapter ZBZO1•
- $38 \times \varnothing 1.2 \mathrm{~mm} / 0.05 \mathrm{in}$. holes
- 41 hole $\varnothing 2.9 \mathrm{~mm} \pm 0.05$ / $0.11 \mathrm{in} . \pm 0.002$, for aligning the printed circuit board (with cut-out marked a)
- 51 elongated hole for aligning the printed circuit board (with cut-out marked b)
- 64 holes Ø $2.4 \mathrm{~mm} / 0.09$ in. for clipping in adapter ZBZ01•

Dimensions $\mathrm{An}+18.1$ relate to the $\varnothing 2.4 \mathrm{~mm} \pm 0.05 / 0.09 \mathrm{in} . \pm 0.002$ holes for centring adapter ZBZ01•

Product datasheet
 ZB5AA335

Technical Description

Electrical Composition Corresponding to Code C1

Product datasheet
 ZB5AA335

Technical Description

Electrical Composition Corresponding to Code C2

Product datasheet ZB5AA335

Technical Description

Electrical Composition Corresponding to Codes C9, C11, SF1 and SR1

Technical Description

Electrical Composition Corresponding to Code C15

1 N/O

1 N/C

$1 \mathrm{~N} / \mathrm{O}+\mathrm{N} / \mathrm{C}$ or $1 \mathrm{~N} / \mathrm{O}+\mathrm{N} / \mathrm{O}$ or $1 \mathrm{~N} / \mathrm{C}+\mathrm{N} / \mathrm{C}$

Product datasheet
 ZB5AA335

Technical Description

Legend

Single contact

Double contact

Light block

Possible location

\square

