

Zero Touch Secure Provisioning
Kit for AWS IoT
I. Introduction

This user's guide provides a detailed walkthrough of provisioning the Zero Touch Secure
Provisioning Kit to connect and communicate with the Amazon Web Services (AWS) IoT service.

Zero Touch Secure Provisioning Kit

(Part Number: AT88CKECC-AWS-XSTK-B)

The kit consists of:

 SAM G55 Xplained Pro Evaluation Kit (Part Number: ATSAMG55-XPRO)

The SAM G55 Xplained Pro comes programmed with the AWS IoT Zero Touch firmware project. To
update to the latest firmware or program another SAM G55, follow these steps:

1. Open Atmel Studio 7 and open the Zero Touch firmware
solution: AWS_IoT_Zero_Touch_SAMG55.atsln.

2. Plug the SAM G55 Xplained Pro into the computer via the EDBG USB Port.

3. Within Atmel Studio, use the Debug > Start Without Debugging menu option to rebuild and load the
firmware onto the board.

 ATWINC1500 Xplained Pro Extension board (Part Number: ATWINC1500-XPRO)

Ensure that the latest firmware is installed on the ATWINC1500. Instructions on how to upgrade the
firmware are located on the ATWINC1500-XPRO product web page. Scroll to the bottom of the page and
select 'Flash Memory Download Procedure'.

The latest firmware version for the ATWINC1500 is 19.5.4 (as of October 2017).

 OLED1 Xplained Pro Extension Kit (Part Number: ATOLED1-XPRO)

 CryptoAuth Xplained Pro Extension board (Part Number: ATCRYPTOAUTH-XPRO)

You will need:

 Two (2) Micro USB cables

http://www.microchip.com/developmenttools/productdetails.aspx?partno=at88ckecc-aws-xstk-b
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATSAMG55-XPRO
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATWINC1500-XPRO
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATWINC1500-XPRO
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATOLED1-XPRO
http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATCRYPTOAUTH-XPRO

What does "Zero Touch Secure Provisioning" mean?

One of the most difficult aspects of securing a device on the cloud is securely maintaining the keys.

 At manufacture time the keys must be installed in the device.

o The Microchip Technology ATECC508A CryptoAuthentication Device securely
maintains security keys.

o The ATECC508A can be securely provisioned by Microchip Technology, eliminating
loss of security keys.

 Certificates (Signer and User) are maintained securely inside the ATECC508A.

Industry standard cryptographic processes are hardware accelerated in the ATECC508A and
ATWINC1500 ensuring a quick and secure connection.

The final product provides an ease of use connection to the Cloud.

http://www.microchip.com/wwwproducts/en/ATECC508A

What you will learn

 How to connect a device to AWS IoT

 Create a unique device identity for one or many devices

 Configuring AWS IoT for Just-In-Time Registration (JITR)

 How Zero Touch Secure Provisioning works

 Study the firmware: How the WINC1500 manages the overall TLS protocol the with ECC508A
performing cryptographic primitives for TLS

Prerequisites

What you should know before opening the kit:

 Familiar with Public Key Infrastructure (PKI)

 AWS Services: AWS IoT, AWS Lambda, AWS IAM

 Transport Layer Security (TLS) security protocol

The Steps you will Follow

 Software Installation

 Create and Administer your own AWS Account

 Configure AWS Credentials

 AWS IoT JITR Setup

 Certificate Authority Setup

 Provision the Device

 AWS IoT Interaction

 Summary and Next Steps

 Troubleshooting

Glossary

 Keys - represents your individual identity (extremely sensitive; must be protected; secret)

 Provisioning - preparing a device to talk to the Cloud

 Certificate - a piece of paper that says something about you. However, you need an authority
to (digital signature) cannot be forged - also tells AWS a little about yourself

 Certificate Authority - responsible for signing the certificate

 Transport Layer Security (TLS) - security protocol to communicate with AWS

 Register a device - in order to use AWS resources, you have to register ahead of time. JITR
helps make this task easier.

 Just-In-Time Registration (JITR) - simplifies logistics by allowing devices to be registered
individually at connection time.

 Secure element - A device that protects a device's identity and securely contains keys and
through internal processes uses them in such a way that they cannot be revealed.

https://en.wikipedia.org/wiki/Public_key_infrastructure
https://aws.amazon.com/iot/
https://aws.amazon.com/lambda/
https://aws.amazon.com/iam/
https://en.wikipedia.org/wiki/Transport_Layer_Security
http://microchipdeveloper.com/iot:ztpk#software
http://microchipdeveloper.com/iot:ztpk#create-aws
http://microchipdeveloper.com/iot:ztpk#config-aws
http://microchipdeveloper.com/iot:ztpk#jitr
http://microchipdeveloper.com/iot:ztpk#ca
http://microchipdeveloper.com/iot:ztpk#provision
http://microchipdeveloper.com/iot:ztpk#interaction
http://microchipdeveloper.com/iot:ztpk#summary
http://microchipdeveloper.com/iot:ztpk#troubleshooting
https://en.wikipedia.org/wiki/Key_(cryptography)
https://en.wikipedia.org/wiki/Provisioning
https://en.wikipedia.org/wiki/Public_key_certificate
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://aws.amazon.com/blogs/aws/new-just-in-time-certificate-registration-for-aws-iot/
http://www.microchip.com/wwwproducts/en/ATECC508A

II. Software Installation

Project Software Files

The URL below will take you to the Zero Touch Secure Provisioning Kit product web page. A link to
the latest version of the software files is located at the bottom of the page. The files are contained in a
compressed file (*.ZIP). Download and install them on your computer.

 Zero Touch Secure Provisioning Kit Software Files

Note the location of the software library. The directory name is:
aws-iot-zero-touch-kit

AWS Command Line Interface (CLI)

You will be using the AWS Command Line Interface to manage your AWS services. Go to the
following URL to find the Windows installer:

 https://aws.amazon.com/cli/

Terminal Emulator

You will use a terminal emulator to monitor the Zero Touch Secure Provisioning Kit. Popular choices
are TeraTerm and PuTTY.

 TeraTerm - https://ttssh2.osdn.jp/index.html.en

 PuTTY - https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

Python 3.6.x

You will be using Python scripts to assist you in configuring your AWS account to communicate with
your Zero Touch Secure Provisioning Kit. You can view the Python scripts to see the detailed steps
involved.

The latest version of Python as of this writing is 3.6.2.

 https://www.python.org/downloads/

When installing Python, check 'Add Python 3.6 to PATH'.

http://www.microchip.com/developmenttools/productdetails.aspx?partno=at88ckecc-aws-xstk-b
https://aws.amazon.com/cli/
https://ttssh2.osdn.jp/index.html.en
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.python.org/downloads/

Choose 'Customize Installation' and make sure everything is selected.

Click Next, then select 'Install for all users' and 'Precompile standard library'.

Click Install.

Visual C++ 2015 Build Tools

You may already have these tools installed. They are needed for the Python packages (to be installed
next).

 http://landinghub.visualstudio.com/visual-cpp-build-tools

Python Packages

You will be using the Python package manager (pip) to install the required packages used in this
guide.

Locate requirements.txt in the Project Software files you installed earlier:

 aws-iot-zero-touch-kit\requirements.txt

These packages will be installed from an administrative command prompt.

 Open the start menu (bottom left window) and search for 'cmd'

 Right-click on 'Command Prompt (CMD)' and select 'Run as Administrator'

http://landinghub.visualstudio.com/visual-cpp-build-tools

From the CMD, navigate to the directory and run the following command:

pip install –r requirements.txt

It may take a while to install.

Optional Software Packages

The following programs are not required, but can be useful:

OpenSSL

 https://wiki.openssl.org/index.php/Binaries

Standard software for working with certificates and keys.

Notepad++

 https://notepad-plus-plus.org/

Text editor with good syntax highlighting for a variety of files.

ASN.1 Editor

 https://www.codeproject.com/Articles/4910/ASN-Editor

Tool for inspecting and editing ASN.1 data including X.509 certificates.

https://wiki.openssl.org/index.php/Binaries
https://notepad-plus-plus.org/
https://www.codeproject.com/Articles/4910/ASN-Editor

Let's summarize what you have done so far:

 You have installed the software needed to administer your AWS account and communicate
with the Zero Touch Secure Provisioning Kit.

III. Create and Administer your own AWS Account

Amazon Web Services (AWS) provides computing services for a fee. Some are offered for free on a
trial or small-scale basis. By signing up for your own AWS account, you are establishing an account
to gain access to a wide range of computing services.

Think of your AWS account as your root account to AWS services. It is very powerful and gives you
complete access. Be sure to protect your username and password.

You control access to your AWS account by creating individual users and groups using the Identity
and Access Management (IAM) Console. From the IAM Console, you also assign policies
(permissions) to the group.

For the Zero Touch Secure Provisioning Kit, you will be creating a user (ZTUser) and a group
(ZTGroup). Once created, you log into the ZTUser account to administrate the Zero Touch Secure
Provisioning Kit.

Amazon AWS provides a wealth of documentation and instructions in the form of getting started guides
and videos. We encourage you to explore these to learn more about what Amazon AWS can provide for
you.

 AWS 10-Minute Tutorials

The specific AWS services you will use for the Zero Touch Secure Provisioning Kit are:

 AWS IoT

 AWS Lambda

1

Create your own AWS account

Click on the URL below and follow the instructions to create your own AWS account:

 https://aws.amazon.com/

https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/
https://aws.amazon.com/getting-started/tutorials/
https://aws.amazon.com/iot/
https://aws.amazon.com/lambda/
https://aws.amazon.com/

2

Sign in to the AWS Console to manage user access and permissions

Once your AWS account is created and the next time you visit the https://aws.amazon.com/ URL, you
will see a new button:

Sign into your AWS account by clicking on the Sign In to the Console button and entering your
username and password.

You will limit access to the Zero Touch Secure Provisioning Kit by creating a user (ZTUser) that you will
later log into and administer.

3

Access the IAM Console

IAM enables you to control access to your AWS account. By using IAM, you will create and manage
AWS users and groups and assign policies (permissions) to control access to AWS services and
resources. A policy is a document that formally states one or more permissions.

a

From your AWS Console, type IAM in the search box. Click on the link that takes you to the IAM
Console.

b
(Highly Recommended) Click on 'Activate MFA (Multi-factor Authentication) on your root account'.

https://aws.amazon.com/

 This is an important step to better secure your root account against attackers. Anyone logging
in not only needs to know the password, but also a constantly changing code generated by an
MFA device.

 AWS recommends a number of MFA device options at the following
link: https://aws.amazon.com/iam/details/mfa/

 The quickest solution is a virtual MFA device running on a phone. These apps provide the
ability to scan the QR code AWS will generate to set up the MFA device.

c
Create a new user for your AWS account.

You will be performing a four step process to create user ZTUser. During this process, you will also be
creating a new group ZTGroup to assign policies to and assign ZTUser to the ZTGroup and its associated
policies.

 In the IAM Console window, click on 'Users'.

https://aws.amazon.com/iam/details/mfa/

From the "Users" management page, click on the Add user button at the top of the page.

When the "Add user - Step 1: Details" page is displayed, enter the following information:

 Set user details:

o Username: ZTUser

 Select AWS access type:

o Access type:

 Select 'Programmatic access'

 Select 'AWS Management Console access'

o Console password:

 Select 'Custom password'

 Enter a password for user ZTUser.

 Un-select 'Require password reset'

 Record the password for logging in to the console later

 Click on the Next: Permissions button at the bottom of the page

d
Create a new group for your AWS account

"Add user - Step 2: Permissions" for adding a new user requires you to assign permissions to
ZTUser. This is done by creating a group and selecting policies you specify for the group and add
user(s) to the group.

 Click on Create group.

You can also create new groups from the IAM Console by clicking on 'Groups'.

From the Create group window, enter the group name: ZTGroup.

Next, we want to attach the following policy types:

Attached policy types:

 'AWSIoTFullAccess'

 'AWSLambdaFullAccess'

Click on the Create Group button at the bottom of the window.

You are now back at the "Add user - Step 2: Permissions" page.

Notice that ZTGroup is selected for you. This sets permissions for user ZTUser to group policies
specified to ZTGroup.

 Click on the Next: Review button at the bottom of the page.

e
The "Add user - Step 3: Review" page is displayed. Review your choices. When you are satisfied that
your entries are correct, click on the Create userbutton at the bottom of the page.

f
The "Add user - Step 4: Complete" page is displayed.

AWS creates a unique account sign-in URL and access credentials (Access key ID and Secret access
key). Save this information. There are two ways to get easy access to these security credentials:

 Download a *.csv file

 Send an email to yourself

In a later step, you will use these credentials to configure and use the account under user ZTUser.

Just-In-Time Registration (JITR)

Just-In-Time Registration (JITR) allows you to register a device at connection time. JITR reduces
the manufacturing burden of registering a device with AWS before it is connected.

In a later step, you will create a Lambda function that will be responsible for registering new devices.

In the next two steps, you will create a custom policy and role that will be used by the JITR Lambda
function.

4

Create a JITR Lambda Function Policy

To assign permissions to a user, group, role, or resource, you create a policy, which is a document that
explicitly lists permissions. In its most basic sense, a policy lets you specify the following:

 Actions: what actions you will allow. Each AWS service has its own set of actions. Any actions that you
don't explicitly allow are denied.

 Resources: which resources you allow the action on. Users cannot access any resources that you
have not explicitly granted permissions to.

 Effect: what the effect will be when the user requests access—either allow or deny. Because the
default is that resources are denied to users, you typically specify that you will allow users access to a
resource.

Reference: Overview of IAM Policies

a
From the IAM Console, click on 'Policies' then Create policy

http://docs.aws.amazon.com/IAM/latest/UserGuide/access_policies.html

b
Select 'Create Your Own Policy'

c

Policy Name: ZTLambdaJITRPolicy

d
Description: none

e
Cut and paste the following code into 'Policy Document':

{

 "Version": "2012-10-17",

 "Statement": [

 {

 "Effect": "Allow",

 "Action": [

 "iot:UpdateCertificate",

 "iot:CreatePolicy",

 "iot:AttachPrincipalPolicy",

 "iot:CreateThing",

 "iot:CreateThingType",

 "iot:DescribeCertificate",

 "iot:DescribeCaCertificate",

 "iot:DescribeThing",

 "iot:DescribeThingType",

 "iot:GetPolicy"

],

 "Resource": "*"

 }

]

}

f
Click on the Create Policy button at the bottom of the page

5

Create a JITR Lambda Function Role

An IAM role is similar to a user, in that it is an AWS identity with permission policies that determine what
the identity can and cannot do in AWS. However, instead of being uniquely associated with one person, a
role is intended to be assumable by anyone who needs it. Also, a role does not have any credentials

(password or access keys) associated with it. Instead, if a user is assigned to a role, access keys are
created dynamically and provided to the user.

Reference: IAM Roles

a
From the IAM Console, click 'Roles' then click Create new role

b
Under 'Select role type', select the 'AWS Service ' box and select 'Lambda' service, then click the
'Next: Permissions' button.

http://docs.aws.amazon.com/IAM/latest/UserGuide/id_roles.html

c
Attach the following policies:

 AWSLambdaBasicExecutionRole

 AWSXrayWriteOnlyAccess

 ZTLambdaJITRPolicy

d
Click the Next Step button at the bottom of the page.

e
Set role name and review:

 Role Name: ZTLambdaJITRRole

f
Click on the Create role button at the bottom of the page.

Let's summarize what you have done so far:

 You created an AWS account

 Created a user, ZTUser

 Created a group, ZTGroup and attached two policy types (AWSIoTFullAccess and
AWSLambdaFullAccess)

 Assigned user ZTUser to group ZTGroup

 Created a lambda function policy ZTLambdaJITRPolicy and role ZTLambdaJITRRole

In the next step, you will use the credentials that AWS gave you to configure the AWS Command
Line Interface (CLI) tool.

IV. Configure AWS Credentials

Before you can perform actions with your AWS account, you need to configure the AWS CLI tool with
the appropriate user AWS credentials. These user credentials (Access Key ID and Secret Access
Key) were given to you when you created ZTUser. Once the AWS CLI is configured, the Zero Touch
Secure Provisioning Kit's Python scripts can use the credentials to further configure your AWS
account to communicate with the kit.

The AWS CLI is a unified tool to manage your AWS services. You can control multiple AWS services from
the command line and automate them through scripts.

Reference: AWS Command Line Interface

The kit's Python scripts perform actions with your AWS account within a region. In order to perform
these actions, we need credentials for a user which has permission to perform these actions. You will
give the Python scripts permission to:

 register Certificate Authorities (CA) within AWS IoT

 access "thing" shadow documents with AWS IoT

Amazon AWS refers to a "thing" as a device that communicates with the AWS IoT service.

1

Open a Command window and browse to the following location:

aws-iot-zero-touch-kit\

2

From the command prompt, run the following command:

aws configure

3

Enter your Access Key ID and Secret Access Key when prompted. You should copy and paste the
credentials to avoid any typing mistakes.

Pasting in the command prompt is performed by right-clicking and selecting the 'Paste' option.

https://aws.amazon.com/cli/

You will see the following results:

>aws configure

AWS Access Key ID [None]: ACCESSKEYID

AWS Secret Access Key [None]: SECRETACCESSKEY

Default region name [None]: us-west-2 (<-- Enter the region that you selected)

Default output format [None]:

Once configured, these settings will be used by both the AWS CLI and Python scripts.

More information can be found at the following links:

 Configuring the AWS CLI

 Boto 3 Configuration

Let's summarize what you have done so far:

 You configured the AWS CLI with ZTUser's credentials.

This is a one time step.

V. AWS IoT Just-In-Time Registration Setup

In Step III you created the JITR Lambda function role which defined what services the Lambda
function is allowed to access.

http://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html
https://boto3.readthedocs.io/en/latest/guide/quickstart.html#configuration

In this step, you will create a Lambda function responsible for registering new devices. You will also
create a trigger from the AWS IoT rules engine so that your Lambda function will execute each time a
new device connects. The trigger will execute a Lambda function to perform the following :

 The device identifies itself to AWS

 AWS reads the unique device name from its certificate

 Create a policy and attached it to the device certificate

 Create a "thing" which represents a single IoT device

 Activate the device's certificate

 AWS Lambda is a computing service that runs code in response to events and automatically manages

the computing resources required by that code.

Reference: AWS Lambda

 AWS IoT is a managed cloud platform that lets connected devices easily and securely interact with
cloud applications and other devices.

Reference: AWS IoT

You will log in as ZTUser using the credentials that you saved in "III. Create and Administer your own
AWS Account."

1

Log into the AWS console

a
Open a web browser and go to the user sign-in URL that you were given when you created ZTUser.
The URL will have the following format:

 https://xxxxxxxxxxxx.signin.aws.amazon.com/console where xxxxxxxxxxxx is the
account ID

 Enter the User Name ZTUser

 Enter the Password you entered when creating the user account

https://aws.amazon.com/lambda/details/
https://aws.amazon.com/iot-platform/
http://microchipdeveloper.com/iot:ztpk#create-aws
http://microchipdeveloper.com/iot:ztpk#create-aws
https://xxxxxxxxxxxx.signin.aws.amazon.com/console

b
Once logged in, change your region to the one closest to you by selecting the region menu (upper-
right, left of support menu). We'll use US West (Oregon) in the following steps.

The region menu should now display the region you selected.

2

Create the JITR Lambda Function

The JITR Lambda function is code that is called from AWS Iot when a new device attempts to connect but
has not registered yet. It is the function's responsibility to perform the actual registration of the device with
AWS IoT.

a
Go to the Lambda service under the 'Services' menu and 'Compute' category.

b
Click on Create function.

c
Click on Author from scratch.

d

Name the new function “ZTLambdaJITR”, select “Choose an existing role” under the 'Role' field, and
select the previously created “ZTLambdaJITRRole” under the 'Existing role' field.

e
Next tell AWS Lambda some information about the lambda function you have created. Under Code
Entry Type, select 'Edit code inline.' Under the 'Runtime' dropdown box, select 'Python 3.6.' Under the
'Handler' textbox, make sure 'lambda_function.lambda_handler' is entered.

f
Enter the Python code that is to be executed by AWS Lambda when an unregistered device attempts
to connect for the first time. Switch to Windows File Explorer and open:

 aws-iot-zero-touch-kit\ZTLambdaJITR\lambda_function.py

in your favorite text editor.

If you are using Notepad++ editor, you can right-click on the file and select 'Edit'.

g
Select all the code and 'Copy'.

h
Switch back to the AWS console web page. Under Lambda function code, make sure 'Edit code
inline' is selected.

i
Delete the contents of the code entry area by selecting everything and hitting 'Delete'.

j

Paste the new code from the aws-iot-zero-touch-kit\ZTLambdaJITR\lambda_function.py file into
the code entry area.

k
Finally, save changes to the lambda function code.

3

Create IoT Rules Engine Rule

While the Lambda function performs the registration it needs to be triggered by an event, the
following instructions will create a rule that will run the Lambda function when a device connects for
the first time.

a
Go to the AWS IoT service under the 'Services' menu and 'Internet of Things' category.

b
Sometimes the AWS IoT Console will show a getting started window. Click the Get started button to
dismiss the intro screen.

c
Go to the 'Act' section from the menu at the left.

d
Click the 'Create a rule' button.

e
Fill in the following fields:

Name: ZeroTouchJustInTimeRegistration

SQL version: 2016-03-23

Attribute: *

Topic filter: $aws/events/certificates/registered/#
Condition:

$aws/events/certificates/registered/# is a special administrative MQTT topic that AWS IoT will
publish to when a device connects with a certificate that hasn't been seen before but has been signed
by a CA that was registered in the account.

The # at the end indicates we want to trigger this rule for any CA registered with the account.

f
Click Add action.

g
Select 'Invoke a Lambda function passing the message data'.

h
Click Configure action.

i
Select the 'ZTLambdaJITR' function and click Add action.

Now that this action is configured, this rule will trigger our registration 'Lambda function' when a new
device is seen.

j
Finish by clicking 'Add action' and then 'Create rule.'

Let's summarize what you have done so far:

You created:

 a Lambda function to perform JITR

 A trigger for the JITR Lambda function in AWS Iot rules engine

The JITR function is available to any user within the AWS account. Recall that you assigned policy
AWSLambdaFullAccess to ZTUser. Therefore, ZTUser has access to the JITR function (resource).

AWS provides many services. Within these services, there are unique-to-the-service actions, things,
databases, tables, and much more that can be created by you that are termed resources. So far you have
created two resources—JITR Lambda function and IoT trigger rule. However, the resources you create
are only available in the region that you created them in. For example, the JITR Lambda function that you
created in the previous step is only available in the region you selected. Keep this in mind when you
create your own IoT ecosystem.

VI. Certificate Authority Setup

In this step, you will create the Certificate Authorities (CA) and register them with AWS IoT so that it
can use them to authenticate your IoT devices.

To assist you in the creating the CA, you will use Python scripts. The scripts are broken down into
multiple steps to show what is required to set up the CA. While these scripts could be combined into
one, we are providing them individually so that you can better understand the creation of the CA's.
You can view these Python scripts to see the detailed steps involved.

The following steps are for illustration purposes only. Use industry accepted security processes and
procedures in the creation and operation of your IoT ecosystem CA. Security of the CA's depends on
controlling access to and use of the keys.

1

Open command window and browse to:

 aws-iot-zero-touch-kit\

You should get a command prompt that looks like this:

2

Create the Root Certificate Authority (Root CA)

The Root CA serves as a single authority over an IoT ecosystem.

Change directory to the 'provisioning' sub-directory: {{cd provisioning]]

Run the ca_create_root.py Python script

This script will create:

 root key (stored in the root-ca.key file), and

 root certificate (stored in the root-ca.crt file)

Because this is the Root CA, its certificate is signed by its own key.

The file formats of the root-ca.key and root-ca.crt files are standard PEM encoding used by
openSSL and other Public Key Infrastructure (PKI) software.

If the root-ca.key file already exists, the Python script will use that existing key and generate a new
certificate.

3

Create the Signer Certificate Authority (Signer CA)

The Signer CA is used during manufacturing and is responsible for directly signing the device
certificates. This process is known as "provisioning".

a
Signer creation is split into two (2) steps, the first is generating its key and a Certificate Signing
Request (CSR).

Run the ca_create_signer_csr.py python script.

This script will create the signer key, signer-ca.key and its CSR, signer-ca.csr.

If the signer-ca.key file already exists, the Python script will use that existing key and generate a new
CSR.

b
The Root CA is now used with the Signer CSR created above to complete creation of the Signer CA.
While this could technically be done in a single Python script, there are two Python scripts to
represent the split in responsibilities between the authority (Root CA) and subject (Signer CA) in PKI
systems.

Run the ca_create_signer.py python script.

https://en.wikipedia.org/wiki/Privacy-enhanced_Electronic_Mail

This script will create the signer certificate, signer-ca.crt.

4

Register the Signer CA with AWS IoT

The final step in setting up the certificate chain is to register the Signer CA with AWS IoT.

Using the JITR process, we need to register the Signer CA for the devices. This relieves us from
registering individual device certificates with AWS IoT at manufacturing time. When an individual
device connects with AWS IoT for the first time, AWS IoT does not recognize the individual device but
will recognize its Signer CA.

As a security feature, AWS IoT requires that you prove you have access to the CA private key before
registering that CA. This involves the following steps:

 Request a registration code from AWS IoT

 Create a verification certificate around that registration code

 Sign the verification certificate with the Signer CA

 Supply both the Signer CA certificate and verification certificate when registering

Run the aws_register_signer.py python script.

This script will perform the above steps and save the verification certificate to signer-ca-

verification.crt. This file is not required by any other step but is saved for reference.

Let's Summarize What You've Done So Far:

 Created two CAs: Root and Signer

 Registered the Signer CA with AWS IoT

VII. Provision the Device

In this step, you will provision the Zero Touch Secure Provision Kit with the credentials required to
connect and communicate with your AWS account.

The SAM G55 Xplained Pro comes programmed with the AWS IoT Zero Touch firmware project. To
update to the latest firmware or program another SAM G55, follow these steps:

1. Open Atmel Studio 7 and open the zero touch firmware
solution: AWS_IoT_Zero_Touch_SAMG55.atsln

2. Plug the SAM G55 Xplained Pro into the computer via the EDBG USB Port

3. Within Atmel Studio, using the Debug > Start Without Debugging menu option to rebuild and load
the firmware onto the board

Ensure that the latest firmware is installed on the ATWINC1500. Instructions on how to upgrade the
firmware are located on the ATWINC1500-XPRO product web page. Scroll to the bottom of the page and
select 'Platform Getting Started Guide (Flash Memory Download Procedure)'.

http://www.microchip.com/DevelopmentTools/ProductDetails.aspx?PartNO=ATWINC1500-XPRO

The latest firmware version for the ATWINC1500 is 19.5.4 (as of October 2017).

1

Assemble and plug in the kit

The SAM G55 Xplained Pro forms the central hub, while the other boards plug into the following
connectors:

EXT3: OLED1 Xplained Pro
EXT4: CryptoAuth Xplained Pro

2

Plug in the board to the PC from the TARGET USB port on the SAM G55 board

3

Connect a second USB cable, connect the EDBG USB port to the PC as well

Debugging information is exposed via a com port available through the EDBG connection.

To see the debugging information we will need to connect to the COM port using a terminal program.

a
If using PuTTY:

To find the right com port number, open device manager, expand ports and look for the port labeled
EDBG Virtual Comport (COMx), where x is the number you're looking for.

Next, to see the board status, open PuTTY and enter the following:

Connection type: Serial

Serial line: COMx – where x is the number from the previous step

Speed: 115200

Click 'Open' and you should see a window with status messages. If nothing appears, try pressing the
RESET button on the SAMG55 board.

b
If using Tera Term:

Open Tera Term, select 'Serial,' select the EDBG Virtual COM Port (actual COM number may be
different), and click OK.

Go to the 'Setup' menu and select 'Serial'. Change the Baud rate to 115200, click OK.

You should see a window with status messages. If nothing appears, try pressing the RESET button
on the SAMG55 board.

4

The terminal window will show the status of the pre-configuration process. An unconfigured board
should be detected and appropriate messages shown. This message will repeat every ~2.5 seconds
until SW0 is press or power is removed. Press the SW0 button at the top of the SAMG55 Xplained
Pro board to proceed with the automatic configuration of the CryptoAuth board.

5

Once the CryptoAuth board has been automatically configured, attach the ATWINC1500 Xplained
Pro board to the EXT1 port on the SAMG55 Xplained Pro board. Reset the SAMG55 to restart the
demo with the newly connected ATWINC1500 board.

6

If you haven’t already connected USB cables from your PC to the SAMG55 Xplained Pro board, do
that now.

 Plug in the board to the PC from the TARGET USB port on the SAM G55 board.

 Connect a second USB cable, connect the EDBG USB port to the PC as well.

Debugging information is exposed via a com port available through the EDBG connection.
To see the debugging information you will need to connect to the COM port using a terminal program.

a
If using PuTTY:

To find the com port number associated with the EDBG port, open device manager, expand ports and
look for the port labeled EDBG Virtual Comport (COMx), where x is the number you're looking for.

Next, to see the board status, open PuTTY and enter the following:

 Connection type: Serial

 Serial line: COMx – where x is the number from the previous step Speed: 115200

Click 'Open' and you should see a window with status messages. If nothing appears, try pressing the
RESET button on the SAMG55 board.

b
If using Tera Term:

Open Tera Term, select 'Serial', select the EDBG Virtual COM Port (actual COM number may be
different), and click OK:

Go to the 'Setup' menu and select 'Serial'. Change the Baud rate to 115200, click OK:

You should see a window with status messages. If nothing appears, try pressing the RESET button
on the SAMG55 board.

7

Set Wi-Fi™ credentials

For the kit to connect to a Wi-Fi access point you need the following:

 Access Point operating in WPA2 personal mode

 SSID

 Password

 Internet ports 123 and 8883 open

You will not be able to connect to an access point that has open access or enterprise security.

Run the kit_set_wifi.py —ssid wifi-name —password wifi-password python script.

Where wifi-name = SSID and wifi-password = PASSWORD of your Wi-Fi access point.

8

Provision the device

Run the kit_provision.py python script. The script will:

 Request a Certificate Signing Request (CSR) from the device.

The CSR will use the key pair stored in slot 0 of the ATECC508A. The ATECC508A is a secure container
for the private key. The key internally generated with its secure RNG and the ATECC508A provides no
mechanism for reading out a private key.

This key provides a secure identity for the IoT device that can't be copied, either intentionally, by an
attacker or through a software bug.

 Create a device certificate using the CSR and signer CA.

 Send the device certificate, signer certificate and AWS connection information to the board.

These certificates and the AWS connection information is all stored on the ATECC508A:

Slot 8 – AWS Connection Information (including wifi credentials)
Slot 10 – Device compressed certificate
Slot 11 – Signer public key
Slot 12 – Signer compressed certificate
Slot 14 – Signer certificate serial number and full validity dates

Once the board has been successfully provisioned, LED0 on the SAM G55 Xplained Pro board
should blink five times. Additionally, if you are watching the debug output from the EDBG virtual com
port, you should see the following message:

You will see a lot of scrolling, but you want to see the following:

SUCCESS: Subscribed to the MQTT update topic subscription

It should take the board at least two attempts to successfully connect after being provisioned. On the first
attempt, AWS IoT will disconnect the device because the device certificate is not registered yet. However,
this should kick off the device registration Lambda function (ZTLambdaJITR) in AWS to perform the actual
registration. The board's second attempt to connect should succeed assuming the registration process
has completed by then.

Note that all asymmetric math (authentication and key agreement) used during the TLS handshake is
routed through the ATECC508A from the WINC1500. The WINC1500 has a callback system that sends
requests for ECC crypto operations to the MCU. The MCU then sends these requests to the ATECC508A
and returns the results back to the WINC1500.

The board uses AWS IoT's shadow system topics to inform AWS of state changes (button presses)
and to learn of requested state changes (LED status).

 Device Shadows - http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-
shadows.html

 Device Shadow Topics - http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-
mqtt.html

The board subscribes to the $aws/things/thingName/shadow/update/delta topic, which will send
out messages whenever the reported device state differs from the desired device state. The board
receives LED state updates through this topic.

The board separately publishes to the $aws/things/thingName/shadow/update topic to inform AWS
of button state changes.

Let's summarize what you have done so far:

 Created a device certificate from the "kit's" identity key,

 Signed it with the Signer CA,

 Saved the kit's device certificate and signer certificate to the secure element (ATECC508A)

 Told the kit where to connect (AWS IoT endpoint)

VIII. AWS IoT Interaction

Now that the board has been provisioned, we will pass some simple messages back and forth to
toggle the LEDs and show button state.

Run the aws_interact_gui.py python script.

After successfully connecting the AWS from the PC side, it will create a simple interface for
interacting with the board.

http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide/iot-thing-shadows.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-mqtt.html
http://docs.aws.amazon.com/iot/latest/developerguide/thing-shadow-mqtt.html

Selecting any of the LED checkboxes will turn on or off the LEDs on the OLED1 Xplained Pro board.
Likewise, pressing the buttons on the board will light up the indicators in the interface, showing their
current state.

The script console window will show the messages being passed back and forth.

Likewise, the debug output from the EDBG virtual com port in PuTTY/TeraTerm will show the
corresponding messages on the device side.

Let's summarize what you have done so far:

Allowed the kit to:

 Connect and perform the JITR

 Communicate via its shadow

IX. Summary and Next Steps

You have created a device that is able to communicate with the Cloud (Amazon AWS).

The device (thing) shadow is the place you communicate with your device via a smart device app or
web browser.

Explore:

 Firmware that comes in the ZIP to see how the ARM SAM G55 communicates with the secure
element (ATECC508A) and the Wi-Fi module WINC1500.

X. Troubleshooting

If you are having problems, please refer to the Microchip Support pages:
http://www.microchip.com/support/

http://www.microchip.com/support/

