DATASHEET - DC1-34046FB-A20CE1

Variable frequency drives; 3-/3-phase 400 V; 46 A; 22 kW; EMC filters; braking transistor

Part no. DC1-34046FB-A20CE1
Catalog No. 185782
Eaton Catalog No. DC1-34046FB-A20CE1

Technical data

General

Standards			Specification for general requirements: IEC/EN 61800-2 EMC requirements: IEC/EN 61800-3 Safety requirements: IEC/EN 61800-5-1
Certifications			CE, UL, cUL, RCM, Ukr SEPRO, EAC
Production quality			RoHS, ISO 9001
Climatic proofing	ρ_{w}	\%	<95\%, average relative humidity (RH), non-condensing, non-corrosive
Ambient temperature			
operation (150 \% overload)	\bigcirc	${ }^{\circ} \mathrm{C}$	$-10-+50$
Storage	\bigcirc	${ }^{\circ} \mathrm{C}$	$-40-+60$
Radio interference level			
Radio interference class (EMC)			C2, C3, depending on the motor cable length, the connected load, and ambient conditions. External radio interference suppression filters (optional) may be necessary.
Environment (EMC)			1st and 2nd environments as per EN 61800-3
maximum motor cable length	1	m	$\begin{aligned} & C 2 \leq 5 \mathrm{~m} \\ & \mathrm{C} 3 \leq 25 \mathrm{~m} \end{aligned}$
Mounting position			Vertical
Altitude		m	0-1000 m above sea level Above 1000 m : 1% derating for every 100 m max. 4000 m
Degree of Protection			IP20/NEMA 0
Protection against direct contact			BGV A3 (VBG4, finger- and back-of-hand proof)
Main circuit			
Supply			
Rated operational voltage	$\mathrm{U}_{\text {e }}$		400 V AC, 3-phase 480 V AC, 3-phase
Mains voltage ($50 / 60 \mathrm{~Hz}$)	$U_{L N}$	V	380 (-10\%) - 480 (+10\%)
Input current (150\% overload)	lin	A	51.9
System configuration			AC supply systems with earthed center point
Supply frequency	fin	Hz	50/60
Frequency range	$\mathrm{f}_{\text {LN }}$	Hz	48-62
Mains switch-on frequency			Maximum of one time every 30 seconds
Power section			
Function			Frequency inverter with internal DC link and IGBT inverter
Overload current (150\% overload)	I_{L}	A	69
max. starting current (High Overload)	I_{H}	\%	175
Note about max. starting current			for 3.75 seconds every 600 seconds
Output voltage with V_{e}	U_{2}		400 V AC, 3-phase 480 V AC, 3-phase
Output Frequency	f_{2}	Hz	0-50/60 (max. 500)
Switching frequency	fPWM	kHz	8 adjustable 4-24 (audible)
Operation Mode			U/f control Speed control with slip compensation sensorless vector control (SLV)
Frequency resolution (setpoint value)	Δf	Hz	0.1
Rated operational current			
At 150\% overload	I_{e}	A	46

[^0]| Note | | | Rated operational current at an operating frequency of 16 kHz and an ambient air temperature of $+50^{\circ} \mathrm{C}$ |
| :---: | :---: | :---: | :---: |
| Maximum leakage current to ground (PE) without motor | IPE | mA | 12.9 |
| Fitted with | | | Radio interference suppression filter Brake chopper
 7-digital display assembly |
| Frame size | | | FS4 |
| Motor feeder | | | |
| Note | | | for normal internally and externally ventilated 4 pole, three-phase asynchronous motors with $1500 \mathrm{rpm}^{-1}$ at 50 Hz or $1800 \mathrm{~min}^{-1}$ at 60 Hz |
| Note | | | Overload cycle for 60 s every 600 s |
| Note | | | at $400 \mathrm{~V}, 50 \mathrm{~Hz}$ |
| 150 \% Overload | P | kW | 22 |
| Note | | | at $440-480 \mathrm{~V}, 60 \mathrm{~Hz}$ |
| 150 \% Overload | P | HP | 30 |
| maximum permissible cable length | I | m | screened: 100
 screened, with motor choke: 200
 unscreened: 150
 unscreened, with motor choke: 300 |
| Apparent power | | | |
| Apparent power at rated operation 400 V | S | kVA | 18.4 |
| Apparent power at rated operation 480 V | S | kVA | 22.08 |
| Braking function | | | |
| DC braking torque | | | max. 100% of rated operational current I_{e}, variable |
| minimum external braking resistance | $\mathrm{R}_{\text {min }}$ | Ω | 22 |
| Switch-on threshold for the braking transistor | $U_{\text {DC }}$ | V | 780 V DC |
| Control section | | | |
| Reference voltage | $U_{\text {s }}$ | v | 10 V DC (max. 10 mA$)$ |
| Analog inputs | | | 2, parameterizable, 0-10V DC, 0/4-20 mA |
| Analog outputs | | | 1, parameterizable, 0-10 V |
| Digital inputs | | | 4, parameterizable, max. 30 V DC |
| Digital outputs | | | 1, parameterizable, 24 V DC |
| Relay outputs | | | 1, parameterizable, $\mathrm{N} / 0,6 \mathrm{~A}(250 \mathrm{~V}, \mathrm{AC}-1) / 5 \mathrm{~A}(30 \mathrm{~V}, \mathrm{DC}-1)$ |
| Interface/field bus (built-in) | | | OP-Bus (RS485)/Modbus RTU, CANopen ${ }^{(8)}$ |
| Assigned switching and protective elements | | | |
| Power Wiring | | | |
| IEC (Type B, gG), 150 \% | | | FAZ-B63/3 |
| 150% overload (CT/ $/ \mathrm{H}$, at $50{ }^{\circ} \mathrm{C}$) | | | DX-LN3-060 |
| Motor feeder | | | |
| 150% overload (CT/ H_{H}, at $50{ }^{\circ} \mathrm{C}$) | | | DX-LM3-050 |
| 150% overload (CT/ H_{H}, at $50^{\circ} \mathrm{C}$) | | | DX-SIN3-048 |
| 10% duty factor (DF) | | | DX-BR022-5K1 |
| 20% duty factor (DF) | | | DX-BR022-9K2 |

Design verification as per IEC/EN 61439

Technical data for design verification

| Rated operational current for specified heat dissipation | I_{n} | A | 46 |
| :--- | :--- | :--- | :--- | :--- |
| Heat dissipation per pole, current-dependent | $\mathrm{P}_{\text {vid }}$ | W | 0 |
| Equipment heat dissipation, current-dependent | $\mathrm{P}_{\text {vid }}$ | W | 801 |
| Static heat dissipation, non-current-dependent | P_{vs} | W | 0 |
| Heat dissipation capacity | $\mathrm{P}_{\text {diss }}$ | W | 0 |
| Operating ambient temperature min. | | ${ }^{\circ} \mathrm{C}$ | -10 |
| Operating ambient temperature max. | ${ }^{\circ} \mathrm{C}$ | 50 | |
| EC/EN 61439 design verification | | 0 Operation (with 150% overload) | |
| 10.2 Strength of materials and parts | | | |
| 10.2 .2 Corrosion resistance | | | Meets the product standard's requirements. |

10.2.3.1 Verification of thermal stability of enclosures
10.2.3.2 Verification of resistance of insulating materials to normal heat
10.2.3.3 Verification of resistance of insulating materials to abnormal heat and fire due to internal electric effects
10.2.4 Resistance to ultra-violet (UV) radiation
10.2.5 Lifting
10.2.6 Mechanical impact
10.2.7 Inscriptions
10.3 Degree of protection of ASSEMBLIES
10.4 Clearances and creepage distances
10.5 Protection against electric shock
10.6 Incorporation of switching devices and components
10.7 Internal electrical circuits and connections
10.8 Connections for external conductors
10.9 Insulation properties
10.9.2 Power-frequency electric strength
10.9.3 Impulse withstand voltage
10.9.4 Testing of enclosures made of insulating material
10.10 Temperature rise
10.11 Short-circuit rating
10.12 Electromagnetic compatibility
10.13 Mechanical function

Meets the product standard's requirements.
Meets the product standard's requirements.
Meets the product standard's requirements.

Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Meets the product standard's requirements.
Does not apply, since the entire switchgear needs to be evaluated.
Does not apply, since the entire switchgear needs to be evaluated.
Is the panel builder's responsibility.
Is the panel builder's responsibility.

Is the panel builder's responsibility.
Is the panel builder's responsibility.
Is the panel builder's responsibility.
The panel builder is responsible for the temperature rise calculation. Eaton will provide heat dissipation data for the devices.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

Is the panel builder's responsibility. The specifications for the switchgear must be observed.

The device meets the requirements, provided the information in the instruction leaflet (IL) is observed.

Technical data ETIM 6.0

Low-voltage industrial components (EG000017) / Frequency converter $=<1 \mathrm{kV}$ (ECOO1857)
Electric engineering, automation, process control engineering / Electrical drive / Static frequency converter / Static frequency converter = < 1 kv (ecl@ss8.1-27-02-31-01 [AKE177011])

Mains voltage	V	380-480
Mains frequency		$50 / 60 \mathrm{~Hz}$
Number of phases input		3
Number of phases output		3
Max. output frequency	Hz	500
Max. output voltage	V	500
Rated output current 12N	A	46
Max. output at quadratic load at rated output voltage	kW	22
Max. output at linear load at rated output voltage	kW	22
With control unit		Yes
Application in industrial area permitted		Yes
Application in domestic- and commercial area permitted		Yes
Supporting protocol for TCP/IP		No
Supporting protocol for PROFIBUS		No
Supporting protocol for CAN		Yes
Supporting protocol for INTERBUS		No
Supporting protocol for ASI		No
Supporting protocol for KNX		No
Supporting protocol for MODBUS		Yes
Supporting protocol for Data-Highway		No
Supporting protocol for DeviceNet		No
Supporting protocol for SUCONET		No
Supporting protocol for LON		No
Supporting protocol for PROFINET IO		No
Supporting protocol for PROFINET CBA		No
Supporting protocol for SERCOS		No
Supporting protocol for Foundation Fieldbus		No

Supporting protocol for EtherNet/IP		Yes
Supporting protocol for AS-Interface Safety at Work		No
Supporting protocol for DeviceNet Safety		No
Supporting protocol for INTERBUS-Safety		No
Supporting protocol for PROFIsafe		No
Supporting protocol for SafetyBUS p		No
Supporting protocol for other bus systems		Yes
Number of HW-interfaces industrial Ethernet		0
Number of HW-interfaces PROFINET		0
Number of HW-interfaces RS-232		0
Number of HW-interfaces RS-422		0
Number of HW-interfaces RS-485		1
Number of HW-interfaces serial TTY		0
Number of HW-interfaces USB		0
Number of HW-interfaces parallel		0
Number of HW-interfaces other		0
With optical interface		No
With PC connection		Yes
Integrated breaking resistance		Yes
4-quadrant operation possible		No
Type of converter		U converter
Degree of protection (IP)		IP20
Height	mm	207
Width	mm	168
Depth	mm	418
Relative symmetric net frequency tolerance	\%	10
Relative symmetric net current tolerance	\%	10

Approvals

Product Standards
UL File No.
UL Category Control No.
CSA File No.
North America Certification
Specially designed for North America
Suitable for
Max. Voltage Rating
Degree of Protection

UL 508C; CSA-C22.2 No. 14; IEC/EN61800-3; IEC/EN61800-5; CE marking E172143

NMMS, NMMS7
UL report applies to both US and Canada
UL listed, certified by UL for use in Canada
No
Branch circuits
3~ 240 V AC IEC: TN-S UL/CSA: "Y" (Solidly Grounded Wey)
IEC: IP20

Dimensions

[^0]: At 150\% overload

