Fair-Rite Products Corp.

Your Signal Solution®

Rods (4077122011)

Part Number: 4077122011

77 ROD

Explanation of Part Numbers: – Digits 1 & 2 = Product Class – Digits 3 & 4 = Material Grade

Pressed Fair- Rite rods are used extensively in high- energy storage designs.

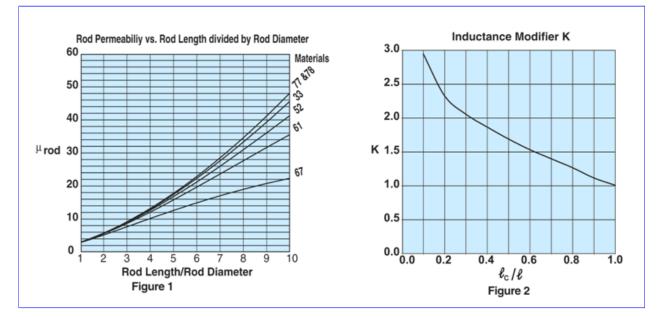
These rods can also be used for inductive components that require temperature stability or have to accommodate large dc bias requirements.

Figure 2 rods have a 0.6 mm (0.024) maximum chamfer on the end faces.

For frequency tuned rod designs see section Antenna/ RFID Rods.

For any rod requirement not listed here, feel free to contact our customer service group for availability and pricing.

Catalog Drawing 3D Model


The A dimension can be centerless ground to tighter tolerances.

Weight: 1 (g)

Dim	mm	mm tol	nominal inch	inch misc.	
А	3.25	-0.25	0.123		
С	25.4	±0.75	1	_	
					\diamond
					Ψ
					- A - C -
					Figure 1

Figure 1 shows the rod permeability as a function of the length to diameter ratio for the six materials available in rods.

Figures 3, 4 and 5 illustrate typical temperature behavior of wound rods. Would rods in 33 and 77 material yield the best temperature stable inductors, see Figure 4. Both show a typical inductance change of <1% over the -40° to 120°C temperature range. The parts have a L/D ratio of 8.1. Lower ratios will change less. This is shown in detail in Figure 5 for the same 52 material but with the L/D ratio as the parameter. A lower ratio means a lower rod permeability but with improved temperature stability.

Wound Rod Inductance Calculations

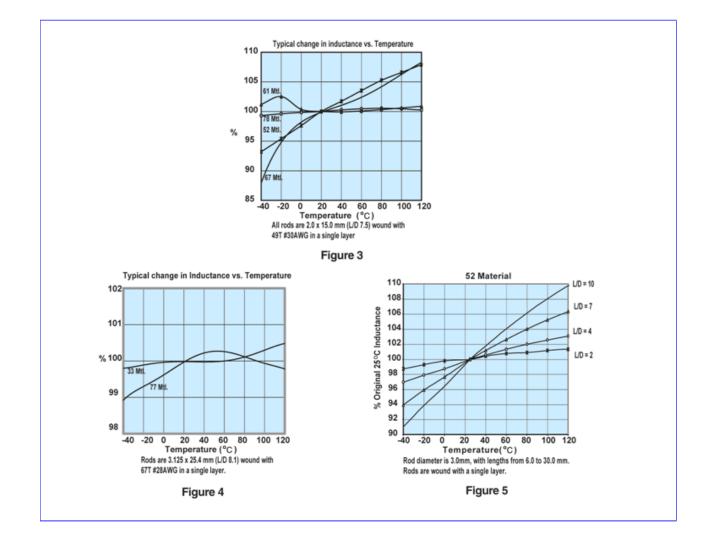
To calculate the inductances of a wound rod the following formula can be used,

$$L = K \mu_0 \mu \text{rod} \frac{N^2 \text{ Ae}}{\ell} 10^4 (\mu \text{ H})$$

Where: K = Inductance modifier
$$\mu_0 = 4\pi 10^{-7}$$
$$\mu \text{rod} = \text{rod permeability found in Figure 1.}$$

N = Number of turns
Ae = Cross sectional area of the rod (cm²)
$$\ell = \text{Length of the rod (cm)}$$
$$\ell_c = \text{Length of the winding (cm)}$$

The inductance modifier is found in Figure 2. The ratio winding length divided by the rod length will give the inductance modifier. If the rod is totally wound the K=1. Shorter but centered winding will yield higher K values.


Using the rod 3061990871 as an example.

For this rod the length over diameter ratio is 8.33 and for 61 material Figure 1 gives a µrod of 29. The rod has an AE= 0.0707 cm² and \Box =2.5 cm.

A winding of 80 turns of 30 AWG wire will yield a fully wound rod, therefore K=1.

Using the formula the calculated inductance is 65.96µH.

The measured values for both winding were 66.95 and 39.50µH respectively.

	Fai	r- Rite Products Co	orp.		One Commercia	ıl Rov	v, Wallkill, New York 125	89-02	88
888-324-7748		845-895-2055		Fax	845-895-2629		ferrites@fair- rite.com		www.fair- rite.com