HARRIS

## Features

- Independently Drives 6 N-Channel MOSFETs in Three Phase Bridge Configuration
- Bootstrap Supply Max Voltage to 95VDC
- Bias Supply Operation from 7V to 15V
- 1.25A Peak Turn-Off Current
- User-Programmable Dead Time ( $0.25 \mu \mathrm{~s}$ to $4.5 \mu \mathrm{~s}$ )
- Charge-Pump and Bootstrap Maintain Upper Bias Supplies
- Programmable Bootstrap Refresh Time
- Drives 1000pF Load with Typical Rise Time of 20ns and Fall Time of 10ns
- DIS (Disable) Overrides Input Control
- Input Logic Thresholds Compatible with 5V to 15V Logic Levels
- Dead Time Disable Capability
- Programmable Undervoltage Set Point


## Applications

- Brushless Motors
- AC Motor Drives
- Switched Reluctance Motor Drives
- Battery Powered Vehicles


## Description

The HIP4086 is a Three Phase Bridge N-Channel MOSFET driver IC. The HIP4086 is specifically targeted for PWM motor control. It makes bridge based designs simple and flexible. Like the HIP4081, the HIP4086 has a flexible input protocol for driving every possible switch combination. Unlike the HIP4081, the user can override the shoot-through protection for switched reluctance applications. The HIP4086 has reduced drive current compared to the HIP4081 (0.5A vs 2.5 A ) and a much wider range of programmable dead times $(0.25 \mu \mathrm{~s}$ to $4.5 \mu \mathrm{~s})$ - like the HIP4082. The HIP4086 is suitable for applications requiring DC to 100 kHz . Unlike the previous family members, the HIP4086 has a programmable undervoltage set point.

Also refer to the HIP4083, three phase upper only MOSFET driver, for a lower current solution optimized for smaller motors.

## Ordering Information

| PART NUMBER | TEMP. <br> RANGE $\left({ }^{\circ} \mathrm{C}\right)$ | PACKAGE | PKG. <br> NO. |
| :--- | :---: | :--- | :--- |
| HIP4086AB | -40 to 125 | 24 Pin SOIC | M24.3 |
| HIP4086AP | -40 to 125 | 24 Pin PDIP | E24.3 |

## Pinout

|  | $\begin{aligned} & \text { HIP4086 } \\ & \text { (PDIP, SOIC) } \\ & \text { TOP VIEW } \end{aligned}$ |  |
| :---: | :---: | :---: |
| BHB 1 |  | 24 вно |
| $\overline{\text { BHI } 2}$ |  | 23 BHS |
| BLI 3 |  | 22 BLO |
| ALI 4 |  | 21 ALO |
| $\overline{\text { AHI } 5}$ |  | 20 VDD |
| Vss 6 |  | 19 CLO |
| RDEL 7 |  | 18 AHS |
| UVLo 8 |  | 17 Ано |
| RFSH 9 |  | 16 АНв |
| DIS 10 |  | 15 chs |
| CLI 11 |  | 14 сно |
| CHI 12 |  | 13 CHB |

Application Block Diagram


Functional Block Diagram (1/3 of HIP4086 )


NOTE: X signifies that input can be either a "1" or "0".

## Typical Application (PWM Mode Switching)



Pin Descriptions

| PIN NUMBER | SYMBOL | DESCRIPTION |
| :---: | :---: | :---: |
| $\begin{gathered} 17 \\ 1 \\ 13 \end{gathered}$ | AHB <br> BHB <br> CHB <br> (xHB) | High-Side Bootstrap supplies. One external bootstrap diode and one capacitor are required for each. Connect cathode of bootstrap diode and positive side of bootstrap capacitor to each xHB pin. |
| $\begin{gathered} 5 \\ 2 \\ 12 \end{gathered}$ | $\begin{aligned} & \frac{\overline{\mathrm{AHII}}}{\frac{\mathrm{BHI}}{}} \frac{\overline{\mathrm{CHI}}}{(\overline{\mathrm{xHI}})} \end{aligned}$ | High-Side Logic Level Inputs. Logic at these three pins controls the three high side output drivers, AHO (Pin 17), BHO (Pin 24) and CHO (Pin 14). When $\overline{\mathrm{xHI}}$ is low, xHO is high. When $\overline{\mathrm{xHI}}$ is high, xHO is low. Unless the dead time is disabled by connecting RDEL ( Pin 7) to ground, the low side input of each phase will override the corresponding high side input on that phase - see Truth Table on previous page. If RDEL is tied to ground, dead time is disabled and the outputs follow the inputs. Care must be taken to avoid shoot-through in this application. DIS (Pin 10) also overrides the high side inputs. $\overline{\mathrm{xHI}}$ can be driven by signal levels of 0 V to 15 V (no greater than $\mathrm{V}_{\mathrm{DD}}$ ). An internal $100 \mu \mathrm{~A}$ pull-up to $\mathrm{V}_{\mathrm{DD}}$ will hold each $\overline{\mathrm{xHI}}$ high if the pins are not driven. |
| $\begin{gathered} 4 \\ 3 \\ 11 \end{gathered}$ | ALI <br> BLI <br> CLI <br> (xLI) | Low-Side Logic Level Inputs. Logic at these three pins controls the three low side output drivers ALO (Pin 21), BLO (Pin 22) and CLO (Pin 19). If the upper inputs are grounded then the lower inputs control both xLO and xHO drivers, with the dead time set by the resistor at RDEL (Pin 7). DIS (Pin 10) high level input overrides xLI, forcing all outputs low. xLI can be driven by signal levels of 0 V to 15 V (no greater than $\mathrm{V}_{\mathrm{DD}}$ ). An internal $100 \mu \mathrm{~A}$ pull-up to $\mathrm{V}_{\mathrm{DD}}$ will hold xLI high if these pins are not driven. |
| 6 | $\mathrm{V}_{S S}$ | Ground. Connect the sources of the Low-Side power MOSFETs to this pin. |
| 7 | RDEL | Dead Time Setting. Connect a resistor from this pin to $\mathrm{V}_{\mathrm{DD}}$ to set timing current that defines the dead time between drivers - see Figure 17. All drivers turn-off with no adjustable delay, so the RDEL resistor guarantees no shoot-through by delaying the turn-on of all drivers. When RDEL is tied to $\mathrm{V}_{\mathrm{SS}}$, both upper and lowers can be commanded on simultaneously. While not necessary in most applications, a decoupling capacitor of $0.1 \mu \mathrm{~F}$ or smaller may be connected between RDEL and $\mathrm{V}_{\mathrm{SS}}$. |
| 8 | UVLO | Undervoltage Setting. A resistor can be connected between this pin and $\mathrm{V}_{\mathrm{SS}}$ to program the undervoltage set point, see Figure 18. With this pin not connected, the undervoltage disable is typically 6.6 V . When this pin is tied to $\mathrm{V}_{\mathrm{DD}}$, the undervoltage disable is typically 6.2 V . |
| 9 | RFSH | Refresh Pulse Setting. An external capacitor can be connected from this pin to $\mathrm{V}_{\mathrm{SS}}$ to increase the length of the start up refresh pulse - see Figure 16. If this pin is not connected, the refresh pulse is typically $1.5 \mu \mathrm{~s}$. |
| 10 | DIS | Disable Input. Logic level input that when taken high sets all six outputs low. DIS high overrides all other inputs. With DIS low, the outputs are controlled by the other inputs. DIS can be driven by signal levels of OV to 15 V (no greater than $\mathrm{V}_{\mathrm{DD}}$ ). An internal $100 \mu \mathrm{~A}$ pull-up to $\mathrm{V}_{\mathrm{DD}}$ will hold DIS high if this pin is not driven. |
| $\begin{aligned} & 17 \\ & 24 \\ & 14 \end{aligned}$ | AHO <br> BHO <br> CHO <br> (xHO) | High-Side Outputs. Connect to the gates of the High-Side power MOSFETs in each phase. |
| $\begin{aligned} & 15 \\ & 23 \\ & 15 \end{aligned}$ | AHS <br> BHS <br> CHS <br> (xHS) | High-Side Source Connection. Connect the sources of the High-Side power MOSFETs to these pins. The negative side of the bootstrap capacitors should also be connected to these pins. |
| 20 | $V_{D D}$ | Positive Supply. Decouple this pin to $\mathrm{V}_{\text {SS }}$ (Pin 6). |
| $\begin{aligned} & 21 \\ & 22 \\ & 19 \end{aligned}$ | ALO <br> BLO <br> CLO <br> (xLO) | Low-Side Outputs. Connect the gates of the Low-Side power MOSFETs to these pins. |

NOTE: $x=A, B$ and $C$.

## Absolute Maximum Ratings



## Thermal Information

| Thermal Resistance (Typical, Note 1) | $\theta_{\mathrm{JA}}\left({ }^{\circ} \mathrm{C} / \mathrm{W}\right)$ |
| :---: | :---: |
| SOIC Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . | 75 |
| DIP Package . . . . . . . . . . . . . . | 65 |

Storage Temperature Range. ..... $-65^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$
Operating Max. Junction Temperature ..... $150^{\circ} \mathrm{C}$
Lead Temperature (Soldering 10s) ..... $300^{\circ} \mathrm{C}$
(SOIC - Lead Tips Only)

## Operating Conditions

|  | Operating Ambient Temperature Range . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$ |
| :---: | :---: |
|  | Operating Junction Temperature Range . . . . . . . . . $-40^{\circ} \mathrm{C}$ to $150^{\circ} \mathrm{C}$ |
| Voltage on xHS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0 V to 80 V |  |
| CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may caur of the device at these or any other conditions above those indicated in the oper | se permanent damage to the device. This is a stress only rating and operation tional sections of this specification is not implied. |
| NOTES: |  |
| 1. $\theta_{\mathrm{JA}}$ is measured with the component mounted on an evaluation $P$ | board in free air. |
| 2. All voltages are relative to $\mathrm{V}_{S S}$ unless otherwise specified. |  |
| 3. $\mathrm{x}=\mathrm{A}, \mathrm{B}$ and C. For example, xHS refers to AHS, BHS and CHS |  |

Electrical Specifications $\quad V_{D D}=V_{x H B}=12 \mathrm{~V}, V_{S S}=V_{x H S}=0 V, R_{D E L}=20 K, R_{U V}=\infty$, Gate Capacitance $\left(C_{G A T E}\right)=1000 \mathrm{pF}$

| PARAMETER | TEST CONDITIONS | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \mathrm{TO} \\ 150^{\circ} \mathrm{C} \end{gathered}$ |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX | MIN | MAX |  |
| SUPPLY CURRENTS AND UNDER VOLTAGE PROTECTION |  |  |  |  |  |  |  |
| VDD Quiescent Current | $\overline{\mathrm{xHI}}=5 \mathrm{~V}, \mathrm{xLI}=5 \mathrm{~V}$ | 2.7 | 3.4 | 4.2 | 2.1 | 4.3 | mA |
| $\mathrm{V}_{\mathrm{DD}}$ Operating Current | $\mathrm{f}=20 \mathrm{kHz}, 50 \%$ Duty Cycle | 6.3 | 8.25 | 10.5 | 5 | 11 | mA |
| xHB On Quiescent Current | $\overline{\mathrm{xHI}}=0 \mathrm{~V}$ | - | 40 | 80 | - | 100 | $\mu \mathrm{A}$ |
| xHB Off Quiescent Current | $\overline{\mathrm{xHI}}=\mathrm{V}_{\mathrm{DD}}$ | 0.6 | 0.8 | 1.3 | 0.5 | 1.4 | mA |
| xHB Operating Current | $\mathrm{f}=20 \mathrm{kHz}, 50 \%$ Duty Cycle | 0.7 | 0.9 | 1.3 | - | 2.0 | mA |
| Qpump Output Voltage | No Load | 11.5 | 12.5 | 14 | 10.5 | 14.5 | V |
| Qpump Output Current | $\mathrm{V}_{\mathrm{xHS}}=12 \mathrm{~V}, \mathrm{~V}_{\mathrm{xHB}}=22 \mathrm{~V}$ | 50 | 100 | 130 | - | 140 | $\mu \mathrm{A}$ |
| xHB, xHS Leakage Current | $\mathrm{V}_{\mathrm{xHS}}=80 \mathrm{~V}, \mathrm{~V}_{\mathrm{xHB}}=93 \mathrm{~V}$ | 7 | 24 | 45 | - | 50 | $\mu \mathrm{A}$ |
| $\mathrm{V}_{\mathrm{DD}}$ Rising Undervoltage Threshold | Ruv open | 6.2 | 7.1 | 8.0 | 6.1 | 8.1 | V |
| $\mathrm{V}_{\mathrm{DD}}$ Falling Undervoltage Threshold | Ruv open | 5.75 | 6.6 | 7.5 | 5.6 | 7.6 | V |
| Minimum Undervoltage Threshold | RUV $=\mathrm{V}_{\text {DD }}$ | 5 | 6.2 | 6.8 | 4.9 | 6.9 | V |

INPUT PINS: ALI, BLI, CLI, $\overline{\text { AHI, }} \overline{\mathrm{BHI}}, \overline{\mathrm{CHI}}$, AND DIS

| Low Level Input Voltage |  | - | - | 1.0 | - | 0.8 | V |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| High Level Input Voltage |  | 2.5 | - | - | 2.7 | - | V |
| Input Voltage Hysteresis |  | - | 35 | - | - | - | mV |
| Low Level Input Current | $\mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V}$ | 60 | 100 | 135 | 55 | 140 | $\mu \mathrm{~A}$ |
| High Level Input Current | $\mathrm{V}_{\mathrm{IN}}=5 \mathrm{~V}$ | -1 | - | +1 | -10 | +10 | $\mu \mathrm{~A}$ |

GATE DRIVER OUTPUT PINS: ALO, BLO, CLO, AHO, BHO, AND CHO

| Low Level Output Voltage $\left(\mathrm{V}_{\text {OUT }}-\mathrm{V}_{\text {SS }}\right)$ | ISINKING $=30 \mathrm{~mA}$ | - | 100 | - | - | 200 | mV |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Peak Turn-On Current | $\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$ | 0.3 | 0.5 | 0.7 | - | 1.0 | A |
| Peak Turn-Off Current | $\mathrm{V}_{\text {OUT }}=12 \mathrm{~V}$ | 0.7 | 1.1 | 1.5 | 0.5 | 1.7 | A |

Switching Specifications $V_{D D}=V_{x H B}=12 V, V_{S S}=V_{X H S}=0 V, C_{G A T E}=1000 \mathrm{pF}, \mathrm{R}_{\mathrm{DEL}}=10 \mathrm{k}$

| PARAMETER | TEST CONDITIONS | $\mathrm{T}_{\mathrm{J}}=25^{\circ} \mathrm{C}$ |  |  | $\begin{gathered} \mathrm{T}_{\mathrm{J}}=-40^{\circ} \mathrm{C} \text { TO } \\ 150^{\circ} \mathrm{C} \end{gathered}$ |  | UNITS |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | MIN | TYP | MAX | MIN | MAX |  |

TURN-ON DELAY AND PROPAGATION DELAY

| Dead Time | $\mathrm{R}_{\text {DEL }}=100 \mathrm{~K}$ | 3.8 | 4.5 | 6 | 3 | 7 | $\mu \mathrm{s}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{R}_{\mathrm{DEL}}=10 \mathrm{~K}$ | 0.38 | 0.5 | 0.65 | 0.3 | 0.7 | $\mu \mathrm{s}$ |
| Dead Time Channel Matching | $\mathrm{R}_{\text {DEL }}=10 \mathrm{~K}$ | - | 7 | 15 | - | 20 | \% |
| Lower Turn-Off Propagation Delay (xLI-xLO) | No Load | - | 30 | 45 | - | 65 | ns |
| Upper Turn-Off Propagation Delay ( $\overline{\mathrm{xHI}}-\mathrm{xHO}$ ) | No Load | - | 75 | 90 | - | 100 | ns |
| Lower Turn-On Propagation Delay (xLI-xLO) | No Load | - | 45 | 75 | - | 90 | ns |
| Upper Turn-On Propagation Delay ( $\overline{\mathrm{xHI}}-\mathrm{xHO}$ ) | No Load | - | 65 | 90 | - | 100 | ns |
| Rise Time | $\mathrm{C}_{\text {GATE }}=1000 \mathrm{pF}$ | - | 20 | 40 | - | 50 | ns |
| Fall Time | $\mathrm{C}_{\text {GATE }}=1000 \mathrm{pF}$ | - | 10 | 20 | - | 25 | ns |
| Disable Turn-Off Propagation Delay (DIS - Lower Outputs) |  | - | 55 | 80 | - | 90 | ns |
| Disable Turn-Off Propagation Delay (DIS - Upper Outputs) |  | - | 80 | 90 | - | 100 | ns |
| $\overline{\text { Disable to Lower Turn-On Propagation Delay }}$ (DIS - xLO) |  | - | 55 | 80 | - | 100 | ns |
| $\overline{\text { Disable }}$ to Upper Enable (DIS - xHO) | $\mathrm{R}_{\text {DEL }}=10 \mathrm{~K}, \mathrm{C}_{\text {RFSH }}$ Open | - | 2.0 | - | - | - | $\mu \mathrm{s}$ |
| Refresh Pulse Width (xLO) | $\mathrm{C}_{\text {RFSH }}$ Open | - | 1.5 | - | - | - | $\mu \mathrm{s}$ |

Timing Diagrams


FIGURE 1.


FIGURE 2. DISABLE FUNCTION
NOTES:
4. X means any "A", "B", or "C" phase.
5. With RDEL resistor tied to $V_{D D}$, lowers and uppers cannot be turned on at the same time. Low side logic overrides high side logic unless RDEL < 100 mV .

## Typical Performance Curves



FIGURE 3. VDD SUPPLY CURRENT vs $V_{D D}$ SUPPLY VOLTAGE


FIGURE 5. FLOATING IXHB BIAS CURRENT


FIGURE 7. CHARGE PUMP OUTPUT CURRENT


FIGURE 4. VDD SUPPLY CURRENT vs SWITCHING FREQUENCY


FIGURE 6. OFF-STATE IXHB BIAS CURRENT


FIGURE 8. CHARGE PUMP OUTPUT VOLTAGE

Typical Performance Curves (Continued)


FIGURE 9. AVERAGE TURN-ON CURRENT (0 TO 5V)


FIGURE 11. RISE AND FALL TIMES (10-90\%)


FIGURE 13. DISABLE PIN PROPAGATION DELAY


FIGURE 10. AVERAGE TURN-OFF CURRENT (VDD TO 4V)


FIGURE 12. PROPAGATION DELAY


FIGURE 14. REFRESH TIME

Typical Performance Curves (Continued)


FIGURE 15. DEAD TIME


FIGURE 16. UNDERVOLTAGE THRESHOLD


FIGURE 17. $\mathrm{I}_{\mathrm{xHS}}$ LEAKAGE CURRENT

## Dual-In-Line Plastic Packages (PDIP)



NOTES:

1. Controlling Dimensions: $\operatorname{INCH}$. In case of conflict between English and Metric dimensions, the inch dimensions control.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication No. 95.
4. Dimensions $A, A 1$ and $L$ are measured with the package seated in JEDEC seating plane gauge GS-3.

E24.3 (JEDEC MS-001-AF ISSUE D) 24 LEAD NARROW BODY DUAL-IN-LINE PLASTIC PACKAGE

| SYMBOL | INCHES |  | MILLIMETERS |  | NOTES |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MIN | MAX | MIN | MAX |  |
| A | - | 0.210 | - | 5.33 | 4 |
| A1 | 0.015 | - | 0.39 | - | 4 |
| A2 | 0.115 | 0.195 | 2.93 | 4.95 | - |
| B | 0.014 | 0.022 | 0.356 | 0.558 | - |
| B1 | 0.045 | 0.070 | 1.15 | 1.77 | 8 |
| C | 0.008 | 0.014 | 0.204 | 0.355 | - |
| D | 1.230 | 1.280 | 31.24 | 32.51 | 5 |
| D1 | 0.005 | - | 0.13 | - | 5 |
| E | 0.300 | 0.325 | 7.62 | 8.25 | 6 |
| E1 | 0.240 | 0.280 | 6.10 | 7.11 | 5 |
| e |  | SC |  | BSC | - |
| $\mathrm{e}_{\mathrm{A}}$ |  | SC |  | BSC | 6 |
| $\mathrm{e}_{\mathrm{B}}$ | - | 0.430 | - | 10.92 | 7 |
| L | 0.115 | 0.150 | 2.93 | 3.81 | 4 |
| N | 24 |  | 24 |  | 9 |

Rev. 0 12/93
5. D, D1, and E1 dimensions do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.010 inch ( 0.25 mm ).
6. E and $\mathrm{e}_{\mathrm{A}}$ are measured with the leads constrained to be perpendicular to datum $-\mathrm{C}-$.
7. $e_{B}$ and $e_{C}$ are measured at the lead tips with the leads unconstrained. $e_{\mathrm{C}}$ must be zero or greater.
8. B1 maximum dimensions do not include dambar protrusions. Dambar protrusions shall not exceed 0.010 inch ( 0.25 mm ).
9. N is the maximum number of terminal positions.
10. Corner leads ( $1, \mathrm{~N}, \mathrm{~N} / 2$ and $\mathrm{N} / 2+1$ ) for E8.3, E16.3, E18.3, E28.3, E42.6 will have a B1 dimension of $0.030-0.045$ inch (0.76-1.14mm).

Small Outline Plastic Packages (SOIC)


NOTES:

M24.3 (JEDEC MS-013-AD ISSUE C) 24 LEAD WIDE BODY SMALL OUTLINE PLASTIC PACKAGE

| SYMBOL | INCHES |  | MILLIMETERS |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | MAX | MIN | MAX | NOTES |  |
| A1 | 0.0926 | 0.1043 | 2.35 | 2.65 | - |
| B | 0.0040 | 0.0118 | 0.10 | 0.30 | - |
| C | 0.0091 | 0.020 | 0.33 | 0.51 | 9 |
| D | 0.5985 | 0.6141 | 15.20 | 15.60 | 3 |
| E | 0.2914 | 0.2992 | 7.40 | 7.60 | 4 |
| e | 0.05 |  | BSC | 1.27 BSC |  |
| H | 0.394 | 0.419 | 10.00 | 10.65 | - |
| h | 0.010 | 0.029 | 0.25 | 0.75 | 5 |
| L | 0.016 | 0.050 | 0.40 | 1.27 | 6 |
| N | 24 |  | 24 |  | 7 |
| $\alpha$ | $0^{0}$ | $8^{0}$ | $0^{0}$ | $8^{0}$ | - |

Rev. 0 12/93

1. Symbols are defined in the "MO Series Symbol List" in Section 2.2 of Publication Number 95.
2. Dimensioning and tolerancing per ANSI Y14.5M-1982.
3. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusion and gate burrs shall not exceed 0.15 mm ( 0.006 inch) per side.
4. Dimension " $E$ " does not include interlead flash or protrusions. Interlead flash and protrusions shall not exceed $0.25 \mathrm{~mm}(0.010$ inch) per side.
5. The chamfer on the body is optional. If it is not present, a visual index feature must be located within the crosshatched area.
6. " $L$ " is the length of terminal for soldering to a substrate.
7. " N " is the number of terminal positions.
8. Terminal numbers are shown for reference only.
9. The lead width " $B$ ", as measured 0.36 mm ( 0.014 inch) or greater above the seating plane, shall not exceed a maximum value of 0.61 mm ( 0.024 inch)
10. Controlling dimension: MILLIMETER. Converted inch dimensions are not necessarily exact.

All Harris Semiconductor products are manufactured, assembled and tested under ISO9000 quality systems certification.
Harris Semiconductor products are sold by description only. Harris Semiconductor reserves the right to make changes in circuit design and/or specifications at any time without notice. Accordingly, the reader is cautioned to verify that data sheets are current before placing orders. Information furnished by Harris is believed to be accurate and reliable. However, no responsibility is assumed by Harris or its subsidiaries for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Harris or its subsidiaries.

## Sales Office Headquarters

For general information regarding Harris Semiconductor and its products, call 1-800-4-HARRIS

NORTH AMERICA
Harris Semiconductor
P. O. Box 883, Mail Stop 53-210

Melbourne, FL 32902
TEL: 1-800-442-7747
(407) 729-4984

FAX: (407) 729-5321

## EUROPE

Harris Semiconductor
Mercure Center
100, Rue de la Fusee
1130 Brussels, Belgium
TEL: (32) 2.724.2111
FAX: (32) 2.724.22.05

## ASIA

Harris Semiconductor PTE Ltd.
No. 1 Tannery Road
Cencon 1, \#09-01
Singapore 1334
TEL: (65) 748-4200
FAX: (65) 748-0400

HARRIS
SEMICONDUCTOR

