PMC Panel Mount Power Supply
 12V 50W 1 Phase / PMC-12V050W1A \square

PMC

Highlights \& Features

- Universal AC input range from 85 V ac to 264 Vac without power de-rating
- Full Aluminum casing for light weight and corrosion resistant handling
- High MTBF > 700,000 hrs. as per Telcordia SR-332
- Overvoltage / Overcurrent / Over Temperature Protections
- Certified according to IEC/EN/UL 62368-1

Safety Standards

Model Number:	PMC-12V50W1A \square
Unit Weight:	$0.26 \mathrm{~kg}(0.57 \mathrm{lb})$
Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H}):$	$128 \times 97 \times 38 \mathrm{~mm}$
	$(5.04 \times 3.82 \times 1.50$ inch $)$

General Description

Delta's PMC series of panel mount power supply offers a nominal output voltage of 12 V , a wide temperature range from $-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ and a highly dependable minimum hold-up time. The state-of-the-art design is made to withstand harsh industrial environments. What makes the product stands out from the crowd is its lightweight full aluminum body design, which can withstand shock and vibration according to IEC 60068-2. The PMC series also offers overvoltage and overload protection. Using a wide input voltage range design, it is compatible worldwide. The input also includes DC operating voltage from $125-375 \mathrm{Vdc}$. Best of all, this excellent design and quality does not come with a big price tag.

Model Information

PMC Panel Mount Power Supply

Model Number	Input Voltage Range	Rated Output Voltage	Rated Output Current
PMC-12V050W1AA	$85-264 \mathrm{Vac}(125-375 \mathrm{Vdc})$	12 Vdc	4.17 A

Model Numbering

PMC	12V	050W	$\mathbf{1}$	A	\square
PMC Series	Output Voltage	Output Power	Single Phase	Delta Standard	Connector Type A - Terminal Block J - IP20 Connector*

*Options

PMC Panel Mount Power Supply
 12V 50W 1 Phase / PMC-12V050W1A \square

Specifications

Input Ratings / Characteristics

Nominal Input Voltage	$100-240 \mathrm{Vac}$
Input Voltage Range	$85-264 \mathrm{Vac}$
Nominal Input Frequency	$50-60 \mathrm{~Hz}$
Input Frequency Range	$47-63 \mathrm{~Hz}$
Nominal DC Input Voltage	$125-250 \mathrm{Vdc}$
DC Input Voltage Range	$125-375 \mathrm{Vdc}$
Input Current	$<1.1 \mathrm{~A} @ 115 \mathrm{Vac},<0.7 \mathrm{~A}$ @ 230Vac
Efficiency at 100\% Load	$>84 \%$ @ 115Vac, $>85 \%$ @ 230Vac
Max Inrush Current	$<30 \mathrm{~A}$ @ 115Vac, <65A @ 230Vac
Power Factor	Conform to EN61000-3-2
Leakage Current	$<1 \mathrm{~mA}$ @ 240Vac

Output Ratings / Characteristics

Nominal Output Voltage	12 Vdc
Output Voltage Tolerance	$\pm 2 \%$ (initial set point tolerance from factory)
Output Voltage Adjustment Range	$11-14 \mathrm{Vdc}$
Output Current	4.17 A
Output Power	50 W
Line Regulation	$<0.5 \%$ typ. (@ 85-264Vac input, 100\% load)
Load Regulation	$<1 \%$ typ. (@ 85-264Vac input, 0-100\% load)
PARD (20MHz)	$<100 \mathrm{mVpp}$
Rise Time	$<30 \mathrm{~ms}$ @ nominal input (100\% load)
Start-up Time	$<2500 \mathrm{~ms}$ @ nominal input (100\% load)
Hold-up Time	$>15 \mathrm{~ms} \mathrm{@} \mathrm{115Vac}, \mathrm{>80ms} \mathrm{@} \mathrm{230Vac} \mathrm{(100} \mathrm{\%} \mathrm{load)}$
Dynamic Response (Overshoot \& Undershoot O/P Voltage)	$\pm 5 \%$ @ 0-100\% load
Start-up with Capacitive Loads	$8,000 \mu \mathrm{~F} \mathrm{Max}$

Mechanical

Case Chassis / Cover		Aluminium
Dimensions $(\mathrm{L} \times \mathrm{W} \times \mathrm{H})$		$128 \times 97 \times 38 \mathrm{~mm}(5.04 \times 3.82 \times 1.50 \mathrm{inch})$
Unit Weight		$0.26 \mathrm{~kg}(0.57 \mathrm{lb})$
Indicator		Green LED
Cooling System		DC OK
Terminal		Convection
Wire	Input and Output	M3.5 $\times 5$ Pins (Rated 300VAC/15A)
	PMC-12V050W1AA	AWG 20-14
Noise (1 Meter from power supply)	PMC-12V050W1AJ	AWG 20-12

PMC Panel Mount Power Supply
 12V 50W 1 Phase / PMC-12V050W1A \square

Environment

Surrounding Air Temperature	Operating	$-10^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
	Storage	$-25^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Power De-rating		$>50^{\circ} \mathrm{C}$ de-rate power by $2.5 \% /{ }^{\circ} \mathrm{C}$
Operating Humidity		$<95 \% \mathrm{RH}$
Operating Altitude	Non-Operating	IEC60068-2-27, $30 \mathrm{G}\left(300 \mathrm{~m} / \mathrm{S}^{2}\right)$ for a duration of 18 ms
Shock Test		3 times per direction, 18 times in total

Protections

Overvoltage	$16 \mathrm{~V}+10 \% /-5 \%$, SELV output, Hiccup Mode,		
	Non-Latching (Auto-Recovery).		
Overload / Overcurrent	$>120 \%$ of rated load current, Hiccup Mode,		
	Non-Latching (Auto-Recovery).	,	$<75^{\circ} \mathrm{C}$ Ambient Temp@ 100\% load,
:---			
Non-Latching (Auto-Recovery).	,	Hicc-up Mode, Non-Latching	
:---	:---		
Over Temperature	(Auto-Recovery when the fault is removed).		
Short Circuit	Class I with PE* connection		
Protection Against Shock			
*PE: Primary Earth			

Reliability Data

MTBF	$>700,000 \mathrm{hrs}$, as per Telcordia SR-332
Expected Cap Life Time	10 years $\left(115 \mathrm{Vac} \& 230 \mathrm{Vac}, 50 \%\right.$ load @ $\left.40^{\circ} \mathrm{C}\right)$

PMC Panel Mount Power Supply

12V 50W 1 Phase / PMC-12V050W1A \square

Safety Standards / Directives

Electrical Safety	TUV Bauart	EN60950-1, EN 62368-1
	UL/cUL recognized	UL 60950-1 and CSA C22.2 No. 60950-1 (File No. E191395),
		CB scheme
		IEC60950-1, IEC-62368-1

EMC

EMC / Emissions		CISPR32, EN55032, FCC Title 47: Class B, GB9254
Immunity to		
Electrostatic Discharge	IEC61000-4-2	Level 4 Criteria $\mathrm{A}^{1)}$ Air Discharge: 15kV Contact Discharge: 8kV
Radiated Field	IEC61000-4-3	Level 3 Criteria $\mathrm{A}^{1 \text {) }}$ $80 \mathrm{MHz}-1 \mathrm{GHz}, 10 \mathrm{~V} / \mathrm{M}$ with 1 kHz tone / 80% modulation
Electrical Fast Transient / Burst	IEC61000-4-4	Level 3 Criteria A ${ }^{1}$) 2kV
Surge	IEC61000-4-5	Level 3 Criteria $\mathrm{A}^{1 \text {) }}$ Common Mode ${ }^{2}$): 2 kV Differential Mode ${ }^{3}$: 2 kV
Conducted	IEC61000-4-6	Level 3 Criteria $\mathrm{A}^{1)}$ $150 \mathrm{kHz}-80 \mathrm{MHz}, 10 \mathrm{Vrms}$
Power Frequency Magnetic Fields	IEC61000-4-8	Criteria A ${ }^{1)}$ 10A/Meter
Voltage Dips	IEC61000-4-11	100\% dip; 1 cycle (20ms); Self Recoverable
Low Energy Pulse Test (Ring Wave)	IEC61000-4-12	Level 3 Criteria $\mathrm{A}^{1)}$ Common Mode ${ }^{2}$): 2 kV Differential Mode ${ }^{3}$: 1 kV

[^0]3) Symmetrical: Differential mode (Line to line)

PMC Panel Mount Power Supply

12V 50W 1 Phase / PMC-12V050W1A \square

Block Diagram

Device Description

[^1]
PMC Panel Mount Power Supply
 12V 50W 1 Phase / PMC-12V050W1A \square

Dimensions

L x W x H: $128 \times 97 \times 38 \mathrm{~mm}(5.04 \times 3.82 \times 1.50$ inch) (PMC-12V050W1AA and PMC-12V050W1AJ)

Engineering Data

Output Load De-rating VS Surrounding Air Temperature

Fig. 1 De-rating for Vertical and Horizontal Mounting Orientation
$>50^{\circ} \mathrm{C}$ de-rate power by $2.5 \% /{ }^{\circ} \mathrm{C}$

Note

1. Power supply components may degrade, or be damaged, when the power supply is continuously used outside the shaded region, refer to the graph shown in Fig. 1.
2. If the output capacity is not reduced when the surrounding air temperature $>50^{\circ} \mathrm{C}$, the device will run into Over Temperature Protection. When activated, the output voltage will go into bouncing mode and will recover when the surrounding air temperature is lowered or the load is reduced as far as necessary to keep the device in working condition.
3. In order for the device to function in the manner intended, it is also necessary to keep a safety distance of 20 mm (0.79 inch) with adjacent units while the device is in operation.
4. Depending on the surrounding air temperature and output load delivered by the power supply, the device housing can be very hot!
5. If the device has to be mounted in any other orientation, please do not hesitate to contact info@deltapsu.com for more details.

PMC Panel Mount Power Supply
 12V 50W 1 Phase / PMC-12V050W1A \square

Output Load De-rating VS Input Voltage

Assembly \& Installation

Mounting

- No output power de-rating across the entire input voltage range
(A) Mounting holes for power supply assembly onto the mounting surface.

The power supply shall be mounted on minimum 2 mounting holes using M3 screw minimum 5 mm (0.20 inch) length.
(B) This surface belongs to customer's end system or panel where the power supply is mounted.
(C) Connector.

Fig. 2 Recommended Mounting Orientations

- Use flexible cable (stranded or solid) with the following sizes:
- PMC-12V050W1AA / PMC-12V050W1AJ : The torque at the Connector shall not exceed $13 \mathrm{Kgf.cm}$. The insulation stripping length should not exceed $0.275^{\prime \prime}$ or 7 mm

PMC Panel Mount Power Supply

12V 50W 1 Phase / PMC-12V050W1A \square

Installation of Mounting Accessories

- Only use M 3 screw $\leq 6 \mathrm{~mm}$ through the base mounting holes. This is to keep a safe distance between the screw and internal components.
Recommended mounting tightening torque : 4~8Kgf.cm

Safety Instructions

- To ensure sufficient convection cooling, always maintain a safety distance of $>20 \mathrm{~mm}$ (0.79 inch) from all ventilated surfaces while the device is in operation.
- The device is not recommended to be placed on low thermal conductive surface, for example, plastics.
- Note that the enclosure of the device can become very hot depending on the ambient temperature and load of the power supply. Do not touch the device while it is in operation or immediately after power is turned OFF. Risk of burning!
- Do not touch the terminals while power is being supplied. Risk of electric shock.
- Prevent any foreign metal, particles or conductors to enter the device through the openings during installation. It can cause: Electric shock; Safety Hazard; Fire; Product failure
- Warning: When connecting the device, secure Earth connection before connecting L and N. When disconnecting the device, remove L and N connections before removing the Earth connection.

Accessories

PMC Panel Mount Power Supply

12V 50W 1 Phase / PMC-12V050W1A \square

Functions

■ Graph illustrating the Start-up Time, Rise Time, and Hold-up Time

Start-up Time

The time required for the output voltage to reach 90% of its set value, after the input voltage is applied.

Rise Time

The time required for the output voltage to change from 10% to 90% of its set value.

Hold-up Time

Hold up time is the time when the AC input collapses and output voltage retains regulation for a certain period of time. The time required for the output to reach 95% of its set value, after the input voltage is removed.

Inrush Current
Inrush Current is the first surge current seen on the input side when AC input is applied to the power supply. It is the first pulse captured; see a typical picture for the inrush current as seen in the power supply.

Dynamic Response

The power supply output voltage will remains within $\pm 5 \%$ of its steady state value, when subjected to a dynamic load from 0\% to 100% of its rated current.

PMC Panel Mount Power Supply

12V 50W 1 Phase / PMC-12V050W1A \square

Overload \& Overcurrent Protections (Auto-Recovery)

The power supply's Overload (OLP) and Overcurrent (OCP) Protections will be activated when output current exceeds 110$160 \%$ of lo (Max load). In such occurrence, the Vo will start to droop and once the power supply has reached its maximum power limit, the protection is activated and the power supply will go into "Hiccup mode" (Auto-Recovery). The power supply will recover once the fault condition of the OLP and OCP is removed and lo is back within the specifications.

It is not recommended to prolong the duration of lo when it is $<110-$ 160% but $>100 \%$, since it may cause damage to the PSU.

Short Circuit Protection (Auto-Recovery)

The power supply's output OLP/OCP function also provides protection against short circuits. When a short circuit is applied, the output current will operate in "Hiccup mode", as shown in the illustration in the OLP/OCP section on this page. The power supply will return to normal operation after the short circuit is removed.

Overvoltage Protection (Auto-Recovery)

The power supply's overvoltage circuit will be activated when its internal feedback circuit fails. The output voltage shall not exceed its specifications defined on Page 3 under "Protections".

Over Temperature Protection (Auto-Recovery)

As mentioned above, the power supply also has Over Temperature Protection (OTP). This is activated when the overload condition persists for an extended duration and the output current is below the overload trigger point but $>100 \%$ load. In the event of a higher operating condition at 100% load, the power supply will run into OTP when the surrounding air temperature is $775^{\circ} \mathrm{C}$. When activated, the output voltage will go into bouncing mode until the operating surrounding temperature drops to $50^{\circ} \mathrm{C}$ or output capacity is reduced as recommended in the de-rating graph.

Others

Attention

Delta provides all information in the datasheets on an "AS IS" basis and does not offer any kind of warranty through the information for using the product. In the event of any discrepancy between the information in the catalog and datasheets, the datasheets shall prevail (please refer to www.DeltaPSU.com for the latest datasheets information). Delta shall have no liability of indemnification for any claim or action arising from any error for the provided information in the datasheets. Customer shall take its responsibility for evaluation of using the product before placing an order with Delta.

Delta reserves the right to make changes to the information described in the datasheets without notice.

PMC Panel Mount Power Supply
 12V 50W 1 Phase / PMC-12V050W1A \square

Document Revision Record

Date	Item	Content Revised	Page Affected	Rev
14 Dec 17	1	- Update footer statement - Add EAC mark - Update model numbering - Update CE to EMC Directive 2014/30/EU and Low Voltage Directive 2014/35/EU - Replace CISPR22, EN55022 to CISPR32, EN55032	$\begin{gathered} \text { All } \\ 1 \\ 1 \\ 4 \end{gathered}$	01
7 Nov 18	1	Add attention 1 paragraph	10	02
	2	Change dynamic response graph and content	9	
27 Apr 20	1	Remove RoHS	$\begin{gathered} 4 \\ 10 \end{gathered}$	03
13 Nov 20	1	Update DS format with 62368-1 info - update product image - update Highlights \& Features - update model name - add lb in weight - update dimension to ($\mathrm{L} \times \mathrm{W} \times \mathrm{H}$) and add inch - update general description - update model numbering - add "Rated" for output voltage and output current - add "IP20 connector" and *option - add connector picture - update Mechanical: Case Chassis / Cover - update Indicator - update Terminal, Wire - add (1 Meter from power supply) - update Environment part - update Operating altitude - update Shock, Vibration - update Protections - update safety section - update Block diagram - update Device Description - update Dimension section - update Fig. 1 and Output Load De-rating VS Input Voltage - update drawings and format in Assembly \& Installation section - update Safety Instructions add inch - add Installation of Mounting Accessories and drawing - Add "of its rated current" in Dynamic Response - update protection section BY Eak	$\begin{aligned} & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 1 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 2 \\ & 3 \\ & 3 \\ & 3 \\ & 4 \\ & 4 \\ & 5 \\ & 5 \\ & 5 \\ & 6 \\ & 7 \\ & 7 \\ & 8 \\ & 8 \\ & 9 \\ & 10 \end{aligned}$	04

[^0]: 1) Criteria A: Normal performance within the specification limits
 2) Asymmetrical: Common mode (Line to earth)
[^1]: 1) Input \& Output terminal block connector
 2) DC Voltage adjustment potentiometer
 3) DC OK control LED (Green)
