SPECIFICATIONS

Power Amplifier

 Français
 Deutsch
 日本語
 한국어
 简体中文

 ni.com/manuals

This document lists specifications for the NI PXIe-4610 Power Amplifier. These specifications are typical at 25 °C unless otherwise stated. The operating range for the NI PXIe-4610 is 0 °C to 55 °C. All accuracies listed are valid for up to two years from the time the device was externally calibrated. All specifications are subject to change without notice. Visit ni.com/manuals for the most current specifications and product documentation.

Caution Electromagnetic interference can adversely affect the accuracy of this product. The inputs and outputs of this device are not protected for electromagnetic interference. As a result, this device may experience performance degradation when connected cables are routed in an environment with electromagnetic interference. To limit radiated emissions and to ensure that this device functions within specifications in its operational electromagnetic environment, take precautions when designing, selecting, and installing measurement cables.

Power Amplifier

Number of power amplifier channels2

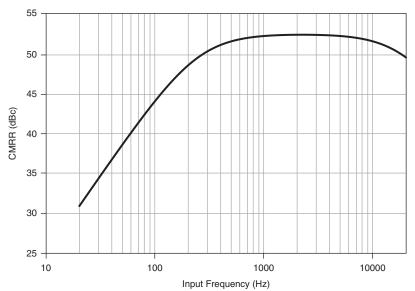
Input Characteristics

Input configuration Differential

Input coupling......AC

Signal Range

Input Full-Scale Range		
V _{pk}	V _{rms}	dBV
±1.414	1.0	0.0


Input	Input Voltage* (V _{pk})
Positive input (+)	± 1.414
Negative input (-)	±1.414
* Voltages with respect to chassis ground	

voltages with respect to chassis ground.

Common-Mode Rejection Ratio (CMRR)

CMRR	* (dBc)
Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C
50	40
* 1 kHz input tone.	

Input Impedance

Input Terminals	Input Impedance
Between positive input (+) and chassis ground	10 kΩ 100 pF
Between negative input (-) and chassis ground	10 kΩ 100 pF

Overvoltage Protection

Input	Overvoltage* (V _{pk})
Positive input (+)	±42.4
Negative input (-)	±42.4
* Voltages with respect to chassis ground.	

Output Characteristics

Output configuration	Differential

Output couplingDC

Signal Range

Output Voltage Full-Scale Range			
V _{pk} V _{rms} dBV			
±14.14	10	20	

Output voltage slew rate $\pm 15 \text{ V/}\mu s$

Output Cu	rrent Drive
A _{pk}	A _{rms}
±2.235	1.581

Output current slew rate ± 0.5 A/µs

Power

Output Load (Ω)	Amplitude* (dBFS)	Average Power Per Channel (W) Max
50	0.0	2
20	0.0	5
8	-1.0	10
4	-4.4	9
* 0.0 dBFS equals 1 V _{rms} input amplitude.		

Output Impedance

	Output Impedance	
Output Terminals	Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C
Between positive (+) and negative (-) outputs	$21 \text{ m}\Omega + 2.0 \mu\text{H}$	$30 \text{ m}\Omega + 2.4 \mu \text{H}$

Protection

Output Terminals	Short-Circuit Duration	Overvoltage (V _{pk})
Positive output (+) to chassis ground.	Indefinite	±42.4
Negative output (-) to chassis ground.	Indefinite	±42.4
Between positive (+) and negative (-) outputs.	Indefinite	±42.4

Transfer Characteristics

Gain Accuracy

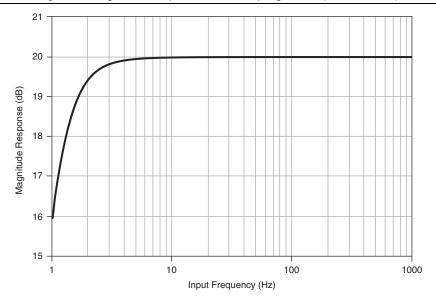
	Gain Accuracy* (±dB)		
Input Signal Source	Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
Unadjusted	0.019	0.04	
Adjusted [†]	0.011	0.02	

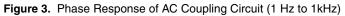
* 1 kHz input tone, no load.

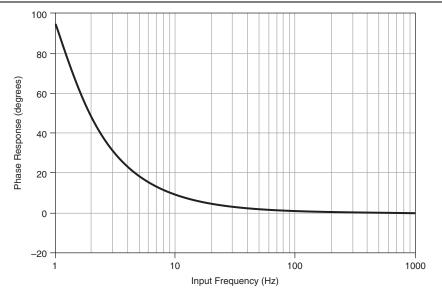
[†] Input signal source gain adjusted using the gain calibration constant stored in the EEPROM.

Output Offset (Residual DC)

Output Offset (±mV)		
Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
0.3	2.7	

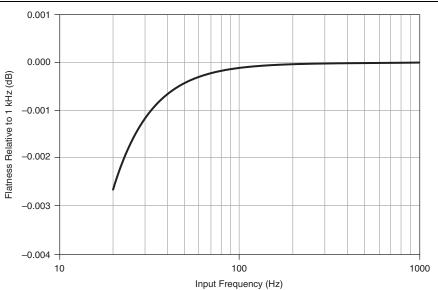

Stability

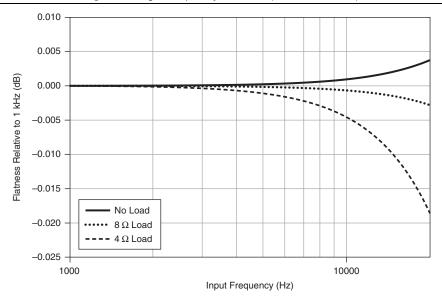

Gain drift	9 ppm/°C
Offset drift	50 uV/°C

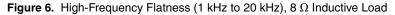

Dynamic Characteristics

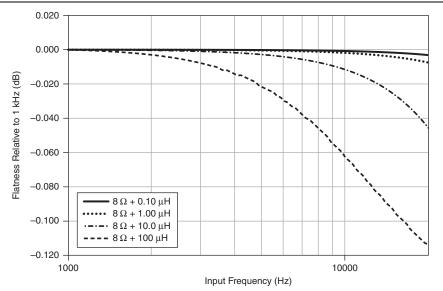
Input AC Coupling

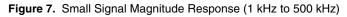
	AC Coupling Cutoff Frequency (Hz)		
Gain (dB)	Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
-0.1	3.78	5.2	
-3.0	1.13	1.2	

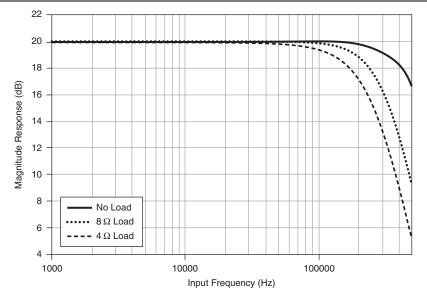



Flatness


20 Hz to 1 kHz Flatness* (dB)		
Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
0.005	0.010	
* Flatness peak-to-peak, relative to 1 kHz.		


	1 kHz to 20 kHz Flatness* (dB)		
Output Load	Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
No Load	0.015	0.025	
$8 \ \Omega^{\dagger}$	0.010	0.015	
$4 \ \Omega^{\dagger}$	0.030	0.035	
* Flatness peak-to-peak, relative to 1 kHz. † Non-inductive load.			





Output Load	-3.0 dB Small Signal Bandwidth* (kHz)
No Load	480
$8 \ \Omega^{\dagger}$	270
$4 \Omega^{\dagger}$	200
* -20 dBFS input amplitude. [†] Non-inductive load.	

Output Noise

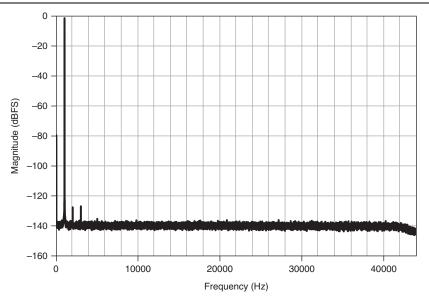
Output Noise* (μV _{rms})		
Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
20	32	
* Evaluation BW = 20 Hz to 20 kHz. Signal source impedance \leq 50 Ω .		

Output Noise Density

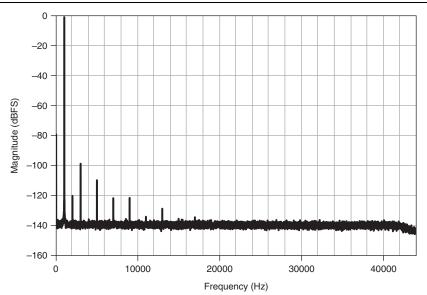
Spectral noise density...... 142 nV/\sqrt{Hz} , 1 kHz

Output Switching Noise

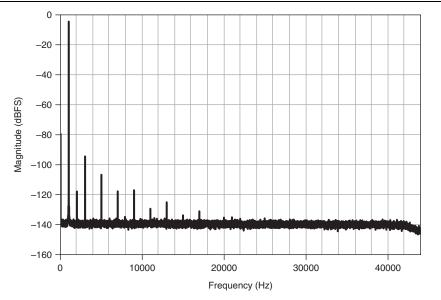
Output Dynamic Range


Output Dynamic Range* (dBFS)		
Typ, 25 °C ±5 °C	Max, 0 °C to 55 °C	
114	110	
* 1 kHz input tone, -60 dBFS input amplitude. Evaluation BW = 20 Hz to 20 kHz. Signal source impedance $\leq 50 \Omega$.		

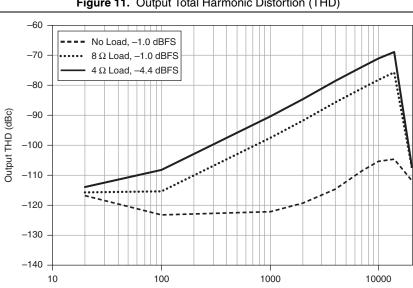
Representative FFTs


Measurement conditions for all FFTs:

- Source: Audio Precision SYS-2722, balanced output, 40 Ω source impedance.
- Analyzer: NI PXI-4461, -10 dB gain, differential input.
- Acquisition: 10 RMS averages of 88,000 samples acquired at 88 kS/s using a 7-term Blackman-Harris window.


Figure 8. FFT of -1.0 dBFS, 1 kHz, No Load

Output Total Harmonic Distortion (THD)


	Output THD (dBc)		
Output Load	1 kHz*	20 Hz to 10 kHz*	20 Hz to 20 kHz [†]
No Load	-110	-100	-97
8 Ω‡	-90	-75	-69
4 Ω**	-84	-69	-63

* Evaluation BW = 22 kHz, 15 harmonics.

[†] Evaluation BW = 44 kHz, 15 harmonics.

[‡] -1.0 dBFS input amplitude, 10 W.

** -4.4 dBFS input amplitude, 9 W.

Figure 11. Output Total Harmonic Distortion (THD)

Input Frequency (Hz)

Crosstalk, Channel Separation

Output Load	Crosstalk* (dBc)
No Load	-114
$8~\Omega^{\dagger}$	-100
4 Ω‡	-97

[‡] 1 kHz input tone, -4.4 dBFS input amplitude, 9 W.

General Specifications

Bus Interface

Power Requirements

Voltage (V)	Current (A)
+3.3	3.0
+12	2.0

Physical

Input connectors	BNC female
Output connectors	2-terminal detachable screw-terminal
Weight	201 g (7.1 oz)
Measurement Category	I1

Measurement Category.....I¹

Caution Do not use the NI PXIe-4610 for connections to signals or for measurements within Categories II, III, or IV.

Caution The protection provided by the NI PXIe-4610 can be impaired if it is used in a manner not described in this document.

¹ Measurement Categories CAT I and CAT O are equivalent. These test and measurement circuits are not intended for direct connection to the MAINS building installations of Measurement Categories CAT II, CAT III, or CAT IV.

Environmental

Operating Environment

Ambient temperature range	0 °C to 55 °C
	(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity range	
Maximum altitude	2,000 m
Pollution Degree	2
Ta da an ana an la	

Indoor use only.

Storage Environment

Ambient temperature range	20 °C to 70 °C
	(Tested in accordance with IEC-60068-2-1 and IEC-60068-2-2.)
Relative humidity range	.5% to 95% noncondensing (Tested in accordance with IEC-60068-2-56).

Shock and Vibration

Operational shock	30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC-60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)
Random vibration	
Operating	5 Hz to 500 Hz, 0.3 g _{rms}
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms}
	(Tested in accordance with IEC-60068-2-64.
	Nonoperating test profile exceeds the
	requirements of MIL-PRF-28800F, Class 3.)

Calibration

External calibration interval	2 years
Warm-up time	15 minutes

Safety

This product meets the requirements of the following standards of safety for electrical equipment for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA 61010-1

Note For UL and other safety certifications, refer to the product label or the *Online Product Certification* section.

Electromagnetic Compatibility

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-2-1 (IEC 61326-2-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- AS/NZS CISPR 11: Group 1, Class A emissions
- FCC 47 CFR Part 15B: Class A emissions
- ICES-001: Class A emissions

Note In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia and New Zealand (per CISPR 11) Class A equipment is intended for use only in heavy-industrial locations.

Note Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.

Note For EMC declarations and certifications, and additional information, refer to the *Online Product Certification* section.

CE Compliance $\mathbf{C}\mathbf{E}$

This product meets the essential requirements of applicable European Directives as follows:

- 2006/95/EC; Low-Voltage Directive (safety)
- 2004/108/EC; Electromagnetic Compatibility Directive (EMC)

Online Product Certification

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for this product, visit ni.com/certification, search by model number or product line, and click the appropriate link in the Certification column.

Environmental Management

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the *Minimize Our Environmental Impact* web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

Waste Electrical and Electronic Equipment (WEEE)

EU Customers At the end of the product life cycle, all products *must* be sent to a WEEE recycling center. For more information about WEEE recycling centers, National Instruments WEEE initiatives, and compliance with WEEE Directive 2002/96/EC on Waste and Electronic Equipment, visit ni.com/environment/weee.

电子信息产品污染控制管理办法 (中国 RoHS)

 中国客户 National Instruments 符合中国电子信息产品中限制使用某些有害物质指令 (RoHS)。关于 National Instruments 中国 RoHS 合规性信息,请登录 ni.com/ environment/rohs_china。(For information about China RoHS compliance, go to ni.com/environment/rohs_china.)

Worldwide Support and Services

The National Instruments website is your complete resource for technical support. At ni.com/ support you have access to everything from troubleshooting and application development self-help resources to email and phone assistance from NI Application Engineers.

Visit ni.com/services for NI Factory Installation Services, repairs, extended warranty, and other services.

Visit ni.com/register to register your National Instruments product. Product registration facilitates technical support and ensures that you receive important information updates from NI.

A Declaration of Conformity (DoC) is our claim of compliance with the Council of the European Communities using the manufacturer's declaration of conformity. This system affords the user protection for electromagnetic compatibility (EMC) and product safety. You can obtain the DoC for your product by visiting ni.com/certification. If your product supports calibration, you can obtain the calibration certificate for your product at ni.com/calibration.

National Instruments corporate headquarters is located at 11500 North Mopac Expressway, Austin, Texas, 78759-3504. National Instruments also has offices located around the world. For telephone support in the United States, create your service request at ni.com/support or dial 512 795 8248. For telephone support outside the United States, visit the Worldwide Offices section of ni.com/niglobal to access the branch office websites, which provide up-to-date contact information, support phone numbers, email addresses, and current events.

Refer to the *NI Trademarks and Logo Guidelines* at ni.com/trademarks for more information on National Instruments trademarks. Other product and company names mentioned herein are trademarks or trade names of their respective companies. For patents covering National Instruments products/technology, refer to the appropriate location: **Help>Patents** in your software, the patents.tr file on your media, or the National Instruments Patents Notice at ni.com/patents.You can find information about end-user license agreements (EULAs) and third-party legal notices in the readment file for your NI product. Refer to the *Export Compliance Information* at ni.com/legal/export-compliance for the National Instruments global trade compliance policy and how to obtain relevant HTS codes, ECCNs, and other import/export data.

© 2013 National Instruments. All rights reserved.