PXIe-5775 Specifications

Contents

PXIe-5775 Specifications

Definitions

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

Characteristics describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- **Typical** specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.
- **Measured** specifications describe the measured performance of a representative model.

Specifications are **Typical** unless otherwise noted.

Connector	Mole	Molex™ Nano-Pitch I/O™			
5.0 V Power	±5%	±5%, 50 mA maximum, nominal			
Signal		Туре	Direction		
MGT Tx± <03>[1]		Xilinx UltraScale GTH	Output		
MGT Rx± <03>[1]		Xilinx UltraScale GTH	Input		
DIO <07>		Single-ended	Bidirectional		
5.0 V		DC	Output		
GND		Ground	_		

Digital I/O

Table 1. Digital I/O Signal Characteristics

Digital I/O Single-Ended Channels

Number of channels				8			
Signal type				Single-ended			
Voltage families				3.3 V, 2.5 V, 1.8 V, 1.5 V, 1.2 V			
Input impedance				100 kΩ, nominal	100 kΩ, nominal		
Output impedance				50 Ω, nominal	50 Ω, nominal		
Direction control				Per channel			
Minimum required direction change latency			ange latency	200 ns	200 ns		
Maximum output toggle rate				60 MHz with 100 μA	60 MHz with 100 μA load, nominal		
Voltage Family (V)	V _{IL} (V)	V _{IH} (V)	V _{OL} (100 μA Load) (V)	ν _{OH} (100 μΑ Load) (V)	Maximum DC Drive Strength (mA)		
3.3 0.8 2.0 0.2 3			0.2	3.0	24		
2.5	0.7	1.6 0.2 2		2.2	18		
1.8	0.62	52 1.29 0.2 1		1.5	16		
1.5	0.51	1.07	0.2	1.2	12		
1.2	0.42 0.87 0.2 0.			0.9	6		

Table 2. Digital I/O Single-Ended DC Signal Characteristics^[2]

Digital I/O High-Speed Serial MGT^[3]

Note MGTs are available on devices with KU040 and KU060 FPGAs only.

Data rate	500 Mbps to 16.375 Gbps, nominal	
Number of Tx channels	4	
Number of Rx channels	4	
I/O AC coupling capacitor	100 nF	

MGT TX± Channels^[4]

Minimum differential output voltage ^[5]	170 mV pk-pk into 100 Ω, nominal
I/O coupling	AC-coupled, includes 100 nF capacitor

MGT RX± Channels

Differential input voltage range				
≤ 6.6 Gb/s	150 mV pk-pk 1	150 mV pk-pk to 2000 mV pk-pk, nominal		
> 6.6 Gb/s	150 mV pk-pk to 1250 mV pk-pk, nominal			
Differential inp	ut resistance	100 Ω, nominal		
I/O coupling		DC-coupled, requires external capacitor		

Reconfigurable FPGA

PXIe-5775 modules are available with multiple FPGA options. The following table lists the FPGA specifications for the PXIe-5775 FPGA options.

	KU035	KU040	KU060	
LUTs	203,128	242,200	331,680	
DSP48 slices (25 × 18 multiplier)	1,700	1,920	2,760	
Embedded Block RAM	19.0 Mb	21.1 Mb	38.0 Mb	
Data Clock Domain	200 MHz, 16 samples per cycle per channel (dual channel mode), 32 samples per cycle (single channel mode)			
Timebase reference sources	PXI Express 100 MHz (PXIe_CLK100)			
Data transfers	DMA, interrupts,DMA, interrupts, programmed I/O,programmed I/Omulti-gigabit transceivers			
Number of DMA channels	60			

Table 3. Reconfigurable FPGA Options

Note The Reconfigurable FPGA Options table depicts the total number of FPGA resources available on the part. The number of resources available to the user is slightly lower, as some FPGA resources are consumed by board-interfacing IP for PCI Express, device configuration, and various board I/O. For more information, contact NI support.

Onboard DRAM

Memory size	4 GB (2 banks of 2 GB)
DRAM clock rate	1064 MHz
Physical bus width	32 bit
LabVIEW FPGA DRAM clock rate	267 MHz
LabVIEW FPGA DRAM bus width	256 bit per bank

Maximum theoretical data rate	17 GB/s (8.5 GB/s per bank)

Analog Input

General Characteristics

Number of channels	2, single-ended, simultaneously sampled
Connector type	SMA
Input impedance	50 Ω
Input coupling	AC
Sample Clock	
Internal Sample Clock	3.2 GHz
External Sample Clock	2.8 GHz to 3.2 GHz
Sample Rate	
Dual channel mode	3.2 GS/s per channel
Single channel mode	6.4 GS/s
Analog-to-digital converter (ADC)	ADC12DJ3200, 12-bit resolution
Input latency ^[6]	239 ns

Typical Specifications

Full-scale input range	1.25 V pk-pk (5.92 dBm) at 10 MHz
AC gain accuracy	±0.11 dB at 10 MHz
DC offset	±2.19 mV
Bandwidth (-3 dB) ^[7]	500 kHz to 6 GHz

	Input Frequency					
	99.9 MHz	399 MHz	999 MHz	1.999 GHz	2.499 GHz	
SNR ^[8] (dBFS)	56.0	55.6	54.7	52.9	51.6	
SINAD ^[8] (dBFS)	55.5	55.0	54.0	51.8	50.8	
SFDR (dBc)	-64.9	-63.4	-62.7	-59.9	-58.6	
ENOB ^[9] (bits)	8.9	8.8	8.7	8.3	8.1	

Table 4. Single-Tone Spectral Performance, Dual Channel Mode

	Input Freque	Input Frequency			
	99.9 MHz	399 MHz	999 MHz	1.999 GHz	2.499 GHz
SNR <u>^[8]</u> (dBFS)	54.6	54.2	52.4	49.7	48.9
SINAD ^[8] (dBFS)	54.4	53.9	52.1	49.4	48.6
SFDR (dBc)	-61.7	-60.4	-56.1	-51.7	-51.1
ENOB ^[9] (bits)	8.7	8.7	8.4	7.9	7.8

Table 5. Single-Tone Spectral Performance, Single Channel Mode^[10]

Mode	$\frac{nV}{\sqrt{Hz}}$	dBm Hz	dBFS Hz
Dual channel	14.4	-143.8	-149.2
Single channel	9.8	-147.2	-152.6

Table 6. Noise Spectral Density[11]

Note Noise spectral density is verified using a 50 Ω terminator connected to the input.

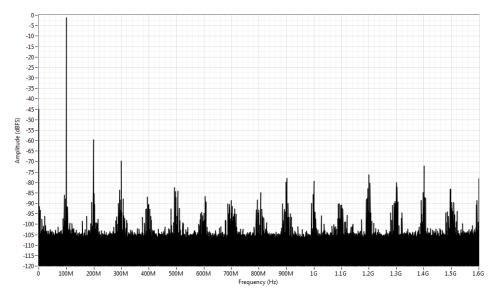
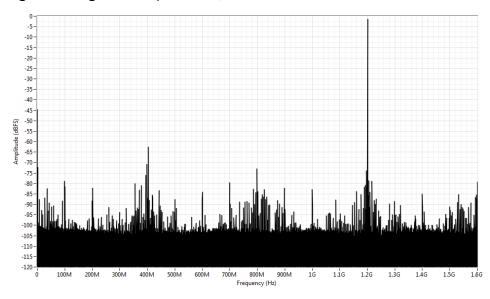



Figure 1. Single Tone Spectrum (Dual Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured

Figure 2. Single Tone Spectrum (Dual Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured

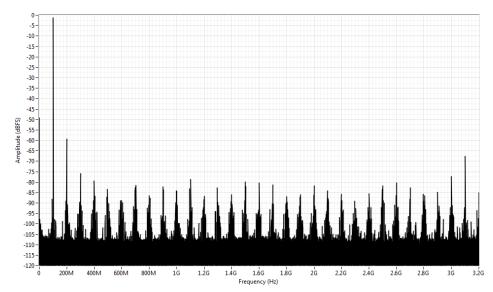
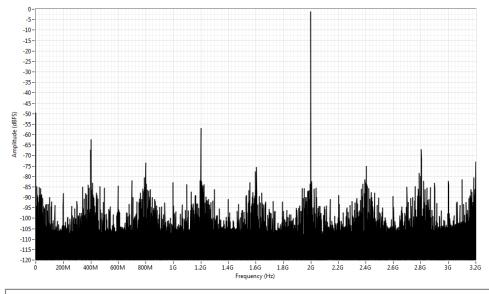
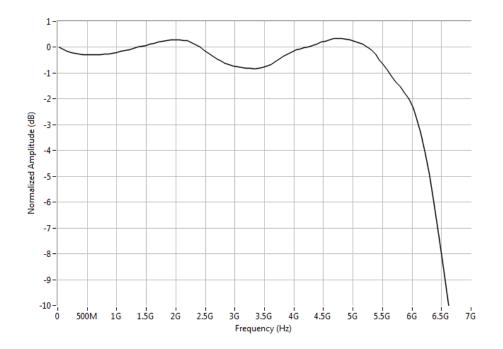
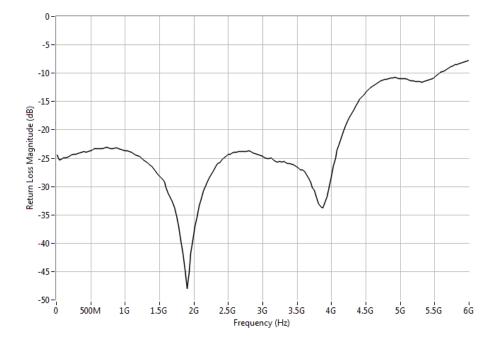



Figure 3. Single Tone Spectrum (Single Channel Mode, 99.9 MHz, -1 dBFS, 3.2 kHz RBW), Measured


Figure 4. Single Tone Spectrum (Single Channel Mode, 1.999 GHz, -1 dBFS, 3.2 kHz RBW), Measured

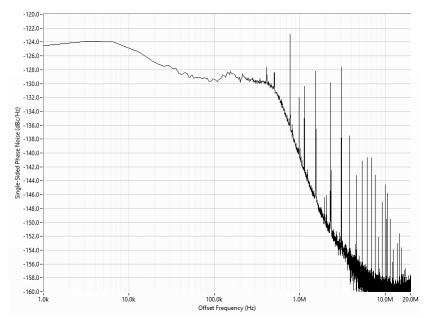


Channel-to-channel crosstalk, r	measured	
99.9 MHz	-92.5 dB	
399 MHz	-85.5 dB	
999 MHz	-76.5 dB	

1.999 GHz	-68.8 dB	
2.499 GHz	-67.4 dB	

Figure 5. Analog Input Frequency Response, Measured

Figure 6. Input Return Loss, Measured


CLK/REF IN

Connector type	SMA
Input impedance	50 Ω
Input coupling	AC
Input voltage range	0.35 V pk-pk to 3.5 V pk-pk
Absolute maximum voltage	±12 V DC, 4 V pk-pk AC
Duty cycle	45% to 55%
Sample Clock jitter ^[12]	86.8 fs RMS, measured

Clock Configuration	External Clock Frequency	Description
Internal PXI_CLK10 ^[13]	10 MHz	The internal Sample Clock locks to the PXI 10 MHz Reference Clock, which is provided through the backplane.
External Reference Clock (CLK/REF IN)	10 MHz [14]	The internal Sample Clock locks to an external Reference Clock, which is provided through the CLK/REF IN front panel connector.
External Sample Clock (CLK/REF IN)	2.0 GHz to 3.2 GHz	An external Sample Clock can be provided through the CLK/REF IN front panel connector.

Table 7. Clock Configuration Options

Figure 7. Phase Noise with 800 MHz Input Tone, Measured

Bus Interface

Form factor	PCI Express Gen-3 x8

Maximum Power Requirements

Note Power requirements depend on the contents of the LabVIEW FPGA VI used in your application.

+3.3 V	3 A
+12 V	4 A
Maximum total power	58 W

Physical

Dimensions (not including connectors)	18.8 cm × 12.9 cm (7.4 in. × 5.1 in.)
Weight	190 g (6.7 oz)

Environment

Maximum altitude	2,000 m (800 mbar) (at 25 °C ambient temperature)
Pollution Degree	2

Indoor use only.

Operating Environment

Ambient temperature range0 °C to 55 °C(I=5] (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 3 low temperature limit a PRF-28800F Class 2 high temperature limit.)	
--	--

Relative humidity	10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)
range	

Storage Environment

Ambient temperature range	-40 °C to 71 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2. Meets MIL-PRF-28800F Class 4 limits.)
Relative humidity range	5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)

Shock and Vibration

Operating shock	30 g peak, half-sine, 11 ms pulse	
Random vibration		
Operating	5 Hz to 500 Hz, 0.3 g _{rms}	
Nonoperating	5 Hz to 500 Hz, 2.4 g _{rms}	

NI-TClk

You can use the NI-TClk synchronization method and the NI-TClk driver to align the Sample Clocks on any number of supported devices in one or more chassis. For more information about TClk synchronization, refer to the **NI-TClk Synchronization Help** within the **FlexRIO Help**. For other configurations, including multichassis systems, contact NI Technical Support at <u>ni.com/support</u>.

Intermodule Synchronization Using NI-TClk for Identical Modules

Synchronization specifications are valid under the following conditions:

- All modules are installed in one PXI Express chassis.
- The NI-TClk driver is used to align the Sample Clocks of each module.
- All parameters are set to identical values for each module.
- Modules are synchronized without using an external Sample Clock.

Note Although you can use NI-TClk to synchronize non-identical modules, these specifications apply only to synchronizing identical modules.

Skew ^[16]	80 ps, measured
Skew after manual adjustment	≤10 ps, measured
Sample Clock delay/adjustment	0.4 ps

 $\frac{1}{2}$ Multi-gigabit transceiver (MGT) signals are available on devices with KU040 and KU060 FPGAs only.

 $\frac{2}{2}$ Voltage levels are guaranteed by design through the digital buffer specifications.

³ For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

⁴ For detailed FPGA and High-Speed Serial Link specifications, refer to Xilinx documentation.

 $\frac{5}{2}$ 800 mV pk-pk when transmitter output swing is set to the maximum setting.

⁶ SMA input to LabVIEW diagram

⁷ Normalized to 10 MHz.

⁸ Measured with a -1 dBFS signal and corrected to full-scale. 3.2 kHz resolution bandwidth.

⁹ Calculated from SINAD and corrected to full scale.

 $\frac{10}{10}$ Measured using channel AI0. Spectral performance may be degraded using channel AI1.

¹¹ Excludes fixed interleaving spur (Fs/2 spur).

 $\frac{12}{2}$ Integrated from 3.2 kHz to 20 MHz. Includes the effects of the converter aperture uncertainty and the clock circuitry jitter. Excludes trigger jitter.

 $\frac{13}{2}$ Default clock configuration.

 $\frac{14}{14}$ The external Reference Clock must be accurate to ±25 ppm.

 $\frac{15}{2}$ The PXIe-5775 requires a chassis with slot cooling capacity \geq 58 W. Not all chassis with slot cooling capacity \geq 58 W can achieve this ambient temperature range. Refer to the <u>PXI Chassis Manual</u> for specifications to determine the ambient temperature ranges your chassis can achieve.

 $\frac{16}{16}$ Caused by clock and analog delay differences. No manual adjustment performed. Tested with a PXIe-1085 chassis with a 24 GB backplane with a maximum slot to slot skew of 100 ps. Measured at 23 °C.