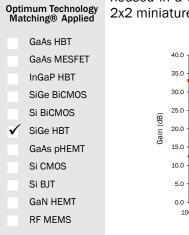
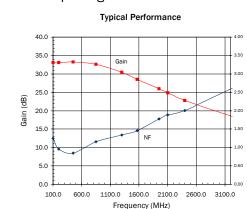


rfmd.com

SGL-0622Z

5MHz to 4000MHz LOW NOISE MMIC AMPLIFIER SILICON GERMANIUM




RFMD Green, RoHS Compliant, Pb-Free Package: QFN, 2x2

Product Description

The SGL-0622Z is a low noise, high gain MMIC LNA designed for low power single-supply operation from 2.7V to 3.6V. Its Class-1C ESD protection and high input overdrive capability ensures rugged performance, while its integrated active bias circuit maintains robust stable bias over temperature and process beta variation. The SGL-0622Z is internally matched from 5MHz to 4000 MHz and requires only 4 to 5 external biasing components (DC blocks, bypass caps, inductive choke). The SGL-0622Z is fabricated using highly repeatable Silicon Germanium technology and is

housed in a cost-effective RoHS/WEEE compliant QFN 2x2 miniature package.

Features

- High Gain=28dB at 1575MHz
- Low Noise Figure = 1.5 dB at 1575 MHz
- Low Power Consumption, 10.5 mA @ 3.3 V
- Battery Operation: 2.7V to 3.6V (Active Biased)
- Fully Integrated Matching
- Class-1C ESD Protection (>1000V HBM)
- High input overdrive capability, +18dBm

Applications

- High Gain GPS Receivers
- ISM and WiMAX LNAs

Baramatar	Specification			Unit	O a malifica m	
Parameter	Min.	Тур.	Max.	Unit	Condition	
Small Signal Gain	25.0	28.0	31.0	dB	1.575GHz	
		23.0		dB	2.44GHz	
	14.5	16.5	18.5	dB	3.50GHz	
Output Power at 1dB Compression	3.3	5.3		dBm	1.575GHz	
		1.5		dBm	2.44GHz	
		-1.4		dBm	3.50GHz	
Input Third Order Intercept Point	-16.0	-13.0		dBm	1.575GHz	
		-12.0		dBm	2.44GHz	
		-8.5		dBm	3.50GHz	
Input Return Loss	12.0	14.0		dB	1.575GHz	
		12.0		dB	2.44GHz	
		10.0		dB	3.50GHz	
Output Return Loss	6.0	9.5		dB	1.575GHz	
		14.0		dB	2.44GHz	
		22.0		dB	3.50GHz	
Noise Figure		1.5	1.9	dB	1.575GHz	
		2.0		dB	2.44GHz	
		2.8		dB	3.50GHz	
Reverse Isolation		-28.0		dB	0.05 GHz to 4.0 GHz	
Thermal Resistance		150		°C/W	junction - lead	
Device Operating Current	7.5	10.5	12.5	mA		

Test Conditions: V_{CC} =3.3V, I_D =10.5 mA Typ., IIP₃ Tone Spacing=1MHz, P_{OUT} per tone=-15dBm, T_L =25°C, Z_S = Z_L =50 Ω

Absolute Maximum Ratings

Parameter	Rating	Unit
Device Current (I _D)	20	mA
Device Voltage (V _D)	4	V
RF Input Power* (See Note)	18	dBm
Junction Temp (T _J)	+150	°C
Operating Temp Range (T_L)	-40 to +85	°C
Storage Temp	+150	°C
ESD Rating - Human Body Model (HBM)	Class 1C	
Moisture Sensitivity Level	MSL 1	

*Note: Load condition1, $ZL=50\Omega$. Load condition2, $Z_I = 10:1$ VSWR.

Operation of this device beyond any one of these limits may cause permanent damage. For reliable continuous operation, the device voltage and current must not exceed the maximum operating values specified in the table on page one.

Bias Conditions should also satisfy the following expression: $I_D V_D < (T_J - T_L) / R_{TH}$, j-l and $T_L = T_{LEAD}$

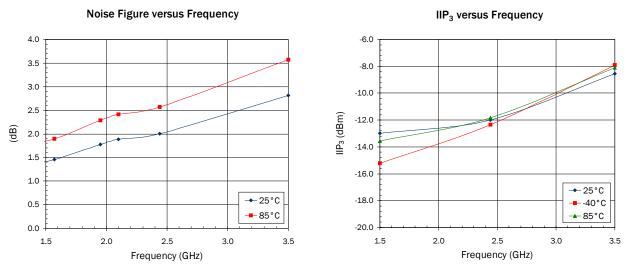
Caution! ESD sensitive device.

Exceeding any one or a combination of the Absolute Maximum Rating conditions may cause permanent damage to the device. Extended application of Absolute Maximum Rating conditions to the device may reduce device reliability. Specified typical perfor-mance or functional operation of the device under Absolute Maximum Rating condi-tions is not implied.

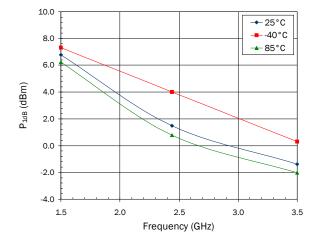
RoHS status based on EUDirective2002/95/EC (at time of this document revision).

The information in this publication is believed to be accurate and reliable. However, no responsibility is assumed by RF Micro Devices, Inc. ("RFMD") for its use, nor for any infringement of patents, or other rights of third parties, resulting from its use. No license is granted by implication or otherwise under any patent or patent rights of RFMD. RFMD reserves the right to change component circuitry, recommended application circuitry and specifications at any time without prior notice.

Typical RF Performance at Key Operating Frequencies (With Application Circuit)

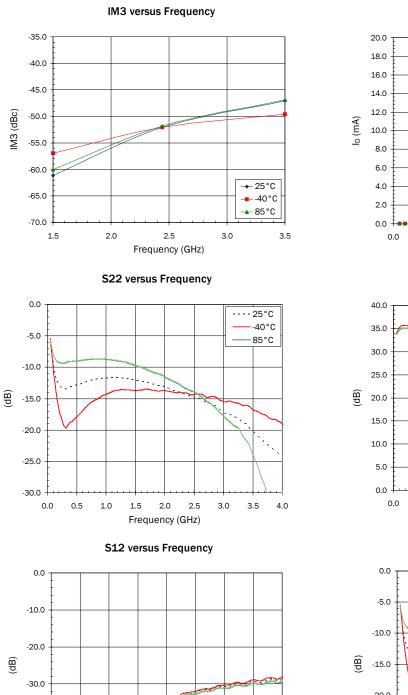

Parameter	Unit	100	200	450	850	1575	1950	2440	3550
		MHz	MHz	MHz	MHz	MHz	MHz	MHz	MHz
Small Signal Gain, S21	dB	34.6	34.9	34.4	32.8	28.5	26.1	23.0	17.0
Input Third Order Intercept Point, IIP3	dBm					-13.0		-12.0	-8.5
Output at 1dB Compression, P1dB	dBm	2.7				5.3		1.5	-1.4
Input Return Loss	dB	15.1	20.0	12.6	16.0	14.3	12.8	12.0	10.0
Output Return Loss	dB	9.2	12.2	11.8	10.4	9.5	12.1	14.0	22.0
Reverse Isolation	dB	38.8	39.8	38.7	39.9	35.6	34.8	32.0	29.0
Noise Figure, NF	dB	1.25	0.96	0.84	1.16	1.50	1.78	2.01	2.81

Test Conditions: V_{CC} =3.3V I_D =10.5mA Typ. IIP₃ Tone Spacing=1MHz, P_{OUT} per tone=-15dBm T_L =25°C Z_S = Z_L =50 Ω


$$_{L}$$
=25°C Z_{S} = Z_{L} =50 Ω

P_{1dB} versus Frequency

◆ 25°C


-40°C

▲ 85°C

4.0

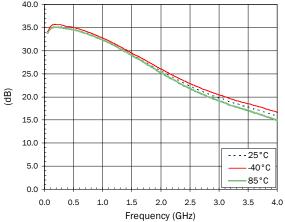
3.5

Application Circuit Data, V_{cc} = 3.3V, I_{p} = 9mA

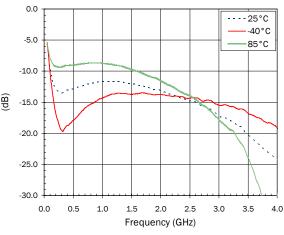
DCIV over Temperature

2.0

 $V_D(V)$


2.5

3.0


0.5

1.0

1.5

4 of 6

-40.0

-50.0 +-0.0

0.5

1.0

1.5

2.0

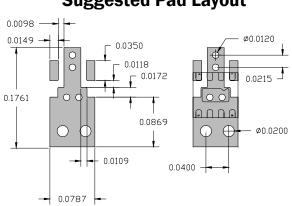
Frequency (GHz)

2.5

3.0

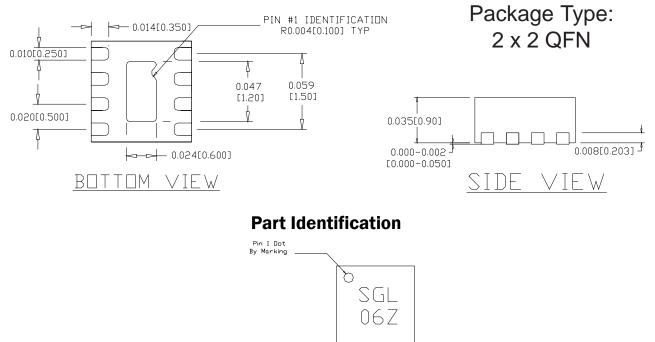
25°C

-40°C 85°C

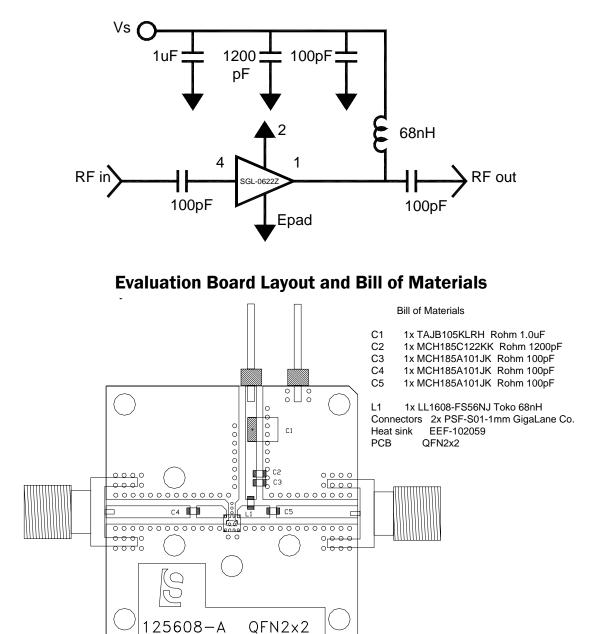

4.0

3.5

rfmd.com	
----------	--


Pin	Function	Description
1	RF OUT/VD	RF output and bias pin. Bias should be supplied to this pin through an external RF choke. (See application circuit)
2	GND	Connect to ground per application circuit drawing.
3, 5,	N/A	Not Used
6, 7, 8		
4	RF IN	RF input pin. This pin requires the use of an external DC blocking capacitor as shown in the application schematics.
EPAD	GND	Exposed area on the bottom side of the package needs to be soldered to the ground plane of the board for ther- mal and RF performance. Vias should be located under the EPAD as shown in the recommended land pattern.

Suggested Pad Layout


Nominal Package Dimensions

Dimensions in inches (millimeters) Refer to drawing posted at www.rfmd.com for tolerances.

Application Schematic

Ordering Information

Part Number	Description	Reel Size	Devices/Reel	
SGL-0622Z	Lead Free, RoHS Compliant	7"	3000	
SGL-0622Z-EVB1	100-3500MHz	N/A	N/A	