# PXI-5421 Specifications



# Contents

| PXI-5421 Specifications | 7 |
|-------------------------|---|
| NI JTZI JDECINCALIONS   | _ |

### PXI-5421 Specifications

#### **Definitions**

Warranted specifications describe the performance of a model under stated operating conditions and are covered by the model warranty.

**Characteristics** describe values that are relevant to the use of the model under stated operating conditions but are not covered by the model warranty.

- Typical specifications describe the performance met by a majority of models.
- **Nominal** specifications describe an attribute that is based on design, conformance testing, or supplemental testing.

Specifications are **Nominal** unless otherwise noted.

#### **Conditions**

Specifications are valid under the following conditions unless otherwise noted:

- Ambient temperature range of 0 °C to 55 °C
- Analog filter enabled
- Interpolation set to maximum allowed factor for a given sample rate
- Signals terminated with 50 Ω
- Direct path set to 1 Vpk-pk
- Low-gain amplifier path set to 2 Vpk-pk
- High-gain amplifier path set to 12 Vpk-pk
- Sample Clock set to 100 MS/s

Typical specifications are valid under the following conditions unless otherwise noted:

Ambient temperature range of 23 ±5 °C

# **CH 0 Analog Output**

| Number of channels | 1        |
|--------------------|----------|
| Connector type     | SMB jack |

## **Output Voltage**

| Full-scale voltage                |                                                        |
|-----------------------------------|--------------------------------------------------------|
| Main output path[1]               | 12.00 V pk-pk to 5.64 mV pk-pk into a 50 $\Omega$ load |
| Direct output path <sup>[2]</sup> | 1.000 V pk-pk to 0.707 V pk-pk                         |
| DAC resolution                    | 16 bits                                                |

## **Amplitude and Offset**

**Table 1.** Amplitude Range<sup>[3]</sup>

| Path Load           | Amplitude (V pk-pk) |         |         |
|---------------------|---------------------|---------|---------|
|                     |                     | Minimum | Maximum |
| Direct              | 50 Ω                | 0.707   | 1.00    |
|                     | 1 kΩ                | 1.35    | 1.91    |
|                     | Open                | 1.41    | 2.00    |
| Low-gain amplifier  | 50 Ω                | 0.00564 | 2.00    |
|                     | 1 kΩ                | 0.0107  | 3.81    |
|                     | Open                | 0.0113  | 4.00    |
| High-gain amplifier | 50 Ω                | 0.0338  | 12.0    |
|                     | 1 kΩ                | 0.0644  | 22.9    |
|                     | Open                | 0.0676  | 24.0    |

| Amplitude resolution | <0.06% (0.004 dB) of <b>Amplitude Range</b>                                               |
|----------------------|-------------------------------------------------------------------------------------------|
| Offset range[4]      | Span of ±25% of <b>Amplitude Range</b> with increments <0.0014% of <b>Amplitude Range</b> |

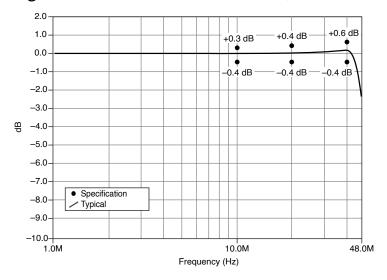
# Accuracy

#### **Table 2.** DC Accuracy[5]

| Path                     | DC Accuracy                                                                               |                                |                                                                 |
|--------------------------|-------------------------------------------------------------------------------------------|--------------------------------|-----------------------------------------------------------------|
|                          | ±10 °C of Self-Calibration<br>Temperature                                                 |                                | 0 °C to 55 °C                                                   |
| Low-gain amplifier       | $\pm 0.2\%$ of <b>Amplitude Range</b> $\pm 0.05\%$ of <b>Offset</b> $\pm 500~\mu\text{V}$ |                                | ±0.4% of <b>Amplitude Range</b> ± 0.05% of <b>Offset</b> ± 1 mV |
| High-gain amplifier      |                                                                                           |                                |                                                                 |
| Direct                   | ±0.2% Amplitud                                                                            | de Range                       | ±0.4% Amplitude Range                                           |
| DC offset error[6]       |                                                                                           | ±30 mV                         |                                                                 |
| AC amplitude accuracy[7] |                                                                                           | (+2.0% + 1 mV), (-1.0% - 1 mV) |                                                                 |
|                          |                                                                                           | (+0.8% + 0.5 mV                | /), (-0.2% - 0.5 mV), typical                                   |

# Output

| Output impedance            | Software-selectable: $50 \Omega$ or $75 \Omega$ , nominal              |
|-----------------------------|------------------------------------------------------------------------|
| Load impedance compensation | Output amplitude is compensated for user-<br>specified load impedances |
| Output coupling             | DC                                                                     |
| Output enable               | Software-selectable <sup>[8]</sup>                                     |


| Maximum output overload | CH 0 can be connected to a 50 $\Omega$ , ±12 V (±8 V for the direct path) source without sustaining any damage. [9] |
|-------------------------|---------------------------------------------------------------------------------------------------------------------|
| Waveform summing        | Supported <sup>[10]</sup>                                                                                           |

# **Frequency and Transient Response**

| Bandwidth <sup>[11]</sup>        | 43 MHz                                                                                                     |
|----------------------------------|------------------------------------------------------------------------------------------------------------|
| Digital interpolation filter[12] | Software-selectable: Finite impulse response (FIR) filter. Available interpolation factors are 2, 4, or 8. |
| Analog filter <sup>[13]</sup>    | Software-selectable: 7-pole elliptical filter                                                              |
| Passband flatness [14]           |                                                                                                            |
| Direct path                      | -0.4 dB to +0.6 dB, 100 Hz to 40 MHz                                                                       |
| Low-gain amplifier path          | -1.0 dB to +0.5 dB, 100 Hz to 20 MHz                                                                       |
| High-gain amplifier path         | -1.2 dB to +0.5 dB, 100 Hz to 20 MHz                                                                       |
| Pulse response[15]               |                                                                                                            |
| Direct path                      |                                                                                                            |
| Rise/fall time                   | <5 ns                                                                                                      |
|                                  | <4.5 ns, typical <sup>[16]</sup>                                                                           |
| Aberration                       | <10%, typical                                                                                              |
| Low-gain amplifier path          |                                                                                                            |

| Rise/fall time           | <8 ns <7 ns [16]                 |
|--------------------------|----------------------------------|
|                          | <5.5 ns, typical <sup>[16]</sup> |
| Aberration               | <5%, typical                     |
| High-gain amplifier path |                                  |
| Rise/fall time           | <10 ns                           |
| Aberration               | <5%, typical                     |

Figure 1. Normalized Passband Flatness, Direct Path



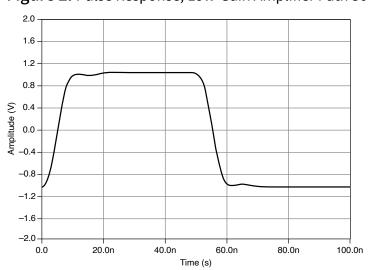



Figure 2. Pulse Response, Low-Gain Amplifier Path 50  $\Omega$  Load

# **Suggested Maximum Frequencies for Common Functions**

| Suggested maximum frequencies $^{f [17]}$ |  |  |
|-------------------------------------------|--|--|
| Direct path                               |  |  |
| 43 MHz                                    |  |  |
| Not recommended                           |  |  |
| Not recommended                           |  |  |
| Not recommended                           |  |  |
|                                           |  |  |
| 43 MHz                                    |  |  |
| 25 MHz                                    |  |  |
| 5 MHz                                     |  |  |
| 5 MHz                                     |  |  |
|                                           |  |  |

| High-gain amplifier path |          |
|--------------------------|----------|
| Sine                     | 43 MHz   |
| Square                   | 12.5 MHz |
| Ramp                     | 5 MHz    |
| Triangle                 | 5 MHz    |

## **Spectral Characteristics**

**Table 3.** Spurious-Free Dynamic Range (SFDR) with  $\operatorname{Harmonics}^{[1824]}$ 

| Frequency | SFDR with Harmonics (dB), Typical |                            |                             |  |
|-----------|-----------------------------------|----------------------------|-----------------------------|--|
|           | Direct Path                       | Low-Gain Amplifier<br>Path | High-Gain Amplifier<br>Path |  |
| 1 MHz     | 70                                | 65                         | 66                          |  |
| 5 MHz     |                                   |                            | 58                          |  |
| 10 MHz    |                                   |                            | 52                          |  |
| 20 MHz    | 63                                | 64                         | 49                          |  |
| 30 MHz    | 57                                | 60                         | 43                          |  |
| 40 MHz    | 48                                | 53                         | 39                          |  |
| 50 MHz    |                                   |                            | _                           |  |
| 60 MHz    | 47                                | 52                         |                             |  |
| 70 MHz    |                                   |                            |                             |  |
| 80 MHz    | 41                                |                            |                             |  |

**Table 4.** Spurious-Free Dynamic Range (SFDR) without Harmonics [1824]

| Frequency | SFDR without Harmonics (dB), Typical |                            |                             |  |
|-----------|--------------------------------------|----------------------------|-----------------------------|--|
|           | Direct Path                          | Low-Gain Amplifier<br>Path | High-Gain Amplifier<br>Path |  |
| 1 MHz     | 84                                   | 79                         | 76                          |  |
| 5 MHz     |                                      |                            |                             |  |

| Frequency | SFDR without Hai | SFDR without Harmonics (dB), Typical |                             |  |  |
|-----------|------------------|--------------------------------------|-----------------------------|--|--|
|           | Direct Path      | Low-Gain Amplifier Path              | High-Gain Amplifier<br>Path |  |  |
| 10 MHz    | 79               |                                      |                             |  |  |
| 20 MHz    |                  |                                      |                             |  |  |
| 30 MHz    | 72               | 70                                   | 67                          |  |  |
| 40 MHz    | 47               | 57                                   | 54                          |  |  |
| 50 MHz    |                  | 52                                   | _                           |  |  |
| 60 MHz    | 46               | 51                                   |                             |  |  |
| 70 MHz    |                  |                                      |                             |  |  |
| 80 MHz    | 40               |                                      |                             |  |  |

#### **Table 5.** Average Noise Density[19], Direct Path

| Amplitude Range |         | Average Noise Density, Typical |        |         |
|-----------------|---------|--------------------------------|--------|---------|
|                 |         | nV<br>√Hz                      | dBm/Hz | dBFS/Hz |
| 1.00 V pk-pk    | 4.0 dBm | 19.9                           | -141   | -145    |

#### **Table 6.** Average Noise Density[19], Low-Gain Amplifier Path

| Amplitude Range |           | Average Noise Den | sity, Typical |         |
|-----------------|-----------|-------------------|---------------|---------|
|                 |           | nV<br>√Hz         | dBm/Hz        | dBFS/Hz |
| 0.06 V pk-pk    | -20.5 dBm | 1.3               | -148          | -144    |
| 0.10 V pk-pk    | -16.0 dBm | 2.2               |               |         |
| 0.40 V pk-pk    | -4.0 dBm  | 8.9               |               |         |
| 1.00 V pk-pk    | 4.0 dBm   | 22.3              | -140          |         |
| 2.00 V pk-pk    | 10.0 dBm  | 44.6              | -134          |         |

**Table 7.** Average Noise Density<sup>[19]</sup>, High-Gain Amplifier Path

| Amplitude Range |          | Average Noise Dens | sity, Typical |         |
|-----------------|----------|--------------------|---------------|---------|
|                 |          | nV<br>√Hz          | dBm/Hz        | dBFS/Hz |
| 4.00 V pk-pk    | 16.0 dBm | 93.8               | -128          | -144    |
| 12.00 V pk-pk   | 25.6 dBm | 281.5              | -118          |         |

Figure 3. 10 MHz Single-Tone Spectrum<sup>[20]</sup>, Direct Path, 200 MS/s, Typical

Figure 4. 10.00001 MHz Single-Tone Spectrum<sup>[20]</sup>, Low-Gain Amplifier Path, 200 MS/s, Typical

Figure 5. Total Harmonic Distortion, Direct Path, Typical

Figure 6. Total Harmonic Distortion, Low-Gain Amplifier Path, Typical

Figure 7. Total Harmonic Distortion, High-Gain Amplifier Path, Typical

Figure 8. Intermodulation Distortion, 200 kHz Separation, Typical

Figure 9. Direct Path, Two-Tone Spectrum<sup>[20]</sup>, Typical

Signal to Noise and Distortion (SINAD)[21]

All values are typical.

| Direct path             |          |
|-------------------------|----------|
| 1 MHz                   | 64 dB    |
| 10 MHz                  | 61 dB    |
| 20 MHz                  | 57 dB    |
| 30 MHz                  | 60 dB    |
| 40 MHz                  | 60 dB    |
| 43 MHz                  | 58 dB    |
| Low-gain amplifier path | <u> </u> |
| 1 MHz                   | 66 dB    |
| 10 MHz                  | 60 dB    |
|                         |          |

| 20 MHz                   | 56 dB |
|--------------------------|-------|
| 30 MHz                   | 62 dB |
| 40 MHz                   | 62 dB |
| 43 MHz                   | 60 dB |
| High-gain amplifier path |       |
| 1 MHz                    | 63 dB |
| 10 MHz                   | 47 dB |
| 20 MHz                   | 42 dB |
| 30 MHz                   | 62 dB |
| 40 MHz                   | 62 dB |
| 43 MHz                   | 55 dB |

#### Spurious-Free Dynamic Range (SFDR)

All values are typical and include aliased harmonics. Dynamic range is defined as the difference between the carrier level and the largest spur.

| SFDR with harmonics $^{[22]}$ |          |  |
|-------------------------------|----------|--|
| Direct path                   |          |  |
| 1 MHz                         | 76 dB    |  |
| 10 MHz                        | 68 dB    |  |
|                               | <u>'</u> |  |

| 20 MHz                   | 60 dB |
|--------------------------|-------|
| 30 MHz                   | 73 dB |
| 40 MHz                   | 76 dB |
| 43 MHz                   | 78 dB |
| Low-gain amplifier path  |       |
| 1 MHz                    | 71 dB |
| 10 MHz                   | 64 dB |
| 20 MHz                   | 57 dB |
| 30 MHz                   | 73 dB |
| 40 MHz                   | 73 dB |
| 43 MHz                   | 75 dB |
| High-gain amplifier path |       |
| 1 MHz                    | 58 dB |
| 10 MHz                   | 47 dB |
| 20 MHz                   | 42 dB |
| 30 MHz                   | 74 dB |
| 40 MHz                   | 74 dB |
| 43 MHz                   | 59 dB |

| SFDR without harmonics[23] | SFDR without harmonics <sup>[23]</sup> |  |  |
|----------------------------|----------------------------------------|--|--|
| Direct path                | Direct path                            |  |  |
| 1 MHz                      | 87 dB                                  |  |  |
| 10 MHz                     | 86 dB                                  |  |  |
| 20 MHz                     | 79 dB                                  |  |  |
| 30 MHz                     | 72 dB                                  |  |  |
| 40 MHz                     | 75 dB                                  |  |  |
| 43 MHz                     | 77 dB                                  |  |  |
| Low-gain amplifier path    |                                        |  |  |
| 1 MHz                      | 90 dB                                  |  |  |
| 10 MHz                     | 88 dB                                  |  |  |
| 20 MHz                     | 88 dB                                  |  |  |
| 30 MHz                     | 72 dB                                  |  |  |
| 40 MHz                     | 72 dB                                  |  |  |
| 43 MHz                     | 74 dB                                  |  |  |
| High-gain amplifier path   |                                        |  |  |
| 1 MHz                      | 90 dB                                  |  |  |
| 10 MHz                     | 90 dB                                  |  |  |
| 20 MHz                     | 88 dB                                  |  |  |

| 30 MHz | 73 dB |
|--------|-------|
| 40 MHz | 73 dB |
| 43 MHz | 59 dB |

#### Total Harmonic Distortion (THD)

| THD[24] (0 °C to 40 °C) |                                  |
|-------------------------|----------------------------------|
| Direct path             |                                  |
| 20 kHz                  | -77 dBc, typical                 |
| 1 MHz                   | -75 dBc, typical                 |
| 5 MHz                   | -68 dBc                          |
| 10 MHz                  | -65 dBc                          |
|                         | -66 dBc, typical <sup>[25]</sup> |
| 20 MHz                  | -55 dBc                          |
|                         | -61 dBc, typical <sup>[25]</sup> |
| 30 MHz                  | -50 dBc                          |
|                         | -57 dBc, typical <sup>[25]</sup> |
| 40 MHz                  | -47 dBc                          |
|                         | -54 dBc, typical <sup>[25]</sup> |
| 43 MHz                  | -46 dBc                          |

|                          | -53 dBc, typical <sup>[25]</sup> |
|--------------------------|----------------------------------|
| Low-gain amplifier path  |                                  |
| 20 kHz                   | -77 dBc, typical                 |
| 1 MHz                    | -70 dBc, typical                 |
| 5 MHz                    | -68 dBc                          |
| 10 MHz                   | -61 dBc                          |
|                          | -66 dBc, typical <sup>[25]</sup> |
| 20 MHz                   | -53 dBc                          |
|                          | -61 dBc, typical <sup>[25]</sup> |
| 30 MHz                   | -48 dBc                          |
|                          | -57 dBc, typical <sup>[25]</sup> |
| 40 MHz                   | -46 dBc                          |
|                          | -54 dBc, typical <sup>[25]</sup> |
| 43 MHz                   | -45 dBc                          |
|                          | -53 dBc, typical <sup>[25]</sup> |
| High-gain amplifier path |                                  |
| 20 kHz                   | -77 dBc, typical                 |
| 1 MHz                    | -62 dBc, typical                 |
|                          |                                  |

| 5 MHz                   | -55 dBc                 |
|-------------------------|-------------------------|
| 10 MHz                  | -46 dBc                 |
| THD[24] (0 °C to 55 °C) |                         |
| Direct path             |                         |
| 20 kHz                  | -76 dBc, typical        |
| 1 MHz                   | -74 dBc, typical        |
| 5 MHz                   | -67 dBc                 |
| 10 MHz                  | -63 dBc                 |
| 20 MHz                  | -54 dBc<br>-57 dBc [25] |
| 30 MHz                  | -48 dBc<br>-52 dBc [25] |
| 40 MHz                  | -45 dBc                 |
|                         | -50 dBc [25]            |
| 43 MHz                  | -44 dBc                 |
|                         | -49 dBc [25]            |
| Low-gain amplifier path |                         |
| 20 kHz                  | -76 dBc, typical        |
|                         | '                       |

| 1 MHz                    | -69 dBc, typical        |
|--------------------------|-------------------------|
| 5 MHz                    | -67 dBc                 |
| 10 MHz                   | -60 dBc                 |
| 20 MHz                   | -52 dBc                 |
|                          | -55 dBc <sup>[25]</sup> |
| 30 MHz                   | -46 dBc                 |
|                          | -50 dBc <sup>[25]</sup> |
| 40 MHz                   | -41 dBc                 |
|                          | -47 dBc <sup>[25]</sup> |
| 43 MHz                   | -41 dBc                 |
|                          | -46 dBc <sup>[25]</sup> |
| High-gain amplifier path |                         |
| 20 kHz                   | -76 dBc, typical        |
| 1 MHz                    | -61 dBc, typical        |
| 5 MHz                    | -54 dBc                 |
| 10 MHz                   | -45 dBc                 |

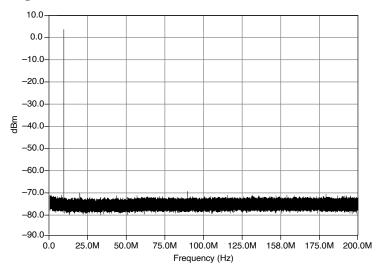
# Average Noise Density[26]

#### Direct path

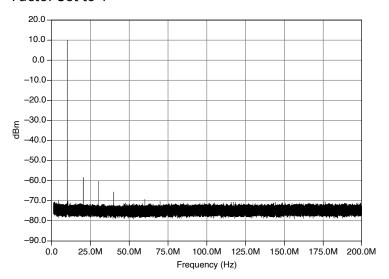
| 1 Vpk-pk, 4.0 dBm amplitude range      | 18<br>nV<br>√Hz<br>, -142 dBm/Hz, -146.0 dBFS/Hz       |
|----------------------------------------|--------------------------------------------------------|
| Low-gain amplifier path                |                                                        |
| 0.06 Vpk-pk, -20.4 dBm amplitude range | 9<br><u>nV</u><br>√Hz<br>, -148 dBm/Hz, -127.6 dBFS/Hz |
| 0.1 Vpk-pk, -16.0 dBm amplitude range  | 9                                                      |
| 0.4 Vpk-pk, -4.0 dBm amplitude range   | 13<br>nV<br>√Hz<br>, -145 dBm/Hz, -141.0 dBFS/Hz       |
| 1 Vpk-pk, 4.0 dBm amplitude range      | 18<br>nV<br>√Hz<br>, -142 dBm/Hz, -146.0 dBFS/Hz       |
| 2 Vpk-pk, 10.0 dBm amplitude range     | 35<br>nV<br>√Hz<br>, -136 dBm/Hz, -146.0 dBFS/Hz       |
| High-gain amplifier path               |                                                        |
| 4 Vpk-pk, 16.0 dBm amplitude range     | 71                                                     |
| 12 Vpk-pk, 25.6 dBm amplitude range    | 213<br>nV<br>√Hz<br>, -120 dBm/Hz, -145.6 dBFS/Hz      |

# Intermodulation Distortion (IMD) $\underline{^{[27]}}$

All values are typical.


| Direct path             |         |
|-------------------------|---------|
| 10.2 MHz and 11.2 MHz   | -81 dBc |
| 10.6 MHz and 10.8 MHz   | -81 dBc |
| 19.5 MHz and 20.5 MHz   | -78 dBc |
| 19.9 MHz and 20.1 MHz   | -78 dBc |
| 34.0 MHz and 35.0 MHz   | -75 dBc |
| 34.8 MHz and 35.0 MHz   | -75 dBc |
| 42.0 MHz and 43.0 MHz   | -75 dBc |
| 42.8 MHz and 43.0 MHz   | -75 dBc |
| Low-gain amplifier path |         |
| 10.2 MHz and 11.2 MHz   | -80 dBc |
| 10.6 MHz and 10.8 MHz   | -79 dBc |
| 19.5 MHz and 20.5 MHz   | -66 dBc |
| 19.9 MHz and 20.1 MHz   | -65 dBc |
| 34.0 MHz and 35.0 MHz   | -58 dBc |
| 34.8 MHz and 35.0 MHz   | -58 dBc |
|                         |         |

| 42.0 MHz and 43.0 MHz    | -55 dBc |
|--------------------------|---------|
| 42.8 MHz and 43.0 MHz    | -55 dBc |
| High-gain amplifier path |         |
| 10.2 MHz and 11.2 MHz    | -62 dBc |
| 10.6 MHz and 10.8 MHz    | -61 dBc |
| 19.5 MHz and 20.5 MHz    | -54 dBc |
| 19.9 MHz and 20.1 MHz    | -50 dBc |
| 34.0 MHz and 35.0 MHz    | -51 dBc |
| 34.8 MHz and 35.0 MHz    | -51 dBc |
| 42.0 MHz and 43.0 MHz    | -51 dBc |
| 42.8 MHz and 43.0 MHz    | -50 dBc |


#### Spectrum Performance

The noise floor in the following figures is limited by the measurement device. Refer to Average Noise Density for more information about this limit.

Figure 10. 10 MHz Single-Tone Spectrum, Direct Path, 100 MS/s, Interpolation Factor Set to 4



**Figure 11.** 10 MHz Single-Tone Spectrum, Low-Gain Amplifier Path, 100 MS/s, Interpolation Factor Set to 4



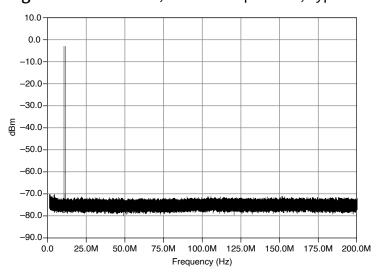



Figure 12. Direct Path, Two-Tone Spectrum, Typical

## Sample Clock

| Sources                  |                                                           |
|--------------------------|-----------------------------------------------------------|
| Internal <sup>[28]</sup> | Divide-by-N (N ≥ 1)                                       |
|                          | DDS-based, High-Resolution                                |
| External                 | CLK IN (SMB front panel connector)                        |
|                          | DDC CLK IN (DIGITAL DATA & CONTROL front panel connector) |
|                          | PXI Star Trigger (backplane connector)                    |
|                          | PXI_Trig <07> (backplane connector)                       |

## Sample Rate Range and Resolution

Table 8. Sample Rate Range

| Sample Clock Source | Sample Rate Range     |
|---------------------|-----------------------|
| Divide-by-N         | 23.84 S/s to 100 MS/s |

| Sample Clock Source | Sample Rate Range    |
|---------------------|----------------------|
| High-Resolution     | 10 S/s to 100 MS/s   |
| CLKIN               | 200 kS/s to 105 MS/s |
| DDC CLK IN          | 10 S/s to 105 MS/s   |
| PXI Star Trigger    | 10 S/s to 105 MS/s   |
| PXI_Trig<07>        | 10 S/s to 20 MS/s    |

#### Table 9. Sample Rate Resolution

| Sample Clock Source | Sample Rate Resolution                                 |
|---------------------|--------------------------------------------------------|
| Divide-by-N         | Configurable to (100 MS/s)/N(1 ≤ N ≤ 4,194,304)        |
| High-Resolution     | 1.06 μHz                                               |
| CLKIN               | Resolution determined by external clock source.        |
| DDC CLK IN          | External Sample Clock duty cycle tolerance 40% to 60%. |
| PXI Star Trigger    | 10 00%                                                 |
| PXI_Trig<07>        |                                                        |

## **Effective Sample Rate**

| (Interpolation factor) * (Sample rate) = Effective sample rate |                       |                       |
|----------------------------------------------------------------|-----------------------|-----------------------|
| Interpolation factor                                           | Sample rate           | Effective sample rate |
| 1 (Off)                                                        | 10 S/s to 105 MS/s    | 10 S/s to 105 MS/s    |
| 2                                                              | 12.5 MS/s to 105 MS/s | 25 MS/s to 210 MS/s   |
| 4                                                              | 10 MS/s to 100 MS/s   | 40 MS/s to 400 MS/s   |
| 8                                                              | 10 MS/s to 50 MS/s    | 80 MS/s to 400 MS/s   |

### Sample Clock Delay Range and Resolution

Table 10. Delay Adjustment Range

| Sample Clock Source | Delay Adjustment Range |
|---------------------|------------------------|
| Divide-by-N         | ±1 Sample Clock period |

| Sample Clock Source | Delay Adjustment Range |
|---------------------|------------------------|
| High-Resolution     |                        |
| CLKIN               | 0 ns to 7.6 ns         |
| DDC CLK IN          |                        |
| PXI Star Trigger    |                        |
| PXI_Trig <07>       |                        |

#### Table 11. Delay Adjustment Resolution

| Sample Clock Source | Delay Adjustment Resolution |
|---------------------|-----------------------------|
| Divide-by-N         | <10 ps                      |
| High-Resolution     | Sample Clock period/16,384  |
| CLKIN               | <15 ps                      |
| DDC CLK IN          |                             |
| PXI Star Trigger    |                             |
| PXI_Trig <07>       |                             |

# System Phase Noise and Jitter (10 MHz Carrier)

| System phase noise density offset <sup>[29]</sup> |             |  |
|---------------------------------------------------|-------------|--|
| Divide-by-N                                       |             |  |
| 100 Hz                                            | -107 dBc/Hz |  |
| 1 kHz                                             | -121 dBc/Hz |  |
| 10 kHz                                            | -137 dBc/Hz |  |
| High-Resolution <sup>[30]</sup>                   |             |  |
| 100 Hz                                            | -109 dBc/Hz |  |
| 1 kHz                                             | -121 dBc/Hz |  |
| 10 kHz                                            | -123 dBc/Hz |  |
|                                                   |             |  |

| -111 dBc/Hz                                  |  |
|----------------------------------------------|--|
| -122 dBc/Hz                                  |  |
| -135 dBc/Hz                                  |  |
|                                              |  |
| -115 dBc/Hz                                  |  |
| -118 dBc/Hz                                  |  |
| -130 dBc/Hz                                  |  |
| o 100 kHz) <sup>[29]</sup>                   |  |
| <1.2 ps rms                                  |  |
| <4.2 ps rms                                  |  |
| <1.2 ps rms                                  |  |
| <3.0 ps rms                                  |  |
| External Sample Clock input jitter tolerance |  |
| ±300 ps                                      |  |
| ±1 ns                                        |  |
|                                              |  |

# Sample Clock Exporting

| Destinations [32] | PFI <01> (SMB front panel connectors) |
|-------------------|---------------------------------------|
|                   |                                       |

|                   | DDC CLK OUT (DIGITAL DATA & CONTROL front panel connector)  PXI_Trig <06> (backplane connector) |
|-------------------|-------------------------------------------------------------------------------------------------|
| Maximum frequency |                                                                                                 |
| PFI <01>          | 105 MHz                                                                                         |
| DDC CLK OUT       | 105 MHz                                                                                         |
| PXI_Trig <06>     | 20 MHz                                                                                          |
| Jitter            |                                                                                                 |
| PFI 0             | 6 ps rms, typical                                                                               |
| PFI 1             | 12 ps rms, typical                                                                              |
| DDC CLK OUT       | 40 ps rms, typical                                                                              |
| Duty cycle        |                                                                                                 |
| PFI <01>          | 25% to 65%                                                                                      |
| DDC CLK OUT       | 40% to 60%                                                                                      |

# Onboard Clock (Internal VCXO)

| Source             | Internal Sample Clocks can either be locked to a Reference Clock using a phase-locked loop or derived from the onboard VCXO frequency reference. |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency accuracy | ±25 ppm                                                                                                                                          |

# Phase-Locked Loop (PLL) Reference Clock

| Sources[33]         | PXI_CLK10 (backplane connector)  CLK IN (SMB front panel connector)                                                                         |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency accuracy  | When using the PLL, the frequency accuracy of the PXI-5421 is solely dependent on the frequency accuracy of the PLL Reference Clock source. |
| Lock time           | 200 ms, maximum 70 ms, typical                                                                                                              |
| Frequency range[34] | 5 MHz to 20 MHz in increments of 1 MHz <sup>[35]</sup>                                                                                      |
| Duty cycle range    | 40% to 60%                                                                                                                                  |
| Destinations        | PFI <01> (SMB front panel connectors)  PXI_Trig <06> (backplane connector)                                                                  |

### **CLK IN**

| Connector type  | SMB jack                         |
|-----------------|----------------------------------|
| Direction       | Input                            |
| Destinations    | Sample Clock PLL Reference Clock |
| Frequency range |                                  |

| Sample Clock destination and sine waves   | 1 MHz to 105 MHz                               |
|-------------------------------------------|------------------------------------------------|
| Sample Clock destination and square waves | 200 kHz to 105 MHz                             |
| PLL Reference Clock destination           | 5 MHz to 20 MHz                                |
| Input voltage range into 50 $\Omega$      |                                                |
| Sine wave                                 | 0.65 V pk-pk to 2.8 V pk-pk (0 dBm to +13 dBm) |
| Square wave                               | 0.2 V pk-pk to 2.8 V pk-pk                     |
| Maximum input overload                    | ±10 V                                          |
| Input impedance                           | 50 Ω                                           |
| Input coupling                            | AC                                             |

### PFI 0 and PFI 1

| Connector type         | SMB jack (x2) |
|------------------------|---------------|
| Direction              | Bidirectional |
| Frequency range        | DC to 105 MHz |
| As an input (trigger)  |               |
| Destinations           | Start Trigger |
| Maximum input overload | -2 V to +7 V  |
| VIH                    | 2.0 V         |
|                        |               |

| VIL                             | 0.8 V                                                                                                                                                                |  |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Input impedance                 | 1 kΩ                                                                                                                                                                 |  |
| As an output (event)            |                                                                                                                                                                      |  |
| Sources                         | Sample Clock divided by integer K $(1 \le K \le 4,194,304)$<br>Sample Clock Timebase (100 MHz) divided by integer M $(2 \le M \le 4,194,304)$<br>PLL Reference Clock |  |
|                                 | PLL Reference Clock                                                                                                                                                  |  |
|                                 | Marker                                                                                                                                                               |  |
|                                 | Exported Start Trigger (Out Start Trigger)                                                                                                                           |  |
| Output impedance                | 50 Ω                                                                                                                                                                 |  |
| Maximum output overload         | -2 V to +7 V                                                                                                                                                         |  |
| Minimum V OH <sup>[36]</sup>    |                                                                                                                                                                      |  |
| Open load                       | 2.9 V                                                                                                                                                                |  |
| 50 Ω load                       | 1.4 V                                                                                                                                                                |  |
| Maximum V OL <sup>[36]</sup>    |                                                                                                                                                                      |  |
| Open load                       | 0.2 V                                                                                                                                                                |  |
| 50 Ω load                       | 0.2 V                                                                                                                                                                |  |
| Rise/fall time (20% to 80%)[37] | ≤2.0 ns                                                                                                                                                              |  |

#### **TClk Synchronization**

### Intermodule SMC Synchronization Using NI-TClk for Identical Modules

National Instruments TClk synchronization method and the NI-TClk instrument driver are used to align the Sample Clocks on any number of SMC-based modules in a chassis.

- Specifications are valid for any number of PXI modules installed in one PXI-1042 chassis
- All parameters are set to identical values for each SMC-based module
- Sample Clock is set to 100 MS/s, Divide-by-N, and all filters are disabled
- For other configurations, including multichassis systems, contact NI Technical Support at ni.com/support

| Skew <sup>[38]</sup>                                 | 500 ps, typical |
|------------------------------------------------------|-----------------|
| Average skew after manual adjustment <sup>[39]</sup> | <10 ps, typical |
| Sample Clock delay/adjustment resolution             | ≤10 ps, typical |



Note Although you can use NI-TClk to synchronize nonidentical modules, these specifications apply only to synchronizing identical modules.

#### **DIGITAL DATA & CONTROL (DDC)**

| Connector type                | 68-pin VHDCI female receptacle |
|-------------------------------|--------------------------------|
| Number of data output signals | 16                             |

| Control signals | DDC CLK OUT (clock output) |
|-----------------|----------------------------|
|                 | DDC CLK IN (clock input)   |
|                 | PFI 2 (input)              |
|                 | PFI 3 (input)              |
|                 | PFI 4 (output)             |
|                 | PFI 5 (output)             |
| Ground          | 23 pins                    |

# Output Signals (Data Outputs, DDC CLK OUT, and PFI <4..5>)

| Low-voltage differential signal (LVDS)[40] |                  |
|--------------------------------------------|------------------|
| VOH                                        | 1.3 V, typical   |
|                                            | 1.7 V, maximum   |
| V OL                                       | 0.8 V, minimum   |
|                                            | 1.0 V, typical   |
| Differential output voltage                | 0.25 V, minimum  |
|                                            | 0.45 V, maximum  |
| Output common-mode voltage                 | 1.125 V, minimum |
|                                            | 1.375 V, maximum |
|                                            |                  |

| Rise/fall time (20% to 80%) | 0.8 ns, typical  1.6 ns, maximum                                                                                                                             |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Output skew <sup>[41]</sup> | 1 ns, typical 2 ns, maximum                                                                                                                                  |
| Output enable/disable       | Controlled through the software on all data output signals and control signals collectively. When disabled, the output signals go to a high-impedance state. |
| Maximum output overload     | -0.3 V to +3.9 V                                                                                                                                             |

# Input Signals (DDC CLK IN and PFI <2..3>)

| Signal type                  | Low-voltage differential signal (LVDS) |
|------------------------------|----------------------------------------|
| Input differential impedance | 100 Ω                                  |
| Maximum output overload      | -0.3 V to +3.9 V                       |
| Differential input voltage   | 0.1 V, minimum 0.5 V, maximum          |
| Input common mode voltage    | 0.2 V, minimum 2.2 V, maximum          |

#### **DDC CLK OUT**

| Clocking format | Data outputs and markers change on the falling edge of DDC CLK OUT. |
|-----------------|---------------------------------------------------------------------|
| Frequency range | Refer to the <u>Sample Clock</u> section for more information.      |
| Duty cycle      | 40% to 60%                                                          |
| Jitter          | 40 ps rms                                                           |

#### **DDC CLK IN**

| Clocking format            | DDC data output signals change on the rising edge of DDC CLK IN. |
|----------------------------|------------------------------------------------------------------|
| Frequency range            | 10 Hz to 105 MHz                                                 |
| Input duty cycle tolerance | 40% to 60%                                                       |
| Input jitter tolerances    | 300 ps pk-pk of cycle-cycle jitter  1 ns rms of period jitter    |

# **Start Trigger**

| Sources | PFI<01> (SMB front panel connectors)                   |
|---------|--------------------------------------------------------|
|         | PFI<23> (DIGITAL DATA & CONTROL front panel connector) |
|         | PXI_Trig<07> (backplane connector)                     |

|                                               | PXI Star Trigger (backplane connector)                                                                                                        |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|
|                                               | Software (use node or function call)                                                                                                          |
|                                               | Immediate (does not wait for a trigger). The default is Immediate.                                                                            |
| Modes                                         | Single                                                                                                                                        |
|                                               | Continuous                                                                                                                                    |
|                                               | Stepped                                                                                                                                       |
|                                               | Burst                                                                                                                                         |
| Edge detection                                | Rising                                                                                                                                        |
| Minimum pulse width                           | 25 ns                                                                                                                                         |
| Delay from Start Trigger to CH 0 analog outpu | t                                                                                                                                             |
| Digital interpolation filter disabled         | 43 Sample Clock periods + 110 ns, typical                                                                                                     |
| Interpolation factor of 2                     | 57 Sample Clock periods + 110 ns, typical                                                                                                     |
| Interpolation factor of 4                     | 63 Sample Clock periods + 110 ns, typical                                                                                                     |
| Interpolation factor of 8                     | 64 Sample Clock periods + 110 ns, typical                                                                                                     |
| Delay from Start Trigger to DDC output        | 40 Sample Clock periods + 110 ns                                                                                                              |
| Exported trigger destinations                 | A signal used as a trigger can be routed out to any destination listed in the <b>Destinations</b> specification of the <u>Markers</u> section |

| Exported trigger delay       | 65 ns, typical |
|------------------------------|----------------|
| Exported trigger pulse width | >150 ns        |

#### Markers

| Destinations                             | PFI <01> (SMB front panel connectors)  PFI <45> (DIGITAL DATA & CONTROL front panel connector) |
|------------------------------------------|------------------------------------------------------------------------------------------------|
|                                          | PXI_Trig <06> (backpane connector)                                                             |
| Quantity                                 | One marker per segment                                                                         |
| Quantum                                  | Marker position must be placed at an integer multiple of four samples.                         |
| Width                                    | >150 ns                                                                                        |
| Skew with respect to analog output       |                                                                                                |
| PFI <01>                                 | ±2 Sample Clock periods                                                                        |
| PXI_Trig <06>                            | ±2 Sample Clock periods                                                                        |
| Skew with respect to digital data output |                                                                                                |
| PFI <45>                                 | <2 ns                                                                                          |
| Jitter                                   | 20 ps rms                                                                                      |

# **Arbitrary Waveform Generation Mode**

| Memory usage        | The PXI-5421 uses the Synchronization and Memory Core (SMC) technology in which waveforms and instructions share onboard memory. Parameters—such as number of segments in sequence list, maximum number of waveforms in memory, and number of samples available for waveform storage—are flexible and user-defined. |
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Onboard memory size |                                                                                                                                                                                                                                                                                                                     |
| 8 MB standard       | 8,388,608 bytes                                                                                                                                                                                                                                                                                                     |
| 32 MB option        | 33,554,432 bytes                                                                                                                                                                                                                                                                                                    |
| 256 MB option       | 268,435,456 bytes                                                                                                                                                                                                                                                                                                   |
| 512 MB option       | 536,870,912 bytes                                                                                                                                                                                                                                                                                                   |
| Output modes        | Arbitrary waveform <sup>[42]</sup> Arbitrary sequence <sup>[43]</sup>                                                                                                                                                                                                                                               |

#### Table 12. Minimum Waveform Size

| Trigger Mode       | Minimum Waveform Size (Samples) |                        |                        |
|--------------------|---------------------------------|------------------------|------------------------|
| Arbitrary Waveform | Arbitrary Sequence Mode[44]     |                        |                        |
|                    | Mode                            | At >50 MS/s            | At ≤50 MS/s            |
| Single             | 16                              |                        |                        |
| Continuous         | 16 samples                      | 96 samples at >50 MS/s | 32 samples at ≤50 MS/s |
| Stepped            |                                 |                        |                        |
| Burst              |                                 |                        |                        |

| Loop count | 1 to 16,777,215                                            |
|------------|------------------------------------------------------------|
|            | Burst trigger: Unlimited                                   |
| Quantum    | Waveform size must be an integer multiple of four samples. |

# Memory Limits [45]

Table 13. Maximum Waveform Memory

| Onboard Memory | Maximum Waveform Memory (Samples) |                              |
|----------------|-----------------------------------|------------------------------|
|                | Arbitrary Waveform Mode           | Arbitrary Sequence Mode [46] |
| 8 MB standard  | 4,194,176                         | 4,194,120                    |
| 32 MB option   | 16,777,088                        | 16,777,008                   |
| 256 MB option  | 134,217,600                       | 134,217,520                  |
| 512 MB option  | 268,435,328                       | 268,435,200                  |

**Table 14.** Maximum Waveforms in Arbitrary Sequence Mode [46]

| Onboard Memory | Maximum Waveforms      |
|----------------|------------------------|
| 8 MB standard  | 65,000                 |
|                | Burst trigger: 8,000   |
| 32 MB option   | 262,000                |
|                | Burst trigger: 32,000  |
| 256 MB option  | 2,097,000              |
|                | Burst trigger: 262,000 |
| 512 MB option  | 4,194,000              |
|                | Burst trigger: 524,000 |

**Table 15.** Maximum Segments in a Sequence in Arbitrary Sequence  $\mathsf{Mode}^{\underline{[47]}}$ 

| Onboard Memory | Maximum Segments in a Sequence |
|----------------|--------------------------------|
|                | 104,000                        |
|                | Burst trigger: 65,000          |

| Onboard Memory | Maximum Segments in a Sequence |
|----------------|--------------------------------|
| 32 MB option   | 418,000                        |
|                | Burst trigger: 262,000         |
| 256 MB option  | 3,354,000                      |
|                | Burst trigger: 2,090,000       |
| 512 MB option  | 6,708,000                      |
|                | Burst trigger: 4,180,000       |

# Calibration

| Self-calibration     | An onboard, 24-bit ADC and precision voltage reference are used to calibrate the DC gain and offset. The self-calibration is initiated by the user through the software and takes approximately 75 seconds to complete. |
|----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| External calibration | External calibration calibrates the VCXO, voltage reference, DC gain, and offset. Appropriate constants are stored in nonvolatile memory.                                                                               |
| Calibration interval | Specifications valid within two years of external calibration.                                                                                                                                                          |
| Warm-up time         | 15 minutes                                                                                                                                                                                                              |

#### **Power**

All values are typical. Overload operation occurs when CH 0 is shorted to ground.

| +3.3 VDC           |       |
|--------------------|-------|
| Typical operation  | 1.9 A |
| Overload operation | 2.7 A |

| +5 VDC |  |
|--------|--|
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |
|        |  |

### **Environment**

| Maximum altitude | 2,000 m (at 25 °C ambient temperature) |
|------------------|----------------------------------------|
| Pollution Degree | 2                                      |

Indoor use only.

# **Operating Environment**

| <br>0 °C to 55 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.) |
|--------------------------------------------------------------------------------|
|                                                                                |

|                         | 0 °C to 45 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.) when installed in a PXI-101x or PXI-1000B chassis |
|-------------------------|------------------------------------------------------------------------------------------------------------------------------|
| Relative humidity range | 10% to 90%, noncondensing (Tested in accordance with IEC 60068-2-56.)                                                        |

# **Storage Environment**

| Ambient temperature range | -25 °C to 85 °C (Tested in accordance with IEC 60068-2-1 and IEC 60068-2-2.) |
|---------------------------|------------------------------------------------------------------------------|
| Relative humidity range   | 5% to 95%, noncondensing (Tested in accordance with IEC 60068-2-56.)         |

#### **Shock and Vibration**

| Shock                     |                                                                                                                                                     |
|---------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| Operating <sup>[48]</sup> | 30 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)             |
| Storage                   | 50 g peak, half-sine, 11 ms pulse (Tested in accordance with IEC 60068-2-27. Test profile developed in accordance with MIL-PRF-28800F.)             |
| Random vibration          |                                                                                                                                                     |
| Operating <sup>[48]</sup> | 5 Hz to 500 Hz, 0.31 g <sub>rms</sub> (Tested in accordance with IEC 60068-2-64.)                                                                   |
| Nonoperating              | 5 Hz to 500 Hz, 2.46 g <sub>rms</sub> (Tested in accordance with IEC 60068-2-64. Test profile exceeds the requirements of MIL-PRF-28800F, Class 3.) |

#### **Physical**

| Dimensions | 3U, one-slot, PXI/cPCI module                            |
|------------|----------------------------------------------------------|
|            | 21.6 cm × 2.0 cm × 13.0 cm (8.5 in. × 0.8 in. × 5.1 in.) |
| Weight     | 345 g (12.1 oz)                                          |

#### **Compliance and Certifications**

#### **Safety Compliance Standards**

This product is designed to meet the requirements of the following electrical equipment safety standards for measurement, control, and laboratory use:

- IEC 61010-1, EN 61010-1
- UL 61010-1, CSA C22.2 No. 61010-1



**Note** For safety certifications, refer to the product label or the <u>Product</u> <u>Certifications and Declarations</u> section.

#### **Electromagnetic Compatibility**

This product meets the requirements of the following EMC standards for electrical equipment for measurement, control, and laboratory use:

- EN 61326-1 (IEC 61326-1): Class A emissions; Basic immunity
- EN 55011 (CISPR 11): Group 1, Class A emissions
- EN 55022 (CISPR 22): Class A emissions
- EN 55024 (CISPR 24): Immunity
- AS/NZS CISPR 11: Group 1, Class A emissions
- AS/NZS CISPR 22: Class A emissions
- FCC 47 CFR Part 15B: Class A emissions

ICES-001: Class A emissions



**Note** In the United States (per FCC 47 CFR), Class A equipment is intended for use in commercial, light-industrial, and heavy-industrial locations. In Europe, Canada, Australia, and New Zealand (per CISPR 11), Class A equipment is intended for use only in heavy-industrial locations.



**Note** Group 1 equipment (per CISPR 11) is any industrial, scientific, or medical equipment that does not intentionally generate radio frequency energy for the treatment of material or inspection/analysis purposes.



Note For EMC declarations, certifications, and additional information, refer to the Product Certifications and Declarations section.

#### **Product Certifications and Declarations**

Refer to the product Declaration of Conformity (DoC) for additional regulatory compliance information. To obtain product certifications and the DoC for NI products, visit ni.com/product-certifications, search by model number, and click the appropriate link.

#### **Environmental Management**

NI is committed to designing and manufacturing products in an environmentally responsible manner. NI recognizes that eliminating certain hazardous substances from our products is beneficial to the environment and to NI customers.

For additional environmental information, refer to the **Engineering a Healthy Planet** web page at ni.com/environment. This page contains the environmental regulations and directives with which NI complies, as well as other environmental information not included in this document.

#### **EU and UK Customers**

• X Waste Electrical and Electronic Equipment (WEEE)—At the end of the product life cycle, all NI products must be disposed of according to local laws and regulations. For more information about how to recycle NI products in your region, visit ni.com/environment/weee.

#### 电子信息产品污染控制管理办法(中国 RoHS)

- ❷●● 中国 RoHS— NI 符合中国电子信息产品中限制使用某些有害物质指令(RoHS)。关于 NI 中国 RoHS 合规性信息,请登录 ni.com/environment/rohs\_china。(For information about China RoHS compliance, go to ni.com/environment/rohs\_china.)
- <sup>1</sup> When the main output path is selected, either the low-gain amplifier or the high-gain amplifier is used, depending on the value of the Gain property or NIFGEN\_ATTR\_GAIN attribute.
- <sup>2</sup> The direct path is optimized for intermediate frequency (IF) applications.
- <sup>3</sup> Amplitude values assume the full scale of the DAC is utilized. If an amplitude smaller than the minimum value is desired, then waveforms less than full scale of the DAC can be used. NI-FGEN compensates for user-specified resistive loads.
- <sup>4</sup>Offset range is not available on the direct path.
- $^{5}$  All paths are calibrated for amplitude and gain errors. The low-gain and high-gain amplifier paths are also calibrated for offset errors. DC accuracy is calibrated into a high-impedance load. **Amplitude Range** is defined as two times the gain setting. For example, a DC signal with a gain of 8 has an amplitude range of 16 V. If this signal has an offset of 1.5, DC accuracy is calculated by the following equation:  $\pm 0.2\%$  \*  $(16 \text{ V}) \pm 0.05\%$  \*  $(1.5 \text{ V}) \pm 500\mu\text{V} = \pm 33.25 \text{ mV}$
- <sup>6</sup> Within 0 °C to 55 °C.

- <sup>7</sup> With a 50 kHz sine wave and terminated with high impedance.
- <sup>8</sup> When the output path is disabled, CH 0 is terminated to ground with a 1 W resistor with a value equal to the selected output impedance.
- <sup>9</sup> No damage occurs if CH 0 is shorted to ground indefinitely.
- <sup>10</sup> The output terminals of multiple PXI-5421 waveform generators can be connected directly together.
- <sup>11</sup> Measured at -3 dB.
- <sup>12</sup> The digital filter is not available for use for Sample Clock rates below 10 MS/s. Refer to Effective Sample Rate for more information about the effect of interpolation on sample rates.
- <sup>13</sup> Available on low-gain amplifier and high-gain amplifier paths.
- <sup>14</sup> With respect to 50 kHz.
- <sup>15</sup> Analog filter and digital interpolation filter disabled.
- <sup>16</sup> Specifications apply only to G-revision and later PXI-5421 modules (NI part number 189898G-0xL).
- <sup>17</sup> Disable the analog filter and the digital interpolation filter for square, ramp, and triangle functions. The minimum frequency is <1 mHz. The value depends on memory size and instrument configuration.
- $^{18}$  At amplitude of -1 dBFS and measured from DC to 100 MHz. All values include aliased harmonics. Dynamic range is defined as the difference between the carrier level and the largest spur.
- $\frac{19}{2}$  Average noise density at small amplitudes is limited by a -148 dBm/Hz noise floor.
- <sup>20</sup> The noise floor in this figure is limited by the measurement device. Refer to Table 3 for more information about this limit.

- $\frac{21}{4}$  Amplitude -1 decibel full scale (dBFS). Measured from DC to 50 MHz. SINAD at low amplitudes is limited by a -148 dBm/Hz noise floor.
- 22 Amplitude -1 dBFS. Measured from DC to 50 MHz. Also called harmonic distortion. SFDR with harmonics at low amplitudes is limited by a -148 dBm/Hz noise floor.
- $\frac{23}{4}$  Amplitude -1 dBFS. Measured from DC to 50 MHz. SFDR without harmonics at low amplitudes is limited by a -148 dBm/Hz noise floor.
- 24 Amplitude -1 dBFS. Includes the 2<sup>nd</sup> through the 6<sup>th</sup> harmonics.
- <sup>25</sup> Specifications apply only to G-revision and later PXI-5421 modules (NI part number 189898G-0xL).
- 26 Average noise density at small amplitudes is limited by a -148 dBm/Hz noise floor.
- <sup>27</sup> Each tone is -7 dBFS.
- 28 Refer to the <u>Onboard Clock</u> section for more information about internal clock sources.
- <sup>29</sup> Specified at two times DAC oversampling.
- $\frac{30}{2}$  High-Resolution specifications increase as the sample rate is decreased.
- $\frac{31}{2}$  PXI Star Trigger specification is valid when the sample clock source is locked to PXI CLK10.
- $\frac{32}{10}$  Exported Sample Clocks can be divided by integer K (1  $\leq$  K  $\leq$  4,194,304).
- <sup>33</sup> The PLL Reference Clock provides the reference frequency for the PLL.
- $\frac{34}{1}$  The PLL Reference Clock frequency must be accurate to ±50 ppm.
- <sup>35</sup> The default is 10 MHz.
- $\frac{36}{2}$  Output drivers are +3.3 V TTL compatible.

- <sup>37</sup> Load of 10 pF.
- <sup>38</sup> Caused by clock and analog path delay differences. No manual adjustment performed.
- <sup>39</sup> For information about manual adjustment, search ni.com for NI-TClk Synchronization Repeatability Optimization or for help with the adjustment process, contact NI Technical Support at ni.com/support.
- $^{40}$  Tested with a 100  $\Omega$  differential load, measured at the module front panel, load capacitance <10 pF, driver and receiver comply with ANSI/TIA/EIA-644.
- <sup>41</sup> Skew between any two output signals on the DIGITAL DATA & CONTROL (DDC) front panel connector.
- <sup>42</sup> In arbitrary waveform mode, a single waveform is selected from the set of waveforms stored in onboard memory and generated.
- <sup>43</sup> In arbitrary sequence mode, a sequence directs the PXI-5421 to generate a set of waveforms in a specific order. Elements of the sequence are referred to as segments. Each segment is associated with a set of instructions. The instructions identify which waveform is selected from the set of waveforms in memory, how many loops (iterations) of the waveform are generated, and at which sample in the waveform a marker output signal is sent.
- <sup>44</sup> The minimum waveform size is sample rate dependent in arbitrary sequence mode.
- <sup>45</sup> All trigger modes except where noted.
- <sup>46</sup> One or two segments in a sequence.
- <sup>47</sup> Waveform memory is <4,000 samples.
- <sup>48</sup> Spectral and jitter specifications could degrade.