

ADRF5716

Silicon Digital Attenuator, 2-Bit, 100 MHz to 30 GHz

FEATURES

- ▶ Ultra-wideband frequency range: 100 MHz to 30 GHz
- ► Attenuation range: 16 dB typical steps to 48 dB
- ► Low insertion loss
 - ▶ 1.6 dB at 8 GHz
 - 2.2 dB at 18 GHz
 - ▶ 2.9 dB at 30 GHz
- Attenuation accuracy
 - ± (0.25 + 3.6 % of attenuation state) dB typical up to 8 GHz
 - ▶ ± (0.10 + 1.8 % of attenuation state) dB typical up to 18 GHz
 - ▶ ± (0.50 + 2.8 % of attenuation state) dB typical up to 30 GHz
- Typical step error
 - ▶ ± 0.7 dB typical up to 8 GHz
 - ▶ ± 1.0 dB typical up to 18 GHz
 - ▶ ± 1.5 dB typical up to 30 GHz
- ▶ High input linearity
 - ▶ P0.1dB insertion loss state: 30 dBm typical
 - P0.1dB other attenuation states: 30 dBm typical
 - ▶ IIP3: 50 dBm typical
- ▶ High RF power handling
 - ▶ 30 dBm average typical
 - ► 33 dBm peak typical
- RF amplitude settling time (0.1 dB of final RF_{OUT}): 130 ns typical
- Single-supply operation supported
- ▶ Tight distribution in relative phase
- ▶ No low-frequency spurious signals
- ▶ Parallel mode control, CMOS-/LVTTL-compatible
- > 20-terminal, 3.00 mm × 3.00 mm, land grid array [LGA]

APPLICATIONS

- Industrial scanners
- Test and instrumentation
- Cellular infrastructure: 5G millimeter wave
- Military radios, radars, electronic counter measures (ECMs)
- Microwave radios and very small aperture terminals (VSATs)

FUNCTIONAL BLOCK DIAGRAM

Figure 1. Functional Block Diagram

GENERAL DESCRIPTION

The ADRF5716 is a silicon, 2-bit digital attenuator with 48 dB attenuation control range in 16 dB steps, supporting glitch-free operation.

This device operates from 100 MHz to 30 GHz with better than 2.9 dB of insertion loss and better than 1.5 dB attenuation accuracy. The ATTIN and ATTOUT ports of the ADRF5716 have an RF input power handling capability of 30 dBm average and 33 dBm peak for all states.

The ADRF5716 requires a dual-supply voltage of +3.3 V and -3.3 V. The device features parallel mode control and complementary metal-oxide semiconductor (CMOS)-/low voltage transistor to transistor logic (LVTTL)-compatible controls.

The ADRF5716 can also operate with a single positive supply voltage (V_{DD}) applied when the negative supply voltage (V_{SS}) is tied to ground. See the Theory of Operation section for more details.

The ADRF5716 RF ports are designed to match a characteristic impedance of 50 Ω . The ADRF5716 comes in a 20-terminal, 3.00 mm × 3.00 mm, RoHS compliant, land grid array [LGA] package and operates from -40°C to +105°C.

Rev. 0

DOCUMENT FEEDBACK

TECHNICAL SUPPORT

Information furnished by Analog Devices is believed to be accurate and reliable "as is". However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

TABLE OF CONTENTS

1
1
1
1
3
5
6
6
6
7
7
8
9
10

REVISION HISTORY

11/2023—Revision 0: Initial Version

Insertion Loss, Return Loss, State Error,	
Step Error, and Relative Phase	10
Input Power Compression and Third-Order	
Intercept	12
Theory of Operation	13
RF Input and Output	13
Power Supply	13
Parallel Mode Interface	13
Applications Information	14
Recommendations for Printed Circuit Board	
Design	14
Outline Dimensions	15
Ordering Guide	15
Evaluation Boards	15

SPECIFICATIONS

Positive supply voltage (V_{DD}) = 3.3 V, negative supply voltage (V_{SS}) = -3.3 V, control voltages (V_{CTRL}) = 0 V or V_{DD} , and T_{CASE} = 25°C with a 50 Ω system, unless otherwise noted. V_{CTRL} refers to the control voltages on the LE, D5, and D6 pins.

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
FREQUENCY RANGE	f		100		30,000	MHz
INSERTION LOSS		100 MHz to 8 GHz		1.6		dB
		8 GHz to 18 GHz		2.2		dB
		18 GHz to 30 GHz		2.9		dB
RETURN LOSS		ATTIN and ATTOUT, attenuation state				
		100 MHz to 8 GHz		19		dB
		8 GHz to 18 GHz		21		dB
		18 GHz to 30 GHz		17		dB
ATTENUATION						
Range		Between minimum and maximum attenuation states		48		dB
Step Size		Between any successive attenuation states		16		dB
Accuracy		Referenced to insertion loss				
		100 MHz to 8 GHz		±(0.25 + 3.6% of state)		dB
		8 GHz to 18 GHz		±(0.10 + 1.8% of state)		dB
		18 GHz to 30 GHz		±(0.50 + 2.8% of state)		dB
Step Error		Between any successive attenuation states				
		100 MHz to 8 GHz		±0.7		dB
		8 GHz to 18 GHz		±1.0		dB
		18 GHz to 30 GHz		±1.5		dB
RELATIVE PHASE		Referenced to insertion loss				
		100 MHz to 8 GHz		36		Degrees
		8 GHz to 18 GHz		80		Degrees
		18 GHz to 30 GHz		165		Degrees
SWITCHING		All attenuation states at input power $(P_{IN}) = 10 \text{ dBm}$				
Rise Time and Fall Time	t _{RISE} , t _{FALL}	10% to 90% of RF output (RF _{OUT})		20		ns
On Time and Off Time	t _{ON} , t _{OFF}	50% triggered control to 90% of RF _{OUT}		50		ns
RF Amplitude Settling Time						
0.1 dB		50% triggered control to 0.1 dB of final RF _{OUT}		130		ns
0.05 dB		50% triggered control to 0.05 dB of final RF _{OUT}		160		ns
RF Phase Settling Time		t = 1 GHz		100		
5°		50% triggered control to 5° of final RF _{OUT}		430		ns
		50% triggered control to 1° of final RF _{OUT}		450		ns
		100 MHZ to 30 GHZ				
	PU.10B			20		dDres
				3U 20		aBm
Other Attenuation States	201	Two tong D = 20 dDm neg tong $\Delta t = 4 M U_{\rm c} = 1$		3U 50		dBm
	15	attenuation states $P_{IN} = 20$ dom per tone, $\Delta I = 1$ MHZ, all		00		

SPECIFICATIONS

Table 1. Specifications (Continued)

Parameter	Symbol	Test Conditions/Comments	Min	Тур	Max	Unit
DIGITAL CONTROL INPUTS		LE, D5, and D6				
Voltage						
Low	V _{INL}		0		0.8	V
High	V _{INH}		1.2		3.3	V
Current						
Low	I _{INL}			-33		μA
High	I _{INH}			<1		μA
SUPPLY CURRENT		VDD and VSS				
Positive Supply Current						
LE, D5, and D6 = 0 V				230		μA
LE, D5, and D6 = $3.3 V^2$				130		μA
Negative Supply Current				500		μA
RECOMMENDED OPERATING CONDITIONS						
Supply Voltage						
Positive	V _{DD}		3.15		3.45	V
Negative	V _{SS}		-3.45		-3.15	V
Digital Control Voltage			0		V _{DD}	V
RF Power Handling ³		f = 100 MHz to 30 GHz, T _{CASE} = 85°C ⁴				
Input at ATTIN or ATTOUT		Steady state average		30		dBm
		Steady state peak		33		dBm
		Hot switching		30		dBm
Case Temperature	T _{CASE}		-40		+105	°C

¹ Input linearity performance degrades over frequency, see Figure 16 to Figure 19.

² If LE, D5, and D6 are in a different combination of states, the positive supply current is between 130 μA and 230 μA.

³ For power derating over frequency, see Figure 2 and Figure 3. Applicable for all ATTIN and ATTOUT power specifications.

⁴ For 105°C operation, the power handling degrades from the T_{CASE} = 85°C specifications by 3 dB.

SPECIFICATIONS

SINGLE-SUPPLY OPERATION

 V_{DD} = 3.3 V, V_{SS} = 0 V, V_{CTRL} = 0 V or V_{DD} , and T_{CASE} = 25°C with a 50 Ω system, unless otherwise noted. The small signal and bias characteristics are maintained for the single-supply operation.

Table 2. Single-Supply Operation Specifications

Parameter	Symbol	Test Conditions/Comments	Min Ty	p Max	Unit
FREQUENCY RANGE	f		100	30,000	MHz
SWITCHING		All attenuation states at P _{IN} = 10 dBm			
Rise Time and Fall Time	t _{RISE} , t _{FALL}	10% to 90% of RF _{OUT}	10	0	ns
On Time and Off Time	t _{ON} , t _{OFF}	50% triggered control to 90% of RF _{OUT}	13	0	ns
RF Amplitude Settling Time					
0.1 dB		50% triggered control to 0.1 dB of final RF _{OUT}	40	0	ns
RF Phase Settling Time		f = 1 GHz			
5°		50% triggered control to 5° of final RF _{OUT}	1.2	2	μs
1°		50% triggered control to 1° of final RF _{OUT}	1.2	25	μs
INPUT LINEARITY		100 MHz to 30 GHz			
0.1 dB Power Compression	P0.1dB				
Insertion Loss State			21		dBm
Other Attenuation States			21		dBm
Third-Order Intercept	IP3	Two-tone P_{IN} = 20 dBm per tone, Δf = 1 MHz, all attenuation states			
Insertion Loss State			35		dBm
Other Attenuation States			36		dBm
RECOMMENDED OPERATING CONDITIONS					
RF Power Handling		f = 100 MHz to 30 GHz, T _{CASE} = 85°C			
Input at ATTIN and ATTOUT		Average	18		dBm
		Peak	18		dBm
		Hot switching	18		dBm
Case Temperature	T _{CASE}		-40	+105	°C

ABSOLUTE MAXIMUM RATINGS

For recommended operating conditions, see Table 1 and Table 2.

Tahla ?	Absoluto	Maximum	Ratinas
I dule S.	Absolute	Maxiiiiuiii	Raunys

Parameter	Rating
V _{DD}	-0.3 V to +3.6 V
V _{SS}	-3.6 V to +0.3 V
Digital Control Inputs	
Voltage	-0.3 V to V _{DD} + 0.3 V
Current	3 mA
RF Input Power ¹	
Dual Supply (V _{DD} = 3.3 V, V _{SS} = –3.3 V, f = 100 MHz to 30 GHz, and T _{CASE} = 85°C ²)	
Average	31 dBm
Peak	34 dBm
Hot Switching	31 dBm
Single Supply (V _{DD} = 3.3 V, V _{SS} = 0 V, f = 100 MHz to 30 GHz, and T _{CASE} = $85^{\circ}C^{2}$)	
Average	19 dBm
Peak	19 dBm
Hot Switching	19 dBm
Unbiased Condition (V_{DD} and V_{SS} = 0 V)	15 dBm
Temperature	
Junction	135°C
Storage	-65°C to +150°C
Reflow	260°C

¹ For power derating over frequency, see Figure 2 and Figure 3. Applicable for all ATTIN and ATTOUT power specifications.

 $^2~$ For 105°C operation, the power handling degrades from the T_{CASE} = 85°C specification by 3 dB.

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

Thermal performance is directly linked to printed circuit board (PCB) design and operating environment. Careful attention to PCB thermal design is required.

 θ_{JC} is the junction to case bottom (channel to package bottom) thermal resistance.

Table 4. Thermal Resistance

Package Type	θ _{JC} ¹	Unit
CC-20-9	50	°C/W

¹ θ_{JC} was determined by simulation under the following conditions: the heat transfer is due solely to thermal conduction from the channel through the ground pad to the PCB, and the ground pad is held constant at the operating temperature of 85°C.

POWER DERATING CURVES

Figure 2. Power Derating vs. Frequency, Low Frequency Detail, T_{CASE} = 85°C

Figure 3. Power Derating vs. Frequency, High Frequency Detail, T_{CASE} = 85°C

ABSOLUTE MAXIMUM RATINGS

ELECTROSTATIC DISCHARGE (ESD) RATINGS

The following ESD information is provided for handling of ESD sensitive devices in an ESD protected area only.

Human body model (HBM) per ANSI/ESDA/JEDEC JS-001.

Charged device model (CDM) per ANSI/ESDA/JEDEC JS-002.

ESD Ratings for ADRF5716

Table 5. ADRF5716, 20-Terminal LGA

ESD Model	Withstand Threshold (V)	Class
НВМ		
ATTIN and ATTOUT Pins	1000	1C
Supply and Control Pins	2000	2
CDM	500	C2A

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

Figure 4. Pin Configuration

Table 6. Pin Function Descriptions

Pin No.	Mnemonic	Description
1 to 3, 5 to 11, 13, 17, 20	GND	Ground. The GND pins must be connected to the RF and DC ground of the PCB.
4	ATTIN	Attenuator Input. No DC blocking capacitor is necessary when the RF line potential is equal to 0 V DC. See Figure 5 for the interface schematic.
12	ATTOUT	Attenuator Output. No DC blocking capacitor is necessary when the RF line potential is equal to 0 V DC. See Figure 5 for the interface schematic.
14	VSS	Negative Supply Input. See Figure 8 for the interface schematic.
15	VDD	Positive Supply Input. See Figure 7 for the interface schematic.
16	LE	Latch Enable Input. See the Theory of Operation section for more information. See Figure 6 for the interface schematic.
18	D5	Parallel Control Input for 16 dB Attenuation Bit. See the Theory of Operation section for more information. See Figure 6 for the interface schematic.
19	D6	Parallel Control Input for 32 dB Attenuation Bit. See the Theory of Operation section for more information. See Figure 6 for the interface schematic.
	EPAD	Exposed Pad. The exposed pad must be connected to the RF and DC ground of the PCB.

PIN CONFIGURATION AND FUNCTION DESCRIPTIONS

INTERFACE SCHEMATICS

Figure 5. ATTIN Pin and ATTOUT Pin Interface Schematic

Figure 6. LE Pin, D5 Pin, and D6 Pin Interface Schematic

Figure 7. VDD Pin Interface Schematic

Figure 8. VSS Pin Interface Schematic

TYPICAL PERFORMANCE CHARACTERISTICS

INSERTION LOSS, RETURN LOSS, STATE ERROR, STEP ERROR, AND RELATIVE PHASE

 V_{DD} = 3.3 V, V_{SS} = -3.3 V, V_{CTRL} = 0 V or V_{DD} , and T_{CASE} = 25°C with a 50 Ω system, unless otherwise noted.

Figure 9. Insertion Loss vs. Frequency over Temperature

Figure 10. Input Return Loss vs. Frequency

Figure 11. Step Error vs. Frequency

Figure 12. Normalized Attenuation vs. Frequency for All States

Figure 13. Output Return Loss vs. Frequency

Figure 14. State Error vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 15. Relative Phase vs. Frequency

TYPICAL PERFORMANCE CHARACTERISTICS

INPUT POWER COMPRESSION AND THIRD-ORDER INTERCEPT

 V_{DD} = 3.3 V, V_{SS} = -3.3 V, V_{CTRL} = 0 V or V_{DD} , and T_{CASE} = 25°C with a 50 Ω system, unless otherwise noted.

Figure 18. Input P0.1dB vs. Frequency, Low Frequency Detail

Figure 19. Input IP3 vs. Frequency, Low Frequency Detail

THEORY OF OPERATION

The ADRF5716 incorporates a 2-bit fixed attenuator array that offers an attenuation range of 48 dB in 16 dB steps. An integrated driver provides parallel mode control of the attenuator array.

The ADRF5716 has two digital control inputs, D5 (LSB) and D6 (MSB), to select the desired attenuation state in parallel mode, as shown in Figure 20. See Table 7 for the truth table.

Figure 20. Simplified Circuit Diagram

Table 7. Truth Table

	Digital Control Input	
D5	D6	Attenuation State (dB)
Low	Low	0 (reference)
High	Low	16
Low	High	32
High	High	48

RF INPUT AND OUTPUT

Both RF ports (ATTIN and ATTOUT) are DC-coupled to 0 V. No DC blocking is required at the RF ports when the RF line potential is equal to 0 V.

The RF ports are internally matched to 50 Ω . Therefore, external matching components are not required.

The ADRF5716 supports bidirectional operation at the same power level. The power handling of the ATTIN and ATTOUT ports are the same. Refer to the RF input power specifications in Table 1.

The ADRF5716 can operate with a single positive supply voltage applied to the VDD pin and the VSS pin connected to ground. However, some performance degradations can occur in the input compression and input third-order intercept (see Table 2).

POWER SUPPLY

The ADRF5716 requires a positive supply voltage applied to the VDD pin and a negative supply voltage applied to the VSS pin. Bypassing capacitors are recommended on the supply lines to filter high-frequency noise.

The ideal power-up sequence is as follows:

- 1. Connect GND.
- 2. Power up VDD and VSS. Power up VSS after VDD to avoid current transients on VDD during ramp up.
- 3. Apply the digital control input. Powering the digital control input before the VDD supply can inadvertently forward bias and damage the internal ESD protection structures. To avoid this damage, use a series 1 k Ω resistor to limit the current flowing into the control pin. Use pull-up or pull-down resistors if the controller output is in a high-impedance state after VDD is powered up and the control pins are not driven to a valid logic state.
- **4.** Apply an RF input signal to ATTIN or ATTOUT.

The ideal power-down sequence is the reverse order of the powerup sequence.

PARALLEL MODE INTERFACE

There are two modes of parallel operation: direct and latched.

Direct Parallel Mode

To enable direct parallel mode, the LE pin must be kept high. To change the attenuation state, use the control voltage inputs (D5 and D6) directly.

Latched Parallel Mode

To enable latched parallel mode, keep the LE pin low when changing the control voltage inputs (D5 and D6) to set the attenuation state. When the desired state is set, toggle LE high to transfer the data to the bypass switches of the attenuator array, and then toggle LE low to latch the change into the device until the next desired attenuation change.

APPLICATIONS INFORMATION

The RF transmission lines are designed using a coplanar waveguide (CPWG) model, with a trace width of 16 mil and ground clearance of 6 mil for a characteristic impedance of 50 Ω . For optimal RF and thermal grounding, arrange as many through vias as possible around the transmission lines and under the exposed pad of the package.

The RF input and output ports (ATTIN and ATTOUT) are connected through 50 Ω transmission lines. On the VDD and VSS supply traces, a 100 pF bypass capacitor filters high-frequency noise.

Figure 21 shows the simplified application circuit for the ADRF5716.

Figure 21. Simplified Application Circuit

RECOMMENDATIONS FOR PRINTED CIRCUIT BOARD DESIGN

The RF ports are matched to 50Ω internally, and the pinout is designed to mate a CPWG with a 50Ω characteristic impedance on the PCB. Figure 22 shows the referenced CPWG RF trace design for an RF substrate with 12 mil thick Rogers RO4003 dielectric material. The RF trace with a 16 mil width and a 6 mil clearance is recommended for 2.2 mil finished copper thickness.

Figure 22. Example PCB Stackup

Figure 23 shows the routing of the RF traces, supply, and control signals from the ADRF5716. The ground planes are connected with as many filled through vias as allowed for optimal RF and thermal

performance. The primary thermal path for the device is the bottom side.

Figure 23. PCB Routings

Figure 24 shows the recommended layout from the ATTIN and ATTOUT pins of the ADRF5716 to the 50 Ω CPWG on the referenced stackup. The PCB pads are drawn 1:1 to device pads. The ground pads are drawn solder mask defined, and the signal pads are drawn as pad defined. The RF trace from the PCB pad is extended with the same width, 2 mils, and tapered with a 90° angle. The paste mask is also designed to match the pad without any aperture reduction. The paste is divided into multiple openings for the paddle.

Figure 24. Recommended ATTIN Pin and ATTOUT Pin Transitions

For alternate PCB stackups with different dielectric thickness and CPWG design, contact Analog Devices, Inc., Technical Support Request for further recommendations.

OUTLINE DIMENSIONS

Figure 25. 20-Terminal Land Grid Array [LGA] (CC-20-9) Dimensions shown in millimeters

Updated: September 25, 2023

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Packing Quantity	Package Option
ADRF5716BCCZN	-40°C to +105°C	20-lead LGA (3.00 mm × 3.00 mm)	Reel, 500	CC-20-9
ADRF5716BCCZN-R7	-40°C to +105°C	20-lead LGA (3.00 mm × 3.00 mm)	Reel, 500	CC-20-9

¹ Z = RoHS Compliant Part.

EVALUATION BOARDS

Table 8. Evaluation Boards

Model ¹	Description
ADRF5716-EVALZ	Evaluation Board

¹ Z = RoHS-Compliant Part.

