MP3326A

16-Channel, 80mA/Channel, LED Driver with Separate PWM/Analog Dimming and Digital Interface

DSESCRIPTION

The MP3326A is a 16-channel LED driver that can operate from a wide 4.5V to 16V input voltage (V_{IN}) range. The MP3326A applies 16 internal current sources in each LED string terminal. The LED current (I_{LED}) of each channel is set by an external current-setting resistor. The maximum current for each channel is 80mA.

The MP3326A integrates a digital interface with up to 10 configurable digital interface addresses via an external resistor. This means that the MP3326A can support up to 10 cascaded ICs to drive the LED array. Each channel can be enabled or disabled via the digital interface.

The MP3326A employs both separate pulsewidth modulation (PWM) dimming and analog dimming for each LED channel, as well as 12-bit PWM dimming and 6-bit analog dimming for each channel. The I_{LED} ramp rate and phase shift can be configured to reduce EMI.

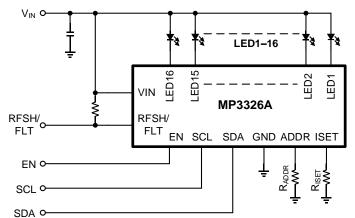
The MP3326A can output a refresh signal from the RFSH/FLT pin, where the refresh signal frequency ($f_{REFRESH}$) can be set via the digital interface.

Full protection features include LED open protection, LED short protection, and overtemperature protection (OTP). The device also features a fault indicator. If a protection is triggered, then the RFSH/FLT pin is pulled low and the corresponding fault register is set.

The MP3326A is available in a QFN-24 (4mmx4mm) package.

FEATURES

- Wide 4.5V to 16V Input Voltage (V_{IN}) Range
- 16 Channels, Max 80mA/Channel
- LED Current (I_{LED}) Configured via an External Resistor
- 6-Bit Analog Dimming for Each Channel
- 12-Bit Pulse-Width Modulation (PWM) Dimming for Each Channel
- Selectable 220Hz, 250Hz, 280Hz, or 330Hz PWM Dimming Frequency (f_{PWM})
- Refresh Signal Output
- Digital Interface
- 10 Addresses Configurable via an External Resistor
- Configurable ILED Slew Rate
- 40µs Phase Shift
- Fault Indicator
- LED Open Protection
- LED Short Protection with Configurable
 Threshold
- Under-Voltage Lockout (UVLO) Protection
- Over-Temperature Protection (OTP)
- Available in a QFN-24 (4mmx4mm) Package
- Available in a Wettable Flank Package


APPLICATIONS

- RGB Drivers
- LED Indicators
- Instruments Clusters
- General Displays
- LED Backlighting

All MPS parts are lead-free, halogen-free, and adhere to the RoHS directive. For MPS green status, please visit the MPS website under Quality Assurance. "MPS", the MPS logo, and "Simple, Easy Solutions" are trademarks of Monolithic Power Systems, Inc. or its subsidiaries.

TYPICAL APPLICATION

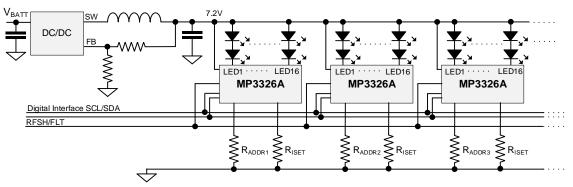


Figure 2: System Application Circuit with 2 LEDs in Series

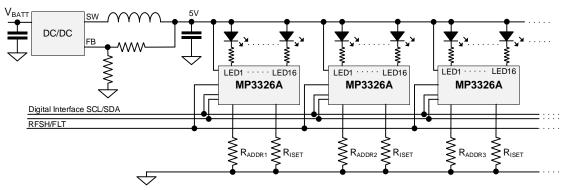


Figure 3: System Application Circuit with 1 LED and 1 Resistor in Series

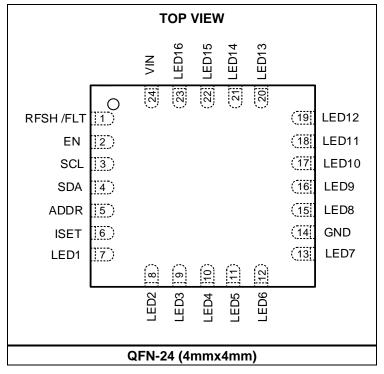
ORDERING INFORMATION

	Part Number*	Package	Top Marking	MSL Level**
Γ	MP3326AGRE***	QFN-24 (4mmx4mm)	See Below	1

* For Tape & Reel, add suffix -Z (e.g. MP3326AGRE-Z).

** Moisture Sensitivity Level Rating

*** Wettable Flank


TOP MARKING

MPSYWW M3326A LLLLLL

E

MPS: MPS prefix Y: Year code WW: Week code M3326A: Part number LLLLLL: Lot number E: Wettable flank

PACKAGE REFERENCE

PIN FUNCTIONS

Pin #	Name	Description	
1	RFSH/FLT	Refresh signal output or fault flag. If the FLTEN bit = 0, then the RFSH/FLT pin outputs a synchronized signal that is set by the FRFSH[9:0] register. If FLTEN = 1, then RFSH/FLT indicates whether a fault occurs, in which case it is pulled low.	
2	EN	Enable control. Pull the EN pin high to turn the LED driver on; pull EN low to turn it off.	
3	SCL	Digital interface clock input.	
4	SDA	Digital interface data input.	
5	ADDR	Digital interface address setting. Configure the digital interface addresses by connecting different resistors from ADDR to GND. ADDR can set the 4 least significant bits (LSB) of the digital interface address. There are 10 configurable addresses.	
6	ISET	LED current setting. Connect a current-setting resistor from ISET to GND to configure the current in each LED string.	
7	LED1	LED channel 1 current input. Connect the LED channel 1 cathode to this pin.	
8	LED2	LED channel 2 current input. Connect the LED channel 2 cathode to this pin.	
9	LED3	LED channel 3 current input. Connect the LED channel 3 cathode to this pin.	
10	LED4	LED channel 4 current input. Connect the LED channel 4 cathode to this pin.	
11	LED5	LED channel 5 current input. Connect the LED channel 5 cathode to this pin.	
12	LED6	LED channel 6 current input. Connect the LED channel 6 cathode to this pin.	
13	LED7	LED channel 7 current input. Connect the LED channel 7 cathode to this pin.	
14	GND	Ground.	
15	LED8	LED channel 8 current input. Connect the LED channel 8 cathode to this pin.	
16	LED9	LED channel 9 current input. Connect the LED channel 9 cathode to this pin.	
17	LED10	LED channel 10 current input. Connect the LED channel 10 cathode to this pin.	
18	LED11	LED channel 11 current input. Connect the LED channel 11 cathode to this pin.	
19	LED12	LED channel 12 current input. Connect the LED channel 12 cathode to this pin.	
20	LED13	LED channel 13 current input. Connect the LED channel 13 cathode to this pin.	
21	LED14	LED channel 14 current input. Connect the LED channel 14 cathode to this pin.	
22	LED15	LED channel 15 current input. Connect the LED channel 15 cathode to this pin.	
23	LED16	LED channel 16 current input. Connect the LED channel 16 cathode to this pin.	
24	VIN	Power supply input. The VIN pin supplies power to the IC. Connect a capacitor between VIN and GND.	

ABSOLUTE MAXIMUM RATINGS (1)

Input voltage (V _{IN})	0.3V to +22V
V_{LED1} to V_{LED16}	0.5V to +22V
All other pins	0.3V to +5V
Junction temperature (T _J)	150°C
Lead temperature	260°C
Storage temperature	65°C to +150°C
Continuous power dissipation	(T _A = 25°C) ⁽²⁾
QFN-24 (4mmx4mm)	2.97W

ESD Ratings

Human body model (HE	BM)	±1.5kV
Charged-device model	(CDM)	±2kV

Recommended Operating Conditions

Input voltage (V _{IN})	4.5V to 16V
Operating junction temp (T	J) ⁽³⁾
	40°C to +125°C

Thermal Resistance θ_{JA} θ_{JC}

QFN-24 (4mmx4mm)

JESD51-7 ⁽⁴⁾ 42 9.... °C/W

Notes:

- 1) Exceeding these ratings may damage the device.
- 2) The maximum allowable power dissipation is a function of the maximum junction temperature, T_J (MAX), the junction-toambient thermal resistance, θ_{JA} , and the ambient temperature, T_A. The maximum allowable continuous power dissipation at any ambient temperature is calculated by P_D (MAX) = (T_J (MAX) - T_A) / θ_{JA} . Exceeding the maximum allowable power dissipation can generate an excessive die temperature, which may cause the regulator to go into thermal shutdown. Internal thermal shutdown circuitry protects the device from permanent damage.
- Operating devices at a junction temperature up to 150°C is possible. Contact MPS for details.
- 4) Measured on a JESD51-7, a 4-layer PCB. The values given in this table are only valid for comparison with other packages and cannot be used for design purposes. These values were calculated in accordance with JESD51-7, and simulated on a specified JEDEC board. They do not represent the performance obtained in an actual application. The θ_{JC} value indicates the thermal resistance from the junction-to-case bottom.

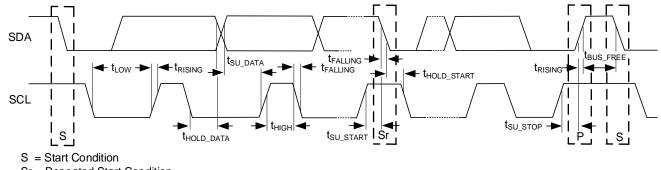
ELECTRICAL CHARACTERISTICS

$V_{IN} = 5V$, $V_{EN} = 5V$, $T_J = 25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Condition	Min	Тур	Max	Units
Input Supply Voltage						
Input voltage (VIN) range	Vin		4.5		16	V
Quiescent supply current	la				5	mA
Shutdown supply current	I _{ST}	$V_{EN} = 0V, V_{IN} = 16V$			2	μA
V _{IN} under-voltage lockout (UVLO) rising threshold	VIN_UVLO_RISING	Rising edge	3.6	3.8	4.2	V
VIN UVLO falling threshold	VIN_UVLO_FALLING	Falling edge	3.3	3.5	3.7	V
Enable (EN)						
EN rising threshold	Ven_rising	V _{EN} rising	2.1			V
EN falling threshold	Ven_falling	V _{EN} falling			0.8	V
EN pull-down resistance	Ren			1		MΩ
RFSH/FLT						
Refresh signal frequency	f _{REFRESH}	FRFSH[9:0] = 0x1A9, FPWM[1:0] = 01	285	300	315	Hz
RFSH/FLT pull-down resistance	Rrfsh/flt	FLTEN = 1, fault is triggered			100	Ω
LED Regulator		•				
ISET voltage	VISET		1.176	1.2	1.224	V
		$R_{ISET} = 24k\Omega, ICHx[5:0] = 0x3F$	-3%	50	+3%	mA
LED current	ILED	$R_{ISET} = 15k\Omega, ICHx[5:0] = 0x3F$	-3%	80	+3%	mA
	N/	ILED = 50mA		200	300	mV
Current sink headroom	VLEDx	ILED = 80mA		350	400	mV
Dimming						
Pulse-width modulation (PWM) frequency	f _{PWM}	FPWM[1:0] = 01	240	250	260	Hz
PWM duty step	t _{PWM}	12-bit resolution, $f_{PWM} = 250Hz$		1		μs
Phase shift	t DELAY	PS_EN = 1		40		μs
LED current step		I _{LED} = 80mA, analog dimming step		1.25		mA
LED current slew rate in		SLEW[1:0] = 01, rising edge		5		μs
PWM dimming		SLEW[1:0] = 11, rising edge		20		μs
Protection						
LED short string protection threshold	VSLP	STH[1:0] = 01	2.85	3	3.15	V
LED short string protection time	tslp	V _{LEDx} > STH[1:0]		4		ms
LED short string protection hiccup time	tslp_HICCUP			1		ms

ELECTRICAL CHARACTERISTICS (continued)

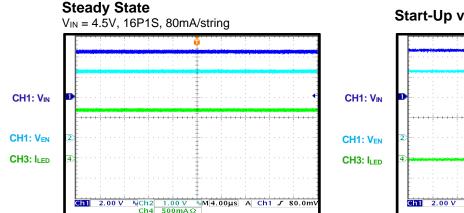
V_{IN} = 5V, V_{EN} = 5V, T_{J} = 25°C, unless otherwise noted.


Parameter	Symbol	Condition	Min	Тур	Max	Units
LED short string protection hiccup detection time	tslp_det			32		μs
LED open string protection threshold	V _{OLP}			100	150	mV
LED open string protection time	t _{OLP}	V _{LEDx} < 100mV		4		ms
LED open string protection hiccup time	tolp_hiccup			1		ms
LED open string protection hiccup detection time	tolp_det			32		μs
Thermal shutdown threshold ⁽⁵⁾	T _{SD}			170		°C
Thermal shutdown hysteresis ⁽⁵⁾	$T_{SD_{HYS}}$			20		°C
Digital Interface						
Logic-low input voltage	V_{IN_LOW}		0		0.4	V
Logic-high input voltage	Vin_high		1.3			V
Logic-low output voltage ⁽⁵⁾	V _{OUT_LOW}	I _{LOAD} = 3mA			0.4	V
SCL clock frequency ⁽⁵⁾	fscL		10		1000	kHz
Bus free time ⁽⁵⁾	tbuf_free	Between a stop and start condition	0.5			μs
Hold time after a start or repeated start command ⁽⁵⁾	thold_start	After this period, the first clock is generated	0.26			μs
Repeated start command set-up time ⁽⁵⁾	tsu_start		0.26			μs
Stop command set-up time (5)	tsu_stop		0.26			μs
Data hold time ⁽⁵⁾	thold_data		0			ns
Data set-up time ⁽⁵⁾	tsu_data		50			ns
Clock low timeout ⁽⁵⁾	tтімеоит		25		35	ms
Clock low time ⁽⁵⁾	t _{LOW}		0.5			μs
Clock high time ⁽⁵⁾	t _{HIGH}		0.26			μs
Clock/data falling time (5)	tFALLING				120	ns
Clock/data rising time ⁽⁵⁾	trising				120	ns

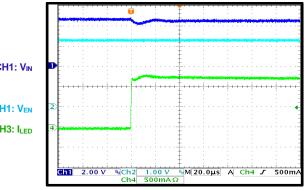
Note:

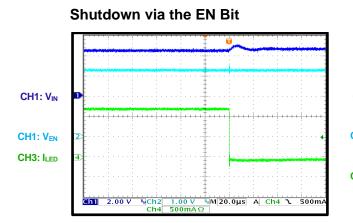
5) Guaranteed by characterization. Not tested in production.

DIGITAL INTERFACE TIMING DIAGRAM

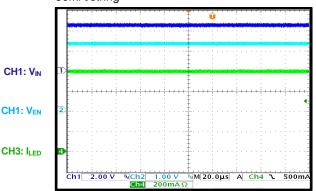


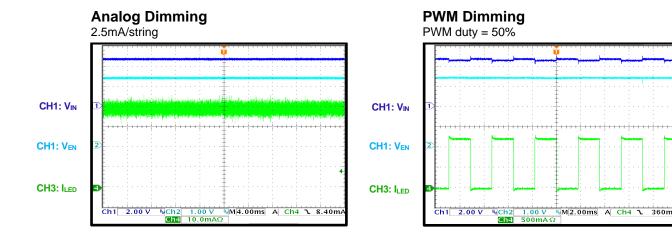
Sr = Repeated Start Condition P = Stop Condition

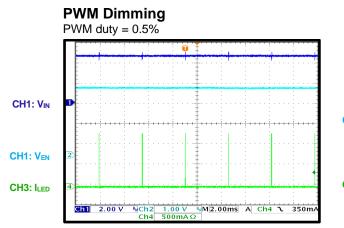

Figure 4: Digital Interface Timing Diagram

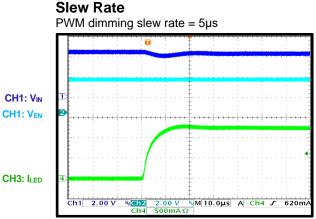

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{IN} = 4.5V, I_{LED} = 80mA per string, LED = 16P1S, T_A = 25°C, unless otherwise noted.




Start-Up via the EN Bit





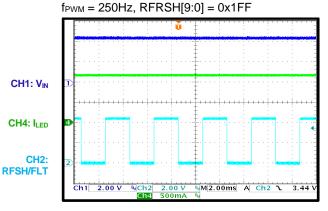
TYPICAL PERFORMANCE CHARACTERISTICS (continued)

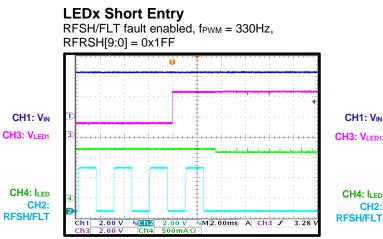
 V_{IN} = 4.5V, I_{LED} = 80mA per string, LED = 16P1S, T_A = 25°C, unless otherwise noted.

 Phase Shift

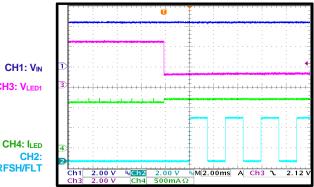
 PWM dimming duty = 20%

 CH1: V_{IN}

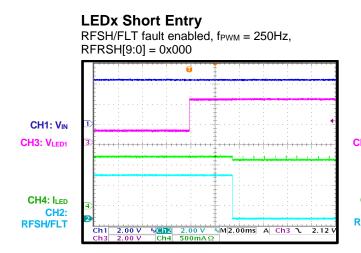

 GH3: LED1

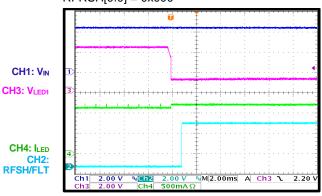

 CH2: LED2

 CH4:


 CH4:

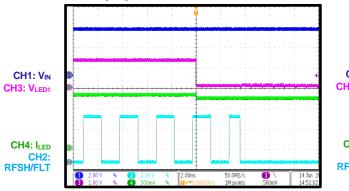
Refresh Function



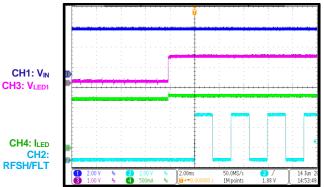


TYPICAL PERFORMANCE CHARACTERISTICS (continued)

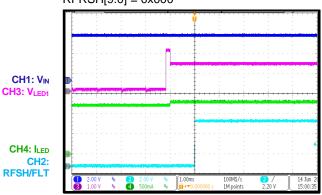
 V_{IN} = 4.5V, I_{LED} = 80mA per string, LED = 16P1S, T_A = 25°C, unless otherwise noted.



LEDx Short Recovery RFSH/FLT fault enabled, fPWM = 250Hz, RFRSH[9:0] = 0x000


LEDx Open Entry

RFSH/FLT fault enabled, f_{PWM} = 330Hz, RFRSH[9:0] = 0x1FF



CH1: VIN CH3: VLED1 CH4: ILED CH2: RFSH/FLT LEDx Open Recovery

RFSH/FLT fault enabled, $f_{PWM} = 330Hz$, RFRSH[9:0] = 0x1FF

LEDx Open Recovery RFSH/FLT fault enabled, f_{PWM} = 250Hz, RFRSH[9:0] = 0x000

MP3326A Rev. 1.0 6/8/2023

FUNCTIONAL BLOCK DIAGRAM

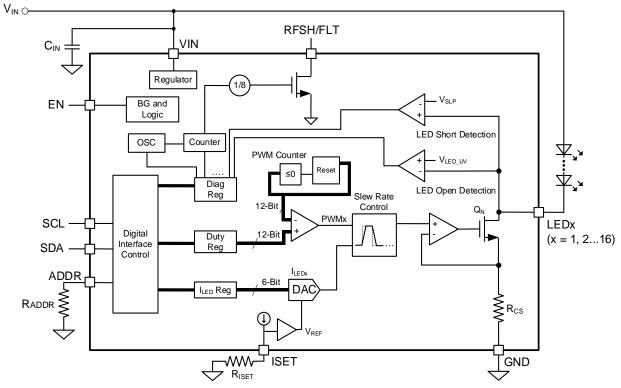


Figure 5: Functional Block Diagram

OPERATION

The MP3326A applies 16 internal current sources in each LED string terminal. The LED current (I_{LED}) of all channels is set via an external current-setting resistor, with a maximum current up to 80mA per channel.

Enable (EN) and Start-Up

Once the input voltage (V_{IN}) exceeds its undervoltage lockout (UVLO) rising threshold $(V_{IN_UVLO_RISING})$ and the EN pin's voltage (V_{EN}) exceeds its rising threshold (V_{EN_RISING}) , the MP3326A enters standby mode and the digital interface is active. After setting the digital interface register, set the EN bit high to start up the system. The start-up sequence is as follows:

- $1. \ V_{\text{IN}}$
- $2. \quad V_{\text{EN}}$
- 3. Digital interface setting
- 4. Set the EN bit

Channel Selection

The channels can be disabled by pulling the corresponding CHxEN bit (where x = 1, 2...16) low.

Dimming

Each channel includes a separate 6-bit analog dimming register and 12-bit pulse-width modulation (PWM) dimming register. The MP3326A can support analog dimming and PWM dimming for each channel.

In analog dimming, the I_{LED} amplitude changes when the analog dimming register changes. Change the code in the ICHx register to apply analog dimming for the corresponding channel. I_{LED} can be estimated with Equation (1):

$$I_{\text{LED}} = \frac{\text{ICHx}}{63} \times I_{\text{SET}}$$
(1)

Where ICHx is the analog dimming code for channel x (where x = 1, 2...16).

If ICHx is set to 0, then the corresponding I_{LED} is 0A.

In PWM dimming, I_{LED} is a PWM waveform, the I_{LED} amplitude remains the same and the I_{LED} duty varies with the PWM dimming register.

The PWM dimming duty (D_{PWM}) is set by the PWMx register, and can be calculated with Equation (2):

$$D_{PWM} = \frac{PWMx}{4095}$$
(2)

Where PWMx is the D_{PWM} code for channel x (where x = 1, 2...16).

The duty only changes when the PWM duty register's 8 most significant bits (MSB) are written. If PWMx is set to 0, then the corresponding I_{LED} is 0A.

The PWM dimming frequency (f_{PWM}) can be selected via register FPWM[1:0]. Table 1 shows the FPWM[1:0] register settings for different PWM frequencies.

Table 1: PWM	Frequency Setting
	_

FPWM[1:0]	fрwм
00	220Hz
01	250Hz (default)
10	280Hz
11	330Hz

To avoid glitches during normal operation, follow the guidelines below:

- 1. Change the FPWM[1:0] value only when the EN bit is set 0.
- 2. Write the FPWM register, then allow a 10µs delay before writing to other registers.

Phase Shift

Enable channel-by-channel phase shift by setting the PS_EN bit high.

When the phase shift function is enabled, the rising edge of each channel occurs 40μ s after the previous channel. This means that the rising edge of the channel x + 1 (where x = 1, 2...15) I_{LED} occurs 40μ s after the rising edge of channel x's I_{LED}.

Synchronized Output for LCD Refresh Frequency

Enable the fault indicator function via the FLTEN bit.

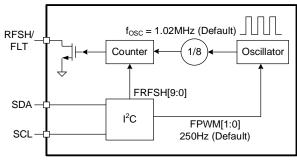
If FLTEN = 0, fault indication is disabled and the RFSH/FLT pin maintains the output refresh signal, even if a protection is triggered.

If FLTEN = 1, fault indication is enabled and RFSH/FLT is pulled low if a fault occurs.

Table 2 shows the RFSH/FLT output status, which depends on the fault status.

Table 2: RFSH/FLT Output Status

FLTEN	-	RFSH[9:0] = FRFSH[9:0] = 0x000 0x001 to 0x3FF		-
	No Fault	Fault	No Fault	Fault
1	Pull high externally	Low	Rectangular signal	Low
0	Pull high externally		Rectangular signal	


The refresh signal frequency ($f_{REFRESH}$) is set via FRFSH[9:0]. If FRFSH[9:0] = 0x000, then RFSH/FLT outputs high. If FRFSH[9:0] = 0x001~0x3FF, then RFSH/FLT outputs a rectangular signal. $f_{REFRESH}$ can be calculated with Equation (3):

$$f_{\text{REFRESH}} = \frac{127500}{\text{FRFSH}} \times \frac{f_{\text{PWM}}}{250} \text{ (Hz)}$$
(3)

Where FRFSH is the FRFSH[9:0] value (>0), and f_{PWM} is set via register FPWM[1:0]. f_{PWM} can be set to 220Hz, 250Hz, 280Hz, or 330Hz.

Note that all values in Equation (3) are decimalbased and f_{REFRESH} does not change until the 8MSB are written.

The internal oscillator is divided by 8. As the clock refreshes the frequency generation, the FRFSH[9:0] register sets the counter number (see Figure 6).

LED Current Slew Rate Control

To reduce EMI, change the I_{LED} rising and falling slew rate for PWM dimming. The I_{LED} rising and

falling slew rate is controlled by the SLEW[1:0] register. Table 3 shows the SLEW[1:0] register settings for different slew rates.

	0
SLEW[1:0]	Slew Rate
00	No slew rate
01	5µs
10	10µs
11	20µs

Table 3: Slew Rate Setting

Protections

The MP3326A employs V_{IN} UVLO protection, LED short protection, LED open protection, and thermal shutdown.

The RFSH/FLT pin is an active-low, open-drain output that is pulled high to an external voltage source. If a fault occurs, the corresponding fault bit is set and RFSH/FLT is pulled low.

For LED open and short protection, hiccup mode or latch-off mode can be selected via the LATCH bit in the digital interface.

If LATCH = 1 and a fault occurs, the MP3326A enters latch-off mode. The fault channel remains off until either VIN or EN turns off and resets. After the fault bit is read, FRSH/FLT is pulled high and the fault bit is set. If the fault bit is read again, then the fault bit resets.

If LATCH = 0 and a fault occurs, the MP3326A enters hiccup mode, during which the fault channel tries to conduct for 32µs every 1ms to detect whether the fault has been cleared. Once the fault condition is no longer present, FRSH/FLT is automatically pulled high and the fault bit resets when it is read.

V_{IN} Under-Voltage Lockout (UVLO) Protection

If V_{IN} reaches its UVLO threshold, the IC shuts down and all digital interface registers are reset.

LED Open Protection

If an LED is open, the LEDx (where x = 1, 2...16) voltage (V_{LEDx}) drops. If V_{LEDx} drops below the protection threshold (about 100mV) for 4ms, then LED open protection is triggered. In this scenario, the fault channel turns off, the corresponding open fault bit (CHxO, where x = 1, 2...16) is set, and RFSH/FLT is pulled low.

LED Short Protection

If there is an LED short condition and V_{LEDx} exceeds the voltage set by STH[1:0] for 4ms, then LED short protection is triggered. Once this protection is triggered, the short channel turns off, the corresponding fault bit (CHxS, where x = 1, 2...16) is set, and RFSH/FLT is pulled low.

The LED short protection threshold (V_{SLP}) is configured via the STH[1:0] register. Table 4 shows the STH[1:0] register setting for different LED short protection thresholds.

Table 4: LED Short Protection Threshold Setting

STH[1:0]	V _{SLP}
00	2V
01	3V
10	4V
11	5V

Over-Temperature Protection (OTP)

If the IC temperature exceeds 170°C, then overtemperature protection (OTP) is triggered, all channels turn off, RFSH/FLT is pulled low, and FT_OTP is set. Once the temperature drops by about 150°C, all channels turn on again and the IC resumes normal operation.

DIGITAL INTERFACE

Digital Interface Chip Address

The device address is $0x30 \sim 0x39$, which can be configured via the ADDR resistor (R_{ADDR}). The internal current source flows to R_{ADDR} , and the ADDR voltage (V_{ADDR}) determines the digital interface address. Ten different addresses can be configured via R_{ADDR} .

Table 5 shows the various resistor ratio (R_{ADDR} / R_{ISET}) configurations to set the digital interface address.

Table 5: Digital Interface Address Setting

RADDR / RISET Ratio	Digital Interface Address (A3, A2, A1, A0)			
< 0.05	0000			
>0.05, <0.15	0001			
>0.15, <0.25	0010			
>0.25, <0.35	0011			
>0.35, <0.45	0100			
>0.45, <0.55	0101			
>0.55, <0.65	0110			
>0.65, <0.75	0111			
>0.75, <0.85	1000			
>0.85, <0.95	1001			

At start-up, the IC checks the digital interface address first. This address remains the same during operation until the IC's power is reset.

After a start (S) command is sent, the digital interface compatible master sends a 7-bit address, followed by an 8th data direction bit (where 1 = read and 0 = write). The 8th bit indicates the register address to/from which the data is written/read (see Figure 7).

0 1 1 A3 A2 A1 A0 R/W

Figure 7: Digital Interface Compatible Device Address

To avoid glitches during normal operation, follow the steps below:

- 1. Change the FPWM[1:0] value only when the EN bit is set to 0.
- 2. Write the FPWM[1:0] register, then allow a 10µs delay before writing to other registers.

DIGITAL INTERFACE REGISTER MAP

Register Short Name	R/W	Add.	Default	D7	D6	D5	D4	D3	D2	D1	D0	
ILED_ FRE	R/W	00h	01		RESERVED					FPW	И[1:0]	
DEV_ CON	R/W	01h	00	FLTEN	LATCH	STH	[1:0]	SLEW[1:0]		PS_EN	EN	
REFRESH_1	R/W	02h	01			RESERVED)		FT OTP	FRFS	H[1·0]	
REFRESH_2	R/W	02h	6A			REGERVEE	FRFS	H[9:2]	11_011		11[1.0]	
CHN_				0.110							0110511	
EN1 CHN_	R/W	04h	FF	CH16EN	CH15EN	CH14EN	CH13EN	CH12EN	CH11EN	CH10EN	CH9EN	
EN2	R/W	05h	FF	CH8EN	CH7EN	CH6EN	CH5EN	CH4EN	CH3EN	CH2EN	CH1EN	
FAU_OP1	R	06h	00	CH160	CH150	CH140	CH130	CH120	CH110	CH100	CH9O	
FAU_OP2	R	07h	00	CH8O	CH7O	CH6O	CH5O	CH4O	CH3O	CH2O	CH10	
FAU_SH1	R	08h	00	CH16S	CH15S	CH14S	CH13S	CH12S	CH11S	CH10S	CH9S	
FAU_SH2	R	09h	00	CH8S	CH7S	CH6S	CH5S	CH4S	CH3S	CH2S	CH1S	
ILED_ CH1	R/W	0Ah	3F	RESE	RVED			ICH1	I[5:0]			
DPWM_ CH1 1	R/W	0Bh	0F		RESE	RVED			PWM	1[3:0]		
DPWM_ CH1_2	R/W	0Ch	FF				PWM	I[11:4]				
ILED_ CH2	R/W	0Dh	3F	RESE	RVED			ICH2	2[5:0]			
DPWM_ CH2_1	R/W	0Eh	0F		RESERVED					2[3:0]		
DPWM_ CH2_2	R/W	0Fh	FF	PWM2[11:4]								
ILED_ CH3	R/W	10h	3F	RESERVED				ICH	B[5:0]			
DPWM_ CH3 1	R/W	11h	0F		RESERVED					PWM3[3:0]		
DPWM_ CH3_2	R/W	12h	FF	PWM3[11:4]								
ILED_ CH4	R/W	13h	3F	RESE	RVED			ICH4[5:0]				
DPWM_ CH4_1	R/W	14h	0F		RESE	RVED		PWM4[3:0]				
DPWM_ CH4_2	R/W	15h	FF				PWM4	4[11:4]	:4]			
ILED_ CH5	R/W	16h	3F	RESE	RVED			ICH	5[5:0]			
DPWM_ CH5_1	R/W	17h	0F		RESE	RVED			PWM	5[3:0]		
DPWM_ CH5_2	R/W	18h	FF				PWM	5[11:4]				
ILED_ CH6	R/W	19h	3F	RESE	RVED			ICH	6[5:0]			
DPWM_ CH6_1	R/W	1Ah	0F		RESE	RVED			PWM	6[3:0]		
DPWM_ CH6_2	R/W	1Bh	FF				PWM	6[11:4]				
ILED_ CH7	R/W	1Ch	3F	RESE	RVED			ICH	7[5:0]			
DPWM_ CH7_1	R/W	1Dh	0F		RESE	RVED			PWM	7[3:0]		
DPWM_ CH7_2	R/W	1Eh	FF				PWM	7[11:4]				
ILED_CH8	R/W	1Fh	3F	RESE	RVED			ICH8	3[5:0]			
DPWM_CH8_ 1	R/W	20h	0F		RESE	RVED			PWM	8[3:0]		
DPWM_CH8_ 2	R/W	21h	FF				PWM	3[11:4]				

DIGITAL INTERFACE REGISTER MAP (continued)

Register Short Name	R/W	Add.	Default	D7	D6	D5	D4	D3	D2	D1	D0
ILED_CH9	R/W	22h	3F	RESE	RVED			ICH9[5:0]			
DPWM_CH9_ 1	R/W	23h	0F		RESE	RVED		PWM9[3:0]			
DPWM_CH9_ 2	R/W	24h	FF				PWM	9[11:4]			
ILED_CH10	R/W	25h	3F	RESE	RVED			ICH1	0[5:0]		
DPWM_CH10 _1	R/W	26h	0F		RESE	RVED			PWM	10[3:0]	
 DPWM_CH10 _2	R/W	27h	FF				PWM1	0[11:4]			
ILED_CH11	R/W	28h	3F	RESE	RVED			ICH1	1[5:0]		
DPWM_CH11 _1	R/W	29h	0F		RESE	RVED			PWM	11[3:0]	
DPWM_CH11 _2	R/W	2Ah	FF	PWM11[11:4]							
ILED_CH12	R/W	2Bh	3F	RESERVED				ICH1	ICH12[5:0]		
DPWM_CH12 _1	R/W	2Ch	0F	RESERVED					l	PWM12[3:0]	
DPWM_CH12 _2	R/W	2Dh	FF	PWM12[11:4]							
ILED_CH13	R/W	2Eh	3F	RESE	RVED			ICH13[5:0]			
DPWM_CH13 _1	R/W	2Fh	0F		F	RESERVED				PWM13[3:0]	
DPWM_CH13 _2	R/W	30h	FF				PWM1	3[11:4]			
ILED_CH14	R/W	31h	ЗF	RESE	RVED			ICH1	4[5:0]		
DPWM_CH14 _1	R/W	32h	0F		F	RESERVED				PWM14[3:0]	
DPWM_CH14 _2	R/W	33h	FF				PWM1	4[11:4]			
ILED_CH15	R/W	34h	ЗF	RESE	RVED			ICH1	5[5:0]		
DPWM_CH15 _1	R/W	35h	0F		F	RESERVED			l	PWM15[3:0]	
 DPWM_CH15 _2	R/W	36h	FF				PWM1	5[11:4]			
ILED_CH16	R/W	37h	ЗF	RESE	RVED			ICH	16[5:0]		
DPWM_CH16 _1	R/W	38h	0F			RESERVED PWM1			PWM16[3:0]	
DPWM_CH16 _2	R/W	39h	FF				PWM1	6[11:4]	•		

REGISTER MAP

All registers are in unsigned binary format.

ILED_FRE (0x00)

The ILED_FRE command sets the PWM frequency (f_{PWM}).

Bits	Access	Bit Name	Default	Description
7:2	R	RESERVED	N/A	Reserved.
				Sets the LED current pulse-width modulation (PWM) dimming frequency ($f_{\mbox{PWM}}).$
1:0	R/W	FPWM[1:0]	2'b 01	00: 220Hz 01: 250Hz 10: 280Hz 11: 330Hz
				To avoid any glitches during normal operation, ensure that the following conditions are met:
			 FPWM[1:0] can only be changed once the EN bit is set to 0 Write the FPWM[1:0] register, then wait 10µs before writing any other registers 	

DEV_CON (0x01)

The DEV_CON command controls the fault indication, latch-off mode, phase-shift functions, as well as the short string protection and slew rate thresholds.

Bits	Access	Bit Name	Default	Description
				Enables the FRSH/FLT pin's fault indication.
7	R/W	FLTEN	1'b0	0: Disabled. The RFSH/FLT pin refreshes the signal output 1: Enabled. The RFSH/FLT pin indicates whether a fault has occurred
				Enables latch-off mode.
6	R/W	LATCH	1'b0	0: Disabled. The part operates in hiccup mode if a fault occurs1: Enabled. The part latches off if a fault occurs
				Sets the LED short-load protection (SLP) threshold (V_{SLP}).
5:4	R/W	STH[1:0]	2'b 00	00: 2V 01: 3V 10: 4V 11: 5V
				Sets the LED current (I _{LED}) slew rate.
3:2	R/W	SLEW[1:0]	2'b 00	00: No slew rate 01: 5μs 10:10μs 11: 20μs
				Enables the phase shift function.
1	R/W	PS_EN	1'b0	0: Disabled 1: Enabled, the rising edge of LEDx + 1 occurs 40 μ s after LEDx (x = 1, 215)
				Enables the IC.
0	R/W	EN	1'b0	0: Disabled 1: Enabled

REFRESH_1 (0x02)

The FERRESH_1 command sets the RFSH/FLT pin refresh frequency (2LSB).

Bits	Access	Bit Name	Default	Description		
7:3	R	RESERVED	N/A	Reserved.		
				Indicates whether an over-temperature (OT) fault has occurred.		
2	R	FT_OTP	1'b0	0: An OT fault has not occurred 1: An OT fault has occurred		
		W FRFSH[1:0]				Sets the 2LSB of the refresh frequency (fREFRESH).
					FRFSH[9:0] = 0x000: Output a high-level voltage FRFSH[9:0] > 0: $f_{REFRESH}$ can be calculated with the following equation:	
1:0	R/W		FSH[1:0] 2'b 01	$f_{\text{REFRESH}} = \frac{127500}{\text{FRFSH}} \times \frac{f_{\text{PWM}}}{250} \text{ (Hz)}$		
				All of the numbers in this equation have a decimal base. fREFRESH does not change until the 8MSB are written.		

REFRESH_2 (0x03)

The FERRESH_2 command sets the RFSH/FLT pin refresh frequency (8MSB).

Sets the 8MSB of fREFRESH.	Bits	Bit Name	Access	Default	Description
7:3 R/W FRFSH[9:2] $\begin{cases} 8'b \\ 01101010 \end{cases}$ $f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250}$ (Hz)		FRESH(9·2)		8'b	Sets the 8MSB of f _{REFRESH} . FRFSH[9:0] = 0x000: Output a high-level voltage FRFSH[9:0] > 0: f _{REFRESH} can be calculated with the following equation: $f_{REFRESH} = \frac{127500}{FRFSH} \times \frac{f_{PWM}}{250} $ (Hz) All of the numbers in this equation have a decimal base. f _{REFRESH} does not

CHN_EN1 (0x04)

The CHN_EN1 command sets the enable bits for channels 9 through 16.

Bits	Access	Bit Name	Default	Description
7	RW	CH16EN	1'b1	0: Disable channel 16 1: Enable channel 16
6	RW	CH15EN	1'b1	0: Disable channel 15 1: Enable channel 15
5	RW	CH14EN	1'b1	0: Disable channel 14 1: Enable channel 14
4	RW	CH13EN	1'b1	0: Disable channel 13 1: Enable channel 13
3	RW	CH12EN	1'b1	0: Disable channel 12 1: Enable channel 12
2	RW	CH11EN	1'b1	0: Disable channel 11 1: Enable channel 11
1	RW	CH10EN	1'b1	0: Disable channel 10 1: Enable channel 10
0	RW	CH9EN	1'b1	0: Disable channel 9 1: Enable channel 9

CHN_EN2 (0x05)

The CHN_EN2 command sets the enable bits for channels 1 through 8.

Bits	Access	Bit Name	Default	Description
7	RW	CH8EN	1'b1	0: Disable channel 8 1: Enable channel 8
6	RW	CH7EN	1'b1	0: Disable channel 7 1: Enable channel 7
5	RW	CH6EN	1'b1	0: Disable channel 6 1: Enable channel 6
4	RW	CH5EN	1'b1	0: Disable channel 5 1: Enable channel 5
3	RW	CH4EN	1'b1	0: Disable channel 4 1: Enable channel 4
2	RW	CH3EN	1'b1	0: Disable channel 3 1: Enable channel 3
1	RW	CH2EN	1'b1	0: Disable channel 2 1: Enable channel 2
0	RW	CH1EN	1'b1	0: Disable channel 1 1: Enable channel 1

FAU_OP1 (0x06)

The FAU_OP1 command reads the open fault bits for channels 9 through 16.

Bits	Access	Bit Name	Default	Description
7	R	CH16O	1'b0	0: No open fault has occurred on channel 16 1: An open fault has occurred on channel 16
6	R	CH15O	1'b0	0: No open fault has occurred on channel 15 1: An open fault has occurred on channel 15
5	R	CH14O	1'b0	0: No open fault has occurred on channel 14 1: An open fault has occurred on channel 14
4	R	CH13O	1'b0	0: No open fault has occurred on channel 13 1: An open fault has occurred on channel 13
3	R	CH12O	1'b0	0: No open fault has occurred on channel 12 1: An open fault has occurred on channel 12
2	R	CH11O	1'b0	0: No open fault has occurred on channel 11 1: An open fault has occurred on channel 11
1	R	CH10O	1'b0	0: No open fault has occurred on channel 10 1: An open fault has occurred on channel 10
0	R	CH9O	1'b0	0: No open fault has occurred on channel 9 1: An open fault has occurred on channel 9

FAU_OP2 (0x07)

The FAU_OP2 command reads the open fault bits for channels 1 through 8.

Bits	Access	Bit Name	Default	Description
7	R	CH8O	1'b0	0: No open fault has occurred on channel 8 1: An open fault has occurred on channel 8
6	R	CH7O	1'b0	0: No open fault has occurred on channel 7 1: An open fault has occurred on channel 7

MP3326A Rev. 1.0 6/8/2023

MP3326A - 16-CH LED DRIVER W/ DIGITAL INTERFACE AND SEPARATE PDIM/ADIM

5	R	CH6O	1'b0	0: No open fault has occurred on channel 6 1: An open fault has occurred on channel 6
4	R	CH5O	1'b0	0: No open fault has occurred on channel 5 1: An open fault has occurred on channel 5
3	R	CH4O	1'b0	0: No open fault has occurred on channel 4 1: An open fault has occurred on channel 4
2	R	СНЗО	1'b0	0: No open fault has occurred on channel 3 1: An open fault has occurred on channel 3
1	R	CH2O	1'b0	0: No open fault has occurred on channel 2 1: An open fault has occurred on channel 2
0	R	CH1O	1'b0	0: No open fault has occurred on channel 1 1: An open fault has occurred on channel 1

FAU_SH1 (0x08)

The FAU_SH1 command reads the short fault bits for channels 9 through 16.

Bits	Access	Bit Name	Default	Description
7	R	CH16S	1'b0	0: No short fault has occurred on channel 16 1: A short fault has occurred on channel 16
6	R	CH15S	1'b0	0: No short fault has occurred on channel 15 1: A short fault has occurred on channel 15
5	R	CH14S	1'b0	0: No short fault has occurred on channel 14 1: A short fault has occurred on channel 14
4	R	CH13S	1'b0	0: No short fault has occurred on channel 13 1: A short fault has occurred on channel 13
3	R	CH12S	1'b0	0: No short fault has occurred on channel 12 1: A short fault has occurred on channel 12
2	R	CH11S	1'b0	0: No short fault has occurred on channel 11 1: A short fault has occurred on channel 11
1	R	CH10S	1'b0	0: No short fault has occurred on channel 10 1: A short fault has occurred on channel 10
0	R	CH9S	1'b0	0: No short fault has occurred on channel 9 1: A short fault has occurred on channel 9

FAU_SH2 (0x09)

The FAU_SH2 command reads the short fault bits for channels 1 through 8.

Bits	Access	Bit Name	Default	Description
7	R	CH8S	1'b0	0: No short fault has occurred on channel 8 1: A short fault has occurred on channel 8
6	R	CH7S	1'b0	0: No short fault has occurred on channel 7 1: A short fault has occurred on channel 7
5	R	CH6S	1'b0	0: No short fault has occurred on channel 6 1: A short fault has occurred on channel 6
4	R	CH5S	1'b0	0: No short fault has occurred on channel 5 1: A short fault has occurred on channel 5
3	R	CH4S	1'b0	0: No short fault has occurred on channel 4 1: A short fault has occurred on channel 4
2	R	CH3S	1'b0	0: No short fault has occurred on channel 3 1: A short fault has occurred on channel 3

1	R	CH2S	1'b0	0: No short fault has occurred on channel 2 1: A short fault has occurred on channel 2
0	R	CH1S	1'b0	0: No short fault has occurred on channel 1 1: A short fault has occurred on channel 1

ILED_CH1 (0x0A)

The ILED_CH1 command sets the LED1 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH1[5:0]	6'b 111111	Sets the LED channel 1 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH1_1 (0x0B)

The DPWM_CH1_1 command sets the PWM dimming duty's 4LSB for the channel 1 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM1[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 1 $\ensuremath{I_{LED}}$. The dimming duty only changes once the 8MSB are written.

DPWM_CH1_2 (0x0C)

The DPWM_CH1_2 command sets the PWM dimming duty's 8MSB for the channel 1 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM1[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 1 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH2 (0x0D)

The ILED_CH2 command sets the LED2 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH2[5:0]	6'b 111111	Sets the LED channel 2 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH2_1 (0x0E)

The DPWM_CH2_1 command sets the PWM dimming duty's 4LSB for the channel 2 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM2[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 2 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

DPWM_CH2_2 (0x0F)

The DPWM_CH2_2 command sets the PWM dimming duty's 8MSB for the channel 2 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM2[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 2 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH3 (0x10)

The ILED_CH3 command sets the LED3 current amplitude.

	Bits	Access	Bit Name	Default	Description
Ī	7:6	R	RESERVED	N/A	Reserved.
	5:0	R/W	ICH3[5:0]	6'b 111111	Sets the LED channel 3 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH3_1 (0x11)

The DPWM_CH3_1 command sets the PWM dimming duty's 4LSB for the channel 3 ILED.

	Bits	Access	Bit Name	Default	Description
Ī	7:4	R	RESERVED	N/A	Reserved.
	3:0	R/W	PWM3[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 4 I_{LED} . The dimming duty only changes once the 8MSB are written.

DPWM_CH3_2 (0x12)

The DPWM_CH3_2 command sets the PWM dimming duty's 8MSB for the channel 3 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM3[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 3 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH4 (0x13)

The ILED_CH4 command sets the LED4 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH4[5:0]	6'b 111111	Sets the LED channel 4 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH4_1 (0x14)

The DPWM_CH4_1 command sets the PWM dimming duty's 4LSB for the channel 4 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM4[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 4 $\ensuremath{I_{LED}}$. The dimming duty only changes once the 8MSB are written.

DPWM_CH4_2 (0x15)

The DPWM_CH4_2 command sets the PWM dimming duty's 8MSB for the channel 4 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM4[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 4 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH5 (0x16)

The ILED_CH5 command sets the LED5 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH5[5:0]	6'b 111111	Sets the LED channel 5 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH5_1 (0x17)

The DPWM_CH5_1 command sets the PWM dimming duty's 4LSB for the channel 5 ILED.

	Bits	Access	Bit Name	Default	Description
Ī	7:4	R	RESERVED	N/A	Reserved.
	3:0	R/W	PWM5[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 5 ILED. The dimming duty only changes once the 8MSB are written.

DPWM_CH5_2 (0x18)

The DPWM_CH5_2 command sets the PWM dimming duty's 8MSB for the channel 5 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM5[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 5 $\rm I_{\rm LED}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH6 (0x19)

The ILED_CH6 command sets the LED6 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH6[5:0]	6'b 111111	Sets the LED channel 6 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH6_1 (0x1A)

The DPWM_CH6_1 command sets the PWM dimming duty's 4LSB for the channel 6 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM6[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 6 I_{LED} . The dimming duty only changes once the 8MSB are written.

DPWM_CH6_2 (0x1B)

The DPWM_CH6_2 command sets the PWM dimming duty's 8MSB for the channel 6 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM6[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 6 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH7 (0x1C)

The ILED_CH7 command sets the LED7 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH7[5:0]	6'b 111111	Sets the LED channel 7 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH7_1 (0x1D)

The DPWM_CH7_1 command sets the PWM dimming duty's 4LSB for the channel 7 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM7[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 7 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

MP3326A Rev. 1.0 6/8/2023

DPWM_CH7_2 (0x1E)

The DPWM_CH7_2 command sets the PWM dimming duty's 8MSB for the channel 7 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM7[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 7 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH8 (0x1F)

The ILED_CH8 command sets the LED8 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH8[5:0]	6'b 111111	Sets the LED channel 8 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH8_1 (0x20)

The DPWM_CH8_1 command sets the PWM dimming duty's 4LSB for the channel 8 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM8[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 8 $\rm I_{LED}.$ The dimming duty only changes once the 8MSB are written.

DPWM_CH8_2 (0x21)

The DPWM_CH8_2 command sets the PWM dimming duty's 8MSB for the channel 8 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM8[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 8 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH9 (0x22)

The ILED_CH9 command sets the LED9 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH9[5:0]	6'b 111111	Sets the LED channel 9 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH9_1 (0x23)

The DPWM_CH9_1 command sets the PWM dimming duty's 4LSB for the channel 9 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM9[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 9 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

DPWM_CH9_2 (0x24)

The DPWM_CH9_2 command sets the PWM dimming duty's 8MSB for the channel 9 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM9[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 9 $\rm I_{\rm LED}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH10 (0x25)

The ILED_CH10 command sets the LED10 current amplitude.

	Bits	Access	Bit Name	Default	Description
Ī	7:6	R	RESERVED	N/A	Reserved.
	5:0	R/W	ICH10[5:0]	6'b 111111	Sets the LED channel 10 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH10_1 (0x26)

The DPWM_CH10_1 command sets the PWM dimming duty's 4LSB for the channel 10 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM10[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 10 I_{LED} . The dimming duty only changes once the 8MSB are written.

DPWM_CH10_2 (0x27)

The DPWM_CH10_2 command sets the PWM dimming duty's 8MSB for the channel 10 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM10[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 10 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH11 (0x28)

The ILED_CH11 command sets the LED11 current amplitude.

E	Bits	Access	Bit Name	Default	Description
	7:6	R	RESERVED	N/A	Reserved.
:	5:0	R/W	ICH11[5:0]	6'b 111111	Sets the LED channel 11 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH11_1 (0x29)

The DPWM_CH11_1 command sets the PWM dimming duty's 4LSB for the channel 11 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM11[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 11 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

DPWM_CH11_2 (0x2A)

The DPWM_CH11_2 command sets the PWM dimming duty's 8MSB for the channel 11 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM11[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 11 I_{LED} . The dimming duty only changes once the 8MSB are written.

ILED_CH12 (0x2B)

The ILED_CH12 command sets the LED12 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH12[5:0]	6'b 111111	Sets the LED channel 12 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH12_1 (0x2C)

The DPWM_CH12_1 command sets the PWM dimming duty's 4LSB for the channel 12 ILED.

	Bits	Access	Bit Name	Default	Description
Ī	7:4	R	RESERVED	N/A	Reserved.
	3:0	R/W	PWM12[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 12 ILED. The dimming duty only changes once the 8MSB are written.

DPWM_CH12_2 (0x2D)

The DPWM_CH12_2 command sets the PWM dimming duty's 8MSB for the channel 12 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM12[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 12 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH13 (0x2E)

The ILED_CH13 command sets the LED13 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH13[5:0]	6'b 111111	Sets the LED channel 13 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH13_1 (0x2F)

The DPWM_CH13_1 command sets the PWM dimming duty's 4LSB for the channel 13 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM13[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 13 I_{LED} . The dimming duty only changes once the 8MSB are written.

DPWM_CH13_2 (0x30)

The DPWM_CH13_2 command sets the PWM dimming duty's 8MSB for the channel 13 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM13[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 13 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH14 (0x31)

The ILED_CH14 command sets the LED14 current amplitude.

E	Bits	Access	Bit Name	Default	Description
	7:6	R	RESERVED	N/A	Reserved.
	5:0	R/W	ICH14[5:0]	6'b 111111	Sets the LED channel 14 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH14_1 (0x32)

The DPWM_CH14_1 command sets the PWM dimming duty's 4LSB for the channel 14 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM14[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 14 I_{LED} . The dimming duty only changes once the 8MSB are written.

MP3326A Rev. 1.0 6/8/2023

DPWM_CH14_2 (0x33)

The DPWM_CH14_2 command sets the PWM dimming duty's 8MSB for the channel 14 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM14[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 14 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

ILED_CH15 (0x34)

The ILED_CH15 command sets the LED15 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH15[5:0]	6'b 111111	Sets the LED channel 15 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH15_1 (0x35)

The DPWM_CH15_1 command sets the PWM dimming duty's 4LSB for the channel 15 ILED.

Bits	Access	Bit Name	Default	Description
7:4	R	RESERVED	N/A	Reserved.
3:0	R/W	PWM15[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 15 I_{LED} . The dimming duty only changes once the 8MSB are written.

DPWM_CH15_2 (0x36)

The DPWM_CH15_2 command sets the PWM dimming duty's 8MSB for the channel 15 ILED.

Bits	Access	Bit Name	Default	Description		
7:0	R/W	PWM15[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 15 ILED. The dimming duty only changes once the 8MSB are written.		

ILED_CH16 (0x37)

The ILED_CH16 command sets the LED16 current amplitude.

Bits	Access	Bit Name	Default	Description
7:6	R	RESERVED	N/A	Reserved.
5:0	R/W	ICH16[5:0]	6'b 111111	Sets the LED channel 16 current for analog dimming. See Equation (1) on page 13 for details.

DPWM_CH16_1 (0x38)

The DPWM_CH16_1 command sets the PWM dimming duty's 4LSB for the channel 16 ILED.

E	Bits	Access	Bit Name	Default	Description
	7:4	R	RESERVED	N/A	Reserved.
;	3:0	R/W	PWM16[3:0]	4'b 1111	Sets the PWM dimming duty's 4LSB for the channel 16 I_{LED} . The dimming duty only changes once the 8MSB are written.

DPWM_CH16_2 (0x39)

The DPWM_CH16_2 command sets the PWM dimming duty's 8MSB for the channel 16 ILED.

Bits	Access	Bit Name	Default	Description
7:0	R/W	PWM16[11:4]	8'b 11111111	Sets the PWM dimming duty's 8MSB for the channel 16 $I_{\text{LED}}.$ The dimming duty only changes once the 8MSB are written.

APPLICATION INFORMATION

LED Current Setting

Connect a resistor from the ISET pin to GND to set I_{LED} for all 16 channels. I_{LED} can be calculated with Equation (4):

$$I_{LED}(mA) = \frac{1200}{R_{ISET}(k\Omega)}$$
(4)

PCB Layout Guidelines

Efficient PCB layout is critical for stable operation. For the best results, refer to Figure 8 and following the guidelines below:

- 1. Place the VIN capacitor as close as possible to the VIN pin.
- 2. Add at least 3 vias near the VIN capacitor's ground point.
- 3. Ensure that the traces from the LED anode to the LEDx pins are wide enough to support the set current (up to 80mA).

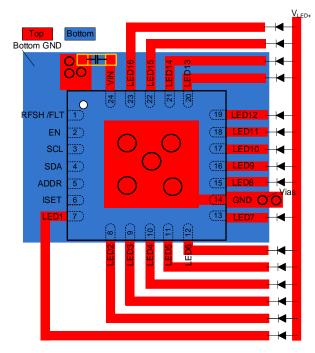


Figure 8: Recommended PCB Layout

TYPICAL APPLICATION CIRCUITS

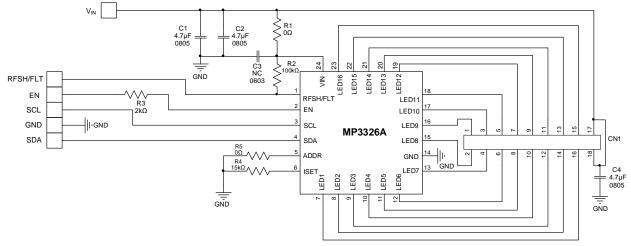


Figure 9: Typical Application Circuit (ILED = 80mA/Channel)

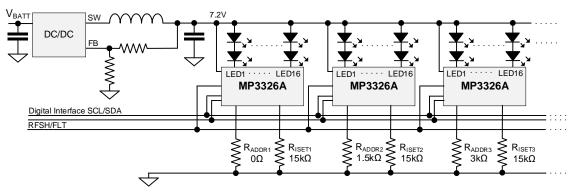
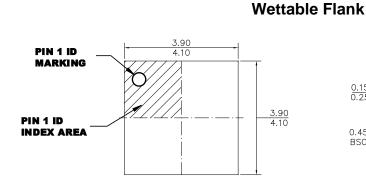
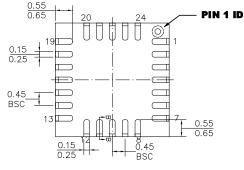
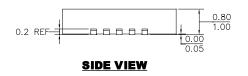
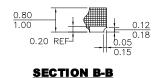



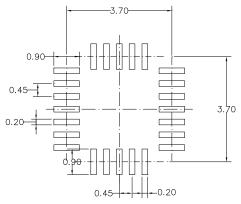
Figure 10: Typical System Application Circuit (2 LED in Series, ILED = 80mA/Channel)



QFN-24 (4mmx4mm)


PACKAGE INFORMATION



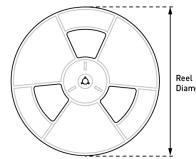

TOP VIEW

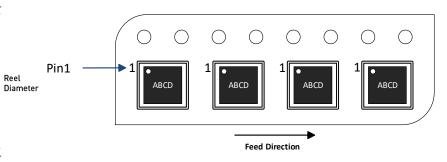
BOTTOM VIEW

RECOMMENDED LAND PATTERN

NOTE:

1) THE LEAD SIDE IS WETTABLE.


2) ALL DIMENSIONS ARE IN MILLIMETERS. 3) LEAD COPLANARITY SHALL BE 0.08 MILLIMETERS MAX.


4) JEDEC REFERENCE IS MO-220.

5) DRAWING IS NOT TO SCALE.

CARRIER INFORMATION

Part Number	Package Description	Quantity/ Reel	Quantity/ Tube	Quantity/ Tray	Reel Diameter	Carrier Tape Width	Carrier Tape Pitch
MP3326AGRE-Z	QFN-24 (4mmx4mm)	5000	N/A	N/A	13in	12mm	8mm

REVISION HISTORY

Revision	# Revision Date	Description	Pages Updated
1.0	6/8/2023	Initial Release	-

Notice: The information in this document is subject to change without notice. Please contact MPS for current specifications. Users should warrant and guarantee that third-party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.