Evaluation Board User Guide EVAL-ADPL54203-AZ

Micropower No-Opto Isolated Flyback Converter

General Description

The evaluation circuit EVAL-ADPL54203-AZ is a micropower no-opto isolated flyback converter featuring the ADPL54203. This demo circuit outputs 5V and maintains tight regulation with a load current from 10 mA to 2.2 A over an input voltage from 10 V to 28 V . The output current capability increases with the input voltage. The ADPL54203 typically needs less than 0.5% of its full output power as a minimum load to maintain good output voltage regulation. On the EVAL-ADPL54203-AZ, to avoid preloading, a 5.6 V Zener diode is placed between its $\mathrm{V}_{\text {OUT }}{ }^{+}$ and VOUT- to serve as a minimum load. Transformer leakage inductance causes a voltage spike on the primary side after the power switch turns off. To limit this leakage inductance spike within MOSFET voltage rating of 60V, an RC snubber and a TVS clamp are installed to damp the ringing and clamp the MOSFET drain voltage to a safe level.

The Performance Summary table summarizes the performance of the demo board at room temperature. The demo circuit can be easily modified for different applications with some predesigned transformers.

The ADPL54203 is a simple to use monolithic micropower isolated flyback converter. By sampling the isolated output voltage directly from the primary-side flyback waveform, the part requires no third winding or opto-isolator for regulation. The output voltage is programmed with two external resistors and a third optional temperature compensation resistor. By integrating the loop compensation and soft-start inside, the part reduces the number of external components. Boundary mode operation provides a small magnetic solution with excellent load regulation. Low ripple Burst Mode ${ }^{\circledR}$ operation maintains high efficiency at light load while minimizing the output voltage ripple. A $3.4 \mathrm{~A}, 60 \mathrm{~V}$ DMOS power switch is integrated along with all the high voltage circuitry and control logic into a thermally enhanced 8-lead SO package.
The ADPL54203 data sheet gives a complete description of the part, operation and application information and must be consulted with this quick start guide for evaluation circuit EVAL-ADPL54203-AZ.

Design files for this circuit board are available at Product Evaluation Boards and Kits | Design Center | Analog Devices.

Performance Summary ($\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$)

PARAMETER	CONDITIONS	MIN	TYP	MAX	UNITS
Input Voltage		10	24	28	V
Output Voltage	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=10 \mathrm{~V}-28 \mathrm{~V} \\ & \mathrm{I}_{\mathrm{OUT}}=10 \mathrm{~mA}-2.2 \mathrm{~A} \end{aligned}$	4.75	5	5.25	V
Maximum Output Current	$\mathrm{V}_{\text {IN }}>15 \mathrm{~V}$	2.2			A
Output Voltage Ripple (Peak-to-Peak)	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}-28 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=2.2 \mathrm{~A}$			100	mV
Typical Switching Frequency	$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}, \mathrm{I}_{\text {OUT }}=2.2 \mathrm{~A}$		345		kHz
Minimum Switching Frequency	$\mathrm{I}_{\text {OUT }}=0 \mathrm{~mA}$		12		kHz
Efficiency	$\mathrm{V}_{\text {IN }}=10 \mathrm{~V}$, $\mathrm{l}_{\text {OUT }}=2.2 \mathrm{~A}$		80		\%
Efficiency	$\mathrm{V}_{\text {IN }}=24 \mathrm{~V}$, $\mathrm{I}_{\text {OUT }}=2.2 \mathrm{~A}$		84		\%

Quick Start Procedure

The evaluation circuit EVAL-ADPL54203-AZ is easy to setup to evaluate the performance of the ADPL54203. For proper measurement equipment setup, see Figure 1 and do the following procedures:

1. With power off, connect the input power supply to the board through V_{IN} (TP1) and GND (TP2) terminals. Connect the load to the terminals $\mathrm{V}_{\mathrm{OUT}}{ }^{+}$(TP3) and $\mathrm{V}_{\mathrm{OUT}}-(\mathrm{TP} 4)$ on the board.
2. Turn on the power at the input. Increase V_{IN} slowly to 10 V .

NOTE: Make sure that the input voltage is always within spec. To operate the board with higher input/output voltage, input/output capacitor, and output diode with higher voltage ratings are needed.
3. Check for the proper output voltages. The output should be regulated at $5.0 \mathrm{~V}(\pm 5 \%)$.

NOTE: The EVAL-ADPL54203-AZ requires very small minimum load to maintain good output voltage regulation. A Zener diode is placed on the output to clamp the voltage to 5.6 V . This Zener diode can be replaced with a 560Ω resistor at the trade-off of lower efficiency.
4. Once the proper output voltage is established, adjust the input voltage and load current within the operating range and observe the output voltage regulation, ripple voltage, efficiency, and other parameters.

NOTE: When measuring the input or output voltage ripple, care must be taken to avoid a long ground lead on the oscilloscope probe. Measure the input or output voltage ripple by touching the probe tip directly across the $\mathrm{V}_{\text {IN }}$ (TP1) and GND (TP2), or $\mathrm{V}_{\mathrm{OUT}}{ }^{+}$(TP3) and $\mathrm{V}_{\text {OUT }}$ (TP4) terminals.

Figure 1. EVAL-ADPL54023-AZ Board Connections

Performance

($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$ unless otherwise noted.)

Figure 2. Efficiency vs. Load Current

$1 \mu \mathrm{~s} / \mathrm{DIV}$
Figure 4. Steady-State Switching Waveform

Figure 6. Steady-State Switching Waveform

Figure 3. Output Voltage vs. Load Current

Figure 5. Steady-State Switching Waveform

Figure 7. Load Transient Response ($V_{I N}=24 V$, $I_{\text {OUT }}=1 A-2 A$)

Bill of Materials

ITEM	QTY	DESIGNATOR	DESCRIPTION	MANUFACTURER, PART NUMBER
REQUIRED CIRCUIT COMPONENTS				
1	1	C1	Aluminum Electrolytic Capacitor, $22 \mu \mathrm{~F}, 50 \mathrm{~V}, 20 \%$, $6.3 \mathrm{~mm} \times 5.8 \mathrm{~mm}, 0.165 \mathrm{~A}, 2000 \mathrm{~h}, \mathrm{AEC}-\mathrm{Q} 200$	Panasonic, EEEFK1H220P
2	1	C2	Ceramic Capacitor, 10رF, 50V, 10\%, X7R, 1210	Murata, GRM32ER71H106KA12L
3	1	C3	Ceramic Capacitor, $1 \mu \mathrm{~F}, 25 \mathrm{~V}, 10 \%$, X5R, 0603	AVX Corporation, 06033D105KAT2A
4	1	C4	Ceramic Capacitor, 220pF, 50V, 5\%, C0G, 0805	Yageo, CC0805JRNPO9BN221
5	3	C5, C6, C7	Ceramic Capacitors, 100 F , 10V, 20\%, X5R, 1210	Samsung, CL32A107MPVNNNE
6	1	C8	Ceramic Capacitor, 4700pF, 250V, 10\%, X7R, 1812	Murata, GA343DR7GD472KW01L
7	1	D1	Diode, Low Forward Voltage (V_{F}), Schottky Barrier Rectifier	Diodes Incorporated, PDS1040L
8	1	D2	Silicon Zener Diode	Central Semiconductor, CMHZ5232B TR
9	1	D3	Voltage Suppressor Diode	Diodes Incorporated, SMAJ18A-13-F
10	1	D4	Schottky Rectifier Diode, 1A	Central Semiconductor, CMMSH1-100G TR
11	1	R1	Resistor, SMD, 1M 2 , 1\%, 1/10W, 0603, AEC-Q200	Panasonic, ERJ-3EKF1004V
12	1	R2	Resistor, SMD, 200kS, 1\%, 1/10W, 0603, AEC-Q200	Panasonic, ERJ-3EKF2003V
13	1	R3	Resistor, SMD, 100 , 1\%, 1/4W, 1206	Yageo, RC1206FR-07100RL
14	1	R4	Resistor, SMD 150k 2 , 1\%, 1/10W, 0603, AEC-Q200	Panasonic, ERJ-3EKF1503V
15	1	R5	Resistor, SMD, 113k 2 , 1\%, 1/10W, 0603, AEC-Q200	Panasonic, ERJ-3EKF1133V
16	1	R6	Resistor, SMD, 10k , 1\%, 1/10W, 0603, AEC-Q200	Panasonic, ERJ-3EKF1002V
17	1	T1	Switching Flyback Transformer	Wurth Elektronik, 750311564
18	1	U1	IC-ADI Micropower No-Opto Isolated Flyback Converter	Analog Devices Inc., ADPL54203ES8E\#PBF
HARDWARE - FOR DEMO BOARD ONLY				
1	4	TP1, TP2, TP3, TP4	PCB-Connectors, Solder Terminal Test Point Turret, Mounting Hole Diameter 0.094", PCB Thickness 0.062"	Mill-Max, 2501-2-00-80-00-00-07-0

Evaluation Board Schematic

Figure 8. EVAL-ADPL54203-AZ Evaluation Board Schematic

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$9 / 23$	Initial Release	-

ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENCE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS WHICH ADI PRODUCTS ALL INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.

