

Industrial SD 3.0 X-Mask Series (MLC)

Version 1.2

Address: 28 Genting Ln, #08-07 Platinum 28,

Singapore 349585

Tel: +65-6493 5035

Fax: +65-6493 5037

Website: http://www.flexxon.com

Email: flexxon@flexxon.com

TABLE OF CONTENTS

1.	GEN	NERAL DESCRIPTION	1
	1.1	Introduction	1
	1.2	Product Overview	1
	1.3	Workflow	2
2.		DDUCT SPECIFICATIONS	3
	2.1	Performance	3
	2.2	Power	
	2.3	MTBF	3
3.		/IRONMENTAL SPECIFICATIONS	4
A		CTRICAL SPECIFICATIONS	
4.	ELE	CTRICAL SPECIFICATIONS	5
	4.1	DC Characteristics	5
		4.1.1 Bus Operation Conditions for 3.3V Signaling	
		4.1.2 Bus Signal Line Load	6
	4.2	AC Characteristic	7
		4.2.1 SD Interface timing (Default)	
		4.2.2 SD Interface Timing (High-Speed Mode)	
		4.2.3 SD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)	10
		4.2.4 SD Interface timing (DDR50 Modes)	12
5.	PAE	ASSIGNMENT	14
_	5.1	Pad Assignment and Descriptions	
6.	REC	GISTERS	15
7.	PH	SICAL DIMENSION	15
8.	ORI	DERING INFORMATION	15

1. GENERAL DESCRIPTION

1.1 Introduction

FLEXXON X-Mask SD Card is compliant with SD 3.0 specification and provides excellent performance, good reliability and wide compatibility. User could mask the entire SD card by special AP to prevent unauthorized access.

FLEXXON X-Mask SD Card provides security function to prevent the stored data from being stolen, tampered or modified by others. The stored data can only be access if the legitimate user can authenticate using the correct password.

FLEXXON X-Mask SD Card is suitable for users who want to store their private and valuable data in a flash storage without the risk of having it being read by unintended people.

The mask function is an additional feature, which will not affect the standard product specification.

1.2 Product Overview

- Flash
 MLC

 Support SD System
 Specification 3.0

Support Auto Read

leveling

- Support Data Crypto
 Refreshment
 Read disturbance
 Adaptive wear
- Temperature Range

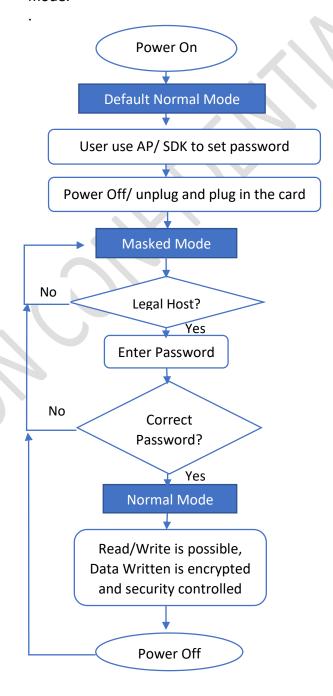
management

Operation (Gold):

-25°C ~ 85°C

Operation (Diamond):

-40°C ~ 85°C


Storage: -40°C ~ 85°C

1.3 Workflow

FLEXXON X-Mask SD Card is a normal mode by default. User could set the password to enable mask mode. User is required to eject and re-insert the after set the password.

User could access the data by the legal host with security tool and enter correct password. When user power off the host or reinsert the card, the card will return to masked mode.

2. PRODUCT SPECIFICATIONS

2.1 Performance

Capacity	Sequential					
	Read (MB/s)	Write (MB/s)				
4GB	90	25				
8GB	90	25				
16GB	90	25				
32GB	90	45				
64GB	90	70				
128GB	90	70				
256GB	90	70				

Table 2-1 Performance of X-Mask SD Card

NOTES:

- 1. The performance is obtained from TestMetrix
- 2. Performance may vary from flash configuration and platform.

2.2 Power

Capacity	Read	Write	Standby
	(mA)	(mA)	(uA)
4GB	180	85	220
8GB	180	85	220
16GB	180	95	230
32GB	180	120	245
64GB	180	190	290
128GB	180	190	320
256GB	180	200	470

Table 2-2 Typical Power Consumption of X-Mask SD Card

2.3 MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The higher the MTBF value, the higher the reliability of the device. The predicted result of X-Mask SD Card is more than 3,000,000 hours.

3. ENVIRONMENTAL SPECIFICATIONS

Test Items	Test Conditions					
Storage Temperature	-40°C ~ 85°C					
Operating Temperature	Gold: -25°C ~ 85°C Diamond: -40°C ~ 85°C					
Storage Humidity	40°C, 93% RH					
Operating Humidity	25°C, 95% RH					
Shock	1500G, Half Sin Pulse Duration 0.5ms					
Vibration	80Hz ~ 2000Hz/20G, 20Hz ~ 80Hz/1.52mm, 3 axis/30min					
Drop	150cm free fall, 6 face of each unit					
Bending	≥ 10N, Hold 1 min/5 times					
Torque	0.1N-m or +/-2.5 deg, Hold 30 seconds/5 times					
ESD	Contact: +/- 4KV each item 25 times Air: +/- 8KV 10 times					

Table 3-1 Environmental Specification

4. ELECTRICAL SPECIFICATIONS

4.1 DC Characteristics

4.1.1 Bus Operation Conditions for 3.3V Signaling

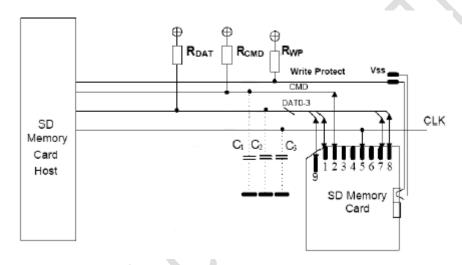
Parameter	Symbol	Min.	Max	Unit	Condition
Supply Voltage	V_{DD}	2.7	3.6	V	
Output High Voltage	V _{OH}	0.75*V _{DD}		V	I _{OH} =-2mA V _{DD} Min
Output Low Voltage	V _{OL}		0.125*V _{DD}	V	I _{OL} =2mA V _{DD} Min
Input High Voltage	V _{IH}	0.625*V _{DD}	V _{DD} +0.3	V	
Input Low Voltage	V _{IL}	V _{SS} -0.3	0.25*V _{DD}	V	
Power Up Time			250	ms	From 0V to V _{DD} min

Table 4-1 Threshold Level for High Voltage Range

Parameter	Symbol	Min.	Max	Unit	Condition
Supply Voltage	V_{DD}	2.7	3.6	V	
Regulator Voltage	V_{DDIO}	1.7	1.95	V	Generated by V _{DD}
Output High Voltage	V _{OH}	1.4	-	V	I _{OH} =-2mA
Output Low Voltage	V_{OL}	-	0.45	V	I _{OL} =2mA
Input High Voltage	V _{IH}	1.27	2.00	V	
Input Low Voltage	V_{IL}	V _{ss} -0.3	0.58	V	

Table 4-2 Threshold Level for 1.8V Signaling

Parameter	Symbol	Min	Max.	Unit	Remarks
Input Leakage Current		-2	2	uA	DAT3 pull-up is
					disconnected.

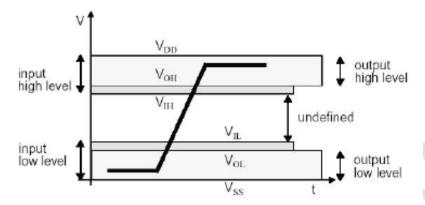

Table 4-3 Input Leakage Current for 1.8V Signaling

Parameter	Symbol	Min	Max.	Unit	Remarks		
Peak voltage on all lines		-0.3	V _{DD} +0.3	V			
All Inputs							
Input Leakage Current		-10	10	uA			
All Outputs							
Output Leakage Current		-10	10	uA			

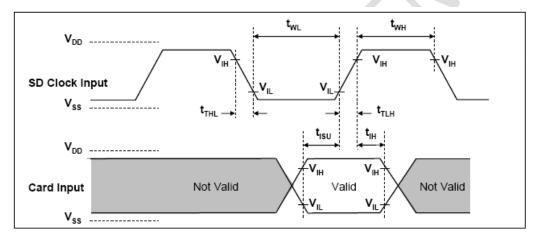
Table 4-4 Peak Voltage and Leakage Current

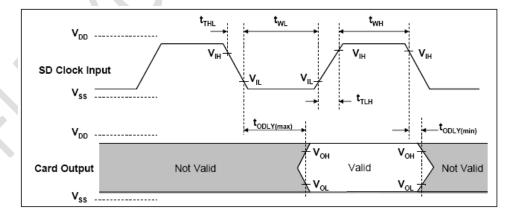
4.1.2 Bus Signal Line Load

Bus Operation Conditions – Signal Line's Load


Total Bus Capacitance = CHOST + CBUS + N CCARD

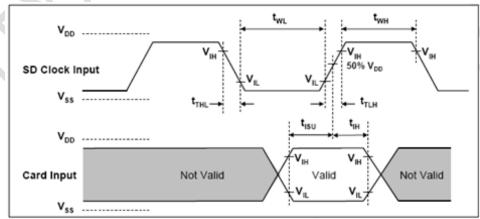
Parameter	symbol	Min	Max	Unit	Remark
Pull-up resistance	R _{CMD}	10	100	kΩ	to prevent bus floating
	R _{DAT}				
Total bus capacitance for each	C_L		40	рF	1 card
signal line					C _{HOST} +С _{виз} shall
					not exceed 30 pF
Card Capacitance for each signal	CCARD		10 ¹	рF	
pin					
Maximum signal line inductance			16	nH	
Pull-up resistance inside card	R_{DAT3}	10	90	kΩ	May be used for card
(pin1)					detection
Capacity Connected to Power	Cc		5	uF	To prevent inrush current
Line					


Table 4-5 Peak Voltage and Leakage Current

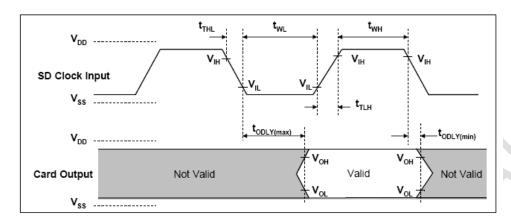

4.2 AC Characteristic

4.2.1 SD Interface timing (Default)

Card Input Timing (Default Speed Card)


Card Output Timing (Default Speed Mode)

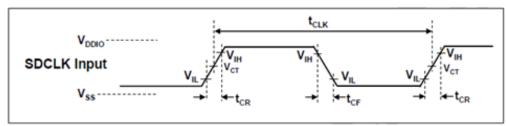
Parameter	Symbol	Min	Max	Unit	Remark		
Clock CLK (All values are referred to min(V _{IH}) and max(V _{IL})							
Clock frequency Data	f_{PP}	0	25	MHz	C _{card} ≤ 10 pF		
Transfer Mode					(1 card)		
Clock frequency	f _{OD}	0(1)/100	400	KHz	C _{card} ≤ 10 pF		
Identification Mode					(1 card)		
Clock low time	t_WL	10		ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock high time	t _{WH}	10		ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock rise time	t _{TLH}		10	ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock fall time	t _{THL}		10	ns	C _{card} ≤ 10 pF		
					(1 card)		
In	puts CMD, [DAT (refer	enced to CL	K)			
Input set-up time	t _{ISU}	5		ns	C _{card} ≤ 10 pF		
					(1 card)		
Input hold time	t _{IH}	5		ns	C _{card} ≤ 10 pF		
					(1 card)		
Outputs CMD, DAT (referenced to CLK)							
Output Delay time during	todly	0	14	ns	C _L ≤ 40 pF		
Data Transfer Mode					(1 card)		
Output Delay time during	todly	0	50	ns	C _L ≤ 40 pF		
Identification Mode					(1 card)		


(1) OHz means to stop the clock. The given minimum frequency range is for cases where continues clock is required.

4.2.2 SD Interface Timing (High-Speed Mode)

Card Input Timing (High Speed Card)

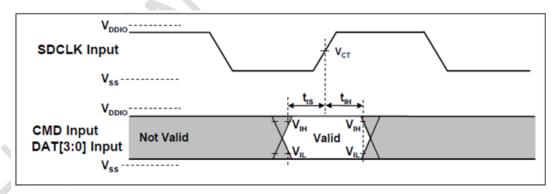
Card Output Timing (Default Speed Mode)


Parameter	Symbol	Min	Max	Unit	Remark		
Clock CLK (All values are referred to $min(V_{IH})$ and $max(V_{IL})$							
Clock frequency Data Transfer	f_{PP}	0	50	MHz	C _{card} ≤ 10 pF		
Mode					(1 card)		
Clock low time	t _{WL}	7		ns	$C_{card} \le 10 pF$		
					(1 card)		
Clock high time	twn	7		ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock rise time	t _{TLH}		3	ns	$C_{card} \le 10 pF$		
					(1 card)		
Clock fall time	t _{THL}		3	ns	C _{card} ≤ 10 pF		
					(1 card)		
Inputs	CMD, DAT	(reference	ed to CLK)				
Input set-up time	t _{ISU}	6		ns	C _{card} ≤ 10 pF		
					(1 card)		
Input hold time	t _{IH}	2		ns	$C_{card} \le 10 pF$		
					(1 card)		
Output	ts CMD, DA	T (reference	ed to CLK)				
Output Delay time during Data	t _{ODLY}		14	ns	C _L ≤ 40 pF		
Transfer Mode					(1 card)		
Output Hold time	T _{OH}	2.5		ns	C _L ≤ 15 pF		
					(1 card)		
Total System capacitance of	C_L		40	pF	CL ≤ 15 pF		
each line ¹					(1 card)		

(1) In order to satisfy severe timing, the host shall drive only one card.

4.2.3 SD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)

Input:

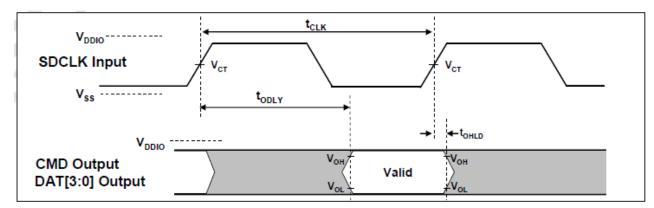


Clock Signal Timing

Symbol	Min	Max	Unit	Remark
t _{CLK}	4.80	-	ns	208MHz (Max.), Between rising edge, V _{CT} =
				0.975V
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t _{CR} , t _{CF} < 0.96ns (max.) at 208MHz, C _{CARD} =10pF
				t _{CR} , t _{CF} < 2.00ns (max.) at 100MHz, C _{CARD} =10pF
				The absolute maximum value of t _{CR} , t _{CF} is 10ns
				regardless of clock frequency
Clock Duty	30	70	%	

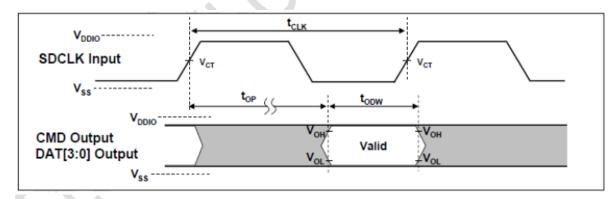
Clock Signal Timing

SDR50 and SDR104 Input Timing:



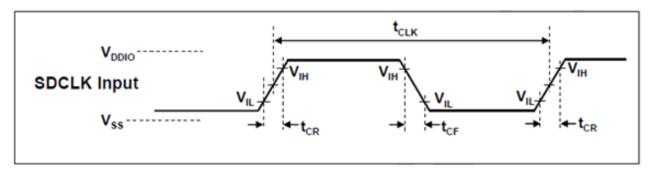
Card Input Timing

Symbol	Min	Max	Unit	SDR104 Mode
t _{IS}	1.40	1	ns	$C_{CARD} = 10pF, V_{CT} = 0.975V$
t _{ін}	0.8	-	ns	$C_{CARD} = 5pF, V_{CT} = 0.975V$
Symbol	Min	Max	Unit	SDR50 Mode
Symbol t _{IS}	Min 3.00	Max -	Unit ns	SDR50 Mode C _{CARD} =10pF, V _{CT} = 0.975V

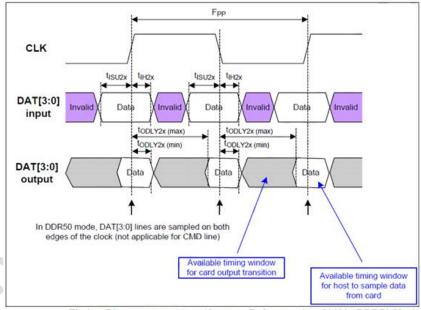

Output (SDR12, SDR25, SDR50):

Output Timing of Fixed Data Window

Symbol	Min	Max	Unit	Remark
t _{ODLY}	-	7.5	ns	t _{CLK} >=10.0ns, C _L =30pF, using driver Type B, for SDR50
t _{ODLY}	-	14	ns	t_{CLK} >=20.0ns, C_L =40pF, using driver Type B, for SDR25
				and SDR12,
Тон	1.5	-	ns	Hold time at the t_{ODLY} (min.), $C_L=15pF$


Output (SDR104 Mode):

Symbol	Min	Max	Unit	Remark
t _{OP}	0	2	Ul Card Output Phase	
$\triangle t_{OP}$	-350	+1550	ps	Delay variable due to temperature change after tuning
t _{obw}	0.60	-	Ul	t _{ODW} = 2.88ns at 208MHz



4.2.4 SD Interface timing (DDR50 Modes)

Clock Signal Timing

Symbol	Min	Max	Unit	Remark
t _{CLK}	20	ı	ns	50MHz (Max.), Between rising edge
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t_{CR} , t_{CF} < 4.00ns (max.) at 50MHz, C_{CARD} =10pF
Clock Duty	45	55	%	

Timing Diagram DAT Inputs/Outputs Referenced to CLK in DDR50 Mode

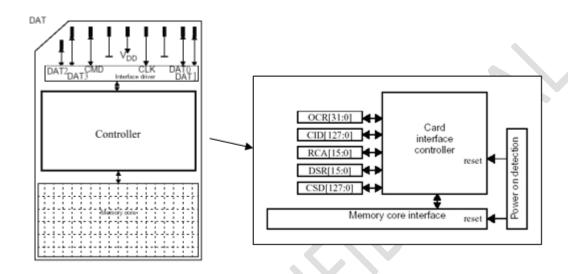

Parameter	Symbol	Min	Max	Unit	Remark		
Input CMD (referenced to CLK rising edge)							
Input set-up time	t _{isu}	3	-	ns	C _{card} ≤ 10 pF (1 card)		
Input hold time	t _{ін}	0.8	-	ns	C _{card} ≤ 10 pF (1 card)		
Ou	tput CMD (ref	erence	d to CLK risir	ng edge)			
Output Delay time during Data Transfer Mode	t _{ODLY}		13.7	ns	C _L ≤ 30 pF (1 card)		
Output Hold time	Тон	1.5	-	ns	C _L ≥ 15 pF (1 card)		
Inputs [OAT (reference	d to CLI	K rising and	falling edge	s)		
Input set-up time	t _{ISU2x}	3	-	ns	C _{card} ≤ 10 pF (1 card)		
Input hold time	t _{IH2x}	0.8	-	ns	C _{card} ≤ 10 pF (1 card)		
Outputs DAT (referenced to CLK rising and falling edges)							
Output Delay time during Data Transfer Mode	t _{ODLY2x}		7.0	ns	C _L ≤ 25 pF (1 card)		
Output Hold time	T _{OH2x}	1.5	-	ns	C _L ≥ 15 pF (1 card)		

Table 4-6 Bus Timings – Parameters Values (DDR50 Mode)

5. PAD ASSIGNMENT

5.1 Pad Assignment and Descriptions

pin		SD	Mode	SPI Mode			
	Name	Type ¹	Description	Name	Type	Description	
1	CD/DAT3	I/O/PP	Card Detect/	CS	l ³	Chip Select (net true)	
	2	3	Data Line[bit3]				
2	CMD	PP	Command/Response	DI	1	Data In	
3	V_{SS1}	S	Supply voltage ground	VSS	S	Supply voltage ground	
4	V_{DD}	S	Supply voltage	VDD	S	Supply voltage	
5	CLK	1	Clock	SCLK	1	Clock	
6	V_{SS2}	5	Supply voltage ground	VSS2	S	Supply voltage ground	
7	DAT0	I/O/PP	Data Line[bit0]	DO	O/PP	Data Out	
8	DAT1	I/O/PP	Data Line[bit1]	RSV			
9	DAT2	I/O/PP	Data Line[bit2]	RSV			

Table 5-1 SD Memory Card Pad Assignment

- (1) S: power supply, I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers.
- (2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode as well while they are not used. It is defined so in order to keep compatibility to MultiMedia Cards.

(3) At power up, this line has a 50KOhm pull up enabled in the card. This resistor serves two functions: Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode, it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user during regular data transfer with SET_CLR_CARD_DETECT (ACMD42) command.

SET_CLR_CARD_DETECT (ACMD42) command.

6. REGISTERS

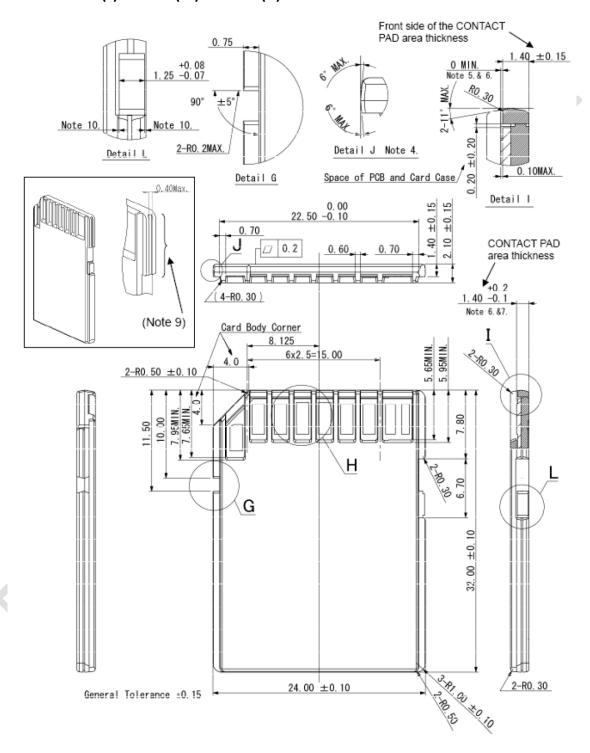

Name	Width	Description
CID	128bit	Card identification number; card individual number for
		identification.
RCA	16bit	Relative card address; local system address of a card,
		dynamically suggested by the card and approved by the host
		during initialization.
DSR	16bit	Driver Stage Register; to configure the card's output drivers.
CSD	128bit	Card Specific Data; Information about the card operation
		conditions.
SCR	64bit	SD Configuration Register; Information about the SD
		Memory Card's Special Features capabilities
OCR	32bit	Operation conditions register.
SSR	512bit	SD Status; Information about the card proprietary features.
OCR	32bit	Card Status; Information about the card status.

Table 6-1 SD Registers

7. PHYSICAL DIMENSION

Dimension: 32mm(L) x 24mm(W) x 2.1mm(H)

8. ORDERING INFORMATION

Capacity	MPN (Diamond Grade)	MPN (Gold Grade)
4GB	FDMS008GME-XS00	FDMS008GMG-XS00
8GB	FDMS008GME-XS00	FDMS008GMG-XS00
16GB	FDMS016GME-XS00	FDMS016GMG-XS00
32GB	FDMS032GME-XS00	FDMS032GMG-XS00
64GB	FDMS064GME-XS00	FDMS064GMG-XS00
128GB	FDMS128GME-XS00	FDMS128GMG-XS00
256GB	FDMS256GME-XS00	FDMS256GMG-XS00

REVISION HISTORY

Revision	Date	History
1.0	2020/08	First Release
1.1	2020/09	Update Chapter 1
1.2	2020/11	Update Workflow