

RoHS **Compliant**

Discription

The CSD882 is NPN Silicone Transistor suited for the Output Stage of 3 watt audio amplifier, Voltage regulator, DC-DC converter and relay driver.

Features:

1. Low Saturation Voltage:

 $V_{CE(sat)} \le 0.5V$ (@ $I_{C} = 2A$, $I_{B} = 0.2A$)

2. Excellent hee linearity and high hee.

hre: 60 to 400 (@ Vce = 2V, Ic = 1A

- 3. Less Cramping space required due to small and think package and reducing the trouble for attachment to a radiator no insulator bushing required
- 4. This product is available in AEC-Q101 Qualified and PPAP Capable also.

Note: For AEC-Q101 qualified products, please use suffix -AQ in the part number while ordering.

Absolute Maximum Ratings (Ta = 25°C Unless otherwise specified)

Parameter		Symbol	Value	Unit
Maximum Temperature storage Temperature		Tstg	-55 to +150	°C
Maximum Temperature Junction Temperature		Tj	150	C
Maximum Total power Dissipation	Ta = 25°C	Ptot	1	W
	Tc = 25°C		10	VV
Collector to Base Voltage		Ptot	40	
Collector to Emitter Voltage		Vceo	30	V
Emitter to Base Voltage		VEBO	5	
Collector Current (DC)		Ic(DC)	3	^
Collector Current (Pulse)		C(Pulse)	7	A

Electrical Characteristics at (Ta = 25°C Unless otherwise specified)

Parameter	Symbol	Test Condition	Min.	TYP.	MAX.	Unit
DC Current Gain	hfe 1	$V_{CE} = 2.0V$, $I_{C} = 20mA^{2}$	30	150		
DC Current Gain	hfe 2	VcE = 2.0V, Ic = 1.0A ²	60	160	400	
Gain Bandwidth Product	f⊤	Vce = 5.0V, Ic = 0.1A		90		MHz
Output Capacitance	Cob	Vcв = 10V, IE = 0, f = MHz]	45		pF
Collector Cutoff Current	Ісво	Vcb = 30V, IE = 0,]		4	
Emitter Cutoff Current	Ісво	V _{EB} = 3.0V, I _C = 0]			μA
Collector Saturation Voltage	VcE(sat)	Ic = 2.0A, I _B = 0.2A ²	0.3		0.5	
Base Saturation Voltage	V _{BE(sat)}	Ic = 2.0A, I _B = 0.2A ²	1		2	V

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

Classification of hee

Rank	R	Q	Р	E
Range	60 to 120	100 to 200	160 to 320	200 to 400

Test Conditions: VCE = 2.0V, IC = 1.0A

1. Pulse test: PW ≤300µs, duty cycle=2% 2. Pulse test: PW ≤350µs, duty cycle=2%

Typical Characteristics Curves

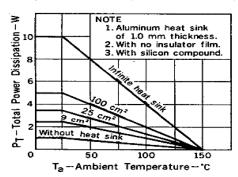


Fig 2: Thermal Resistance vs Pulse Width

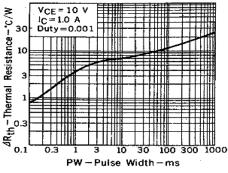


Fig 3: Collector Current vs Collector to **Emitter Voltage**

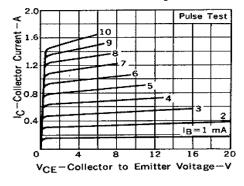


Fig 4: Derating Curves for all types

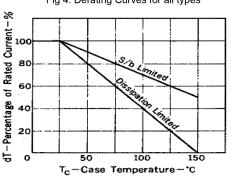


Fig 5: Safe Operating Areas

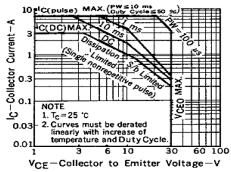


Fig 6: DC Current Gain Base to Emitter Voltage vs Collector Current

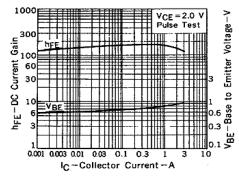


Fig 7: Base & Collector Saturation Voltage vs Collector Current

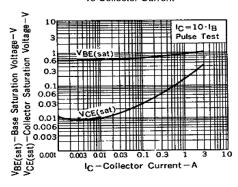


Fig 9: Gain Bandwidth Product vs Collector Current

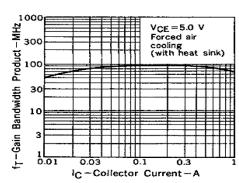
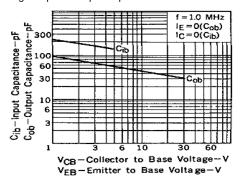
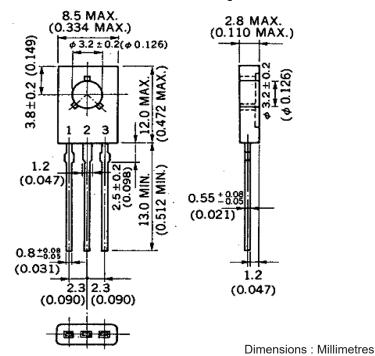




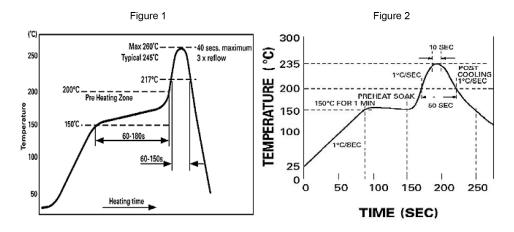
Fig 8: Input & Output Capacitance vs Reverse Voltage

TO-126 Leaded Plastic Package

PIN CONFIGURATION

- 1. Emitter
- 2. Collector
- 3. Base

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

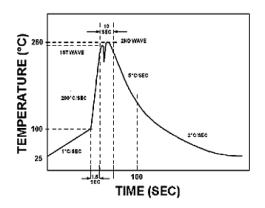


Recommended Reflow Solder Profiles

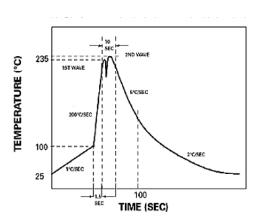
The recommended reflow solder profiles for Pb and Pb-free devices are shown below.

Figure 1 shows the recommended solder profile for devices that have Pb-free terminal plating, and where a Pb-free solder

Figure 2 shows the recommended solder profile for devices with Pb-free terminal plating used with leaded solder, or for devices with leaded terminal plating used with a leaded solder.



Reflow profiles in tabular form


Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~3°C/second	~3°C/second
Preheat – Temperature Range – Time	150-170°C 60-180 seconds	150-200°C 60-180 seconds
Time maintained above: – Temperature – Time	200°C 30-50 seconds	217°C 60-150 seconds
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	40 seconds
Ramp-Down Rate	3°C/second max.	6°C/second max.

Recommended Wave Solder Profiles

The Recommended solder Profile For Devices with Pb-free

The Recommended solder Profile For Devices

Wave Profiles in Tabular Form

Profile Feature	Sn-Pb System	Pb-Free System
Average Ramp-Up Rate	~200°C/second	~200°C/second
Heating rate during preheat	Typical 1-2, Max 4°C/sec	Typical 1-2, Max 4°C/Sec
Final preheat Temperature	Within 125°C of Solder Temp	Within 125°C of Solder Temp
Peak Temperature	235°C	260°C max.
Time within +0 -5°C of actual Peak	10 seconds	10 seconds
Ramp-Down Rate	5°C/second max.	5°C/second max.

Part Number Table

Description	Part Number	
Single Bipolar Transistor, NPN, 30V, 3000mA, 10W, TO-126	CSD882	

Dimensions: Millimetres

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

