FIE

WORM SD Specification

Version 1.5

Address: 28 Genting Ln, #08-07 Platinum 28, Singapore 349585 Tel: +65-6493 5035 Fax: +65-6493 5037 Website: http://www.flexxon.com Email: flexxon@flexxon.com

- FLE�ON

TABLE OF CONTENTS

1.	GENERAL DESCRIPTION1					
2.	PRODUC	SPECIFICATIONS	2			
	1.1 Perfe	ormance	2			
	1.2 Powe	er	2			
		BF				
3.		MENTAL SPECIFICATIONS				
4.	ELECTRIC	AL SPECIFICATIONS	4			
		Characteristics				
	4.1.1	Bus Operation Conditions for 3.3V Signaling				
	4.1.2	Bus Signal Line Load				
	3.2 AC 0	Characteristic	6			
	3.2.1	SD Interface timing (Default)	6			
	3.2.2	SD Interface Timing (High-Speed Mode)	7			
	3.2.3	SD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)				
	3.2.4	SD Interface timing (DDR50 Modes)				
5.	PAD ASSI	GNMENT	13			
	4.1 Pad	Assignment and Descriptions	13			
6.	REGISTER	S	14			
7.	PHYSICAL	DIMENSION	14			
8.	ORDERIN	G INFORMATION	14			
δ.	ORDERIN	G INFORMATION	1 4			

1. GENERAL DESCRIPTION

Write Once Read Many (WORM) SD card is designed for special application such as Financial Industry Regulatory Authority, Exchange Commission for records protection.

Write Once Read Many (WORM) SD card is WORM mode by default. The WORM SD card will change to write protect mode if the user performs illegal action such as delete file/directory, rename file/directory, change existed data, overwrite file data and disk format. This can prevent the data be erased, modified or overridden.

	•	Flash MLC	•	Support SD System Specification 6.1
	٠	Capacity 4GB to 256GB	•	Support SD SPI Mode
	•	Card Mode WORM Mode by default	•	Support FAT32
	•	Support Auto Read Refreshment	•	File is written one by one sequentially
		Read disturbance management	•	SMART function support
7	•	Adaptive wear leveling	•	Support management of sudden power fails
	•	Do not support Erase/Lock/ Unlock SD Commands	•	Temperature Range Operation (Gold): -25°C ~ 85°C Operation (Diamond): -40°C ~ 85°C Storage: -40°C ~ 85°C

2. PRODUCT SPECIFICATIONS

1.1 Performance

Capacity	Sequential					
	Read (MB/s)	Write (MB/s)				
4GB	72	15				
8GB	72	15				
16GB	75	25				
32GB	80	45				
64GB	80	48				
128GB	80	66				
256GB	80	68				

Table 2-1 Performance of WORM SD

NOTES:

- 1. The performance is obtained from TestMetrix
- 2. Performance may vary from flash configuration and platform

Capacity	Read	Write	Standby
	(mA)	(mA)	(mA)
4GB	180	170	200
8GB	180	170	200
16GB	180	170	200
32GB	180	170	200
64GB	180	170	200
128GB	180	170	200
256GB	180	170	200

Table 2-2 Typical Power Consumption of WORM SD

1.3 MTBF

MTBF, an acronym for Mean Time Between Failures, is a measure of a device's reliability. Its value represents the average time between a repair and the next failure. The higher the MTBF value, the higher the reliability of the device. The predicted result of WORM SD Card is more than 3,000,000 hours.

ALL RIGHTS ARE STRICTLY RESERVED. ANY PORTION OF THIS PAPER SHALL NOT BE REPRODUCED, COPIED, OR TRANSLATED TO ANY OTHER FORMS WITHOUT PERMISSION FROM FLEXXON PTE LTD.

1.2 Power

2

3. ENVIRONMENTAL SPECIFICATIONS

Test Items	Test Conditions				
Storage Temperature	-40°C ~ 85°C				
Operating Temperature	Gold: -25°C ~ 85°C Diamond: -40°C ~ 85°C				
Storage Humidity	40°C, 93% RH				
Operating Humidity	25°C, 95% RH				
Shock	1500G, Half Sin Pulse Duration 0.5ms				
Vibration	80Hz ~ 2000Hz/20G, 20Hz ~ 80Hz/1.52mm, 3 axis/30min				
Drop	150cm free fall, 6 face of each unit				
Bending	≥ 10N, Hold 1 min/5 times				
Torque	0.1N-m or +/-2.5 deg, Hold 30 seconds/5 times				
ESD	Contact: +/- 4KV each item 25 times Air: +/- 8KV 10 times				

Table 3-1 Environmental Specification

4. ELECTRICAL SPECIFICATIONS

3.1 DC Characteristics

4.1.1 Bus Operation Conditions for 3.3V Signaling

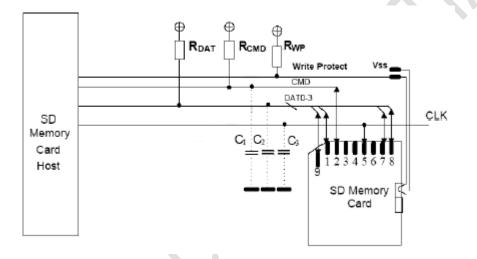
Parameter	Symbol	Min.	Max	Unit	Condition
Supply Voltage	V_{DD}	2.7	3.6	V	
Output High Voltage	V _{OH}	0.75*V _{DD}		V	I _{OH} =-2mA V _{DD} Min
Output Low Voltage	V _{OL}		0.125*V _{DD}	V	I _{OL} =2mA V _{DD} Min
Input High Voltage	VIH	0.625*V _{DD}	V _{DD} +0.3	V	
Input Low Voltage	VIL	V _{SS} -0.3	0.25*V _{DD}	V	
Power Up Time			250	ms	From OV to V_{DD} min

Table 4-1 Threshold Level for High Voltage Range

Parameter	Symbol	Min.	Max	Unit	Condition		
Supply Voltage	V_{DD}	2.7	3.6	V			
Regulator Voltage	V _{DDIO}	1.7	1.95	V	Generated by V_{DD}		
Output High Voltage	V _{OH}	1.4	-	V	I _{OH} =-2mA		
Output Low Voltage	V _{OL}	-	0.45	V	I _{OL} =2mA		
Input High Voltage	ViH	1.27	2.00	V			
Input Low Voltage	V _{IL}	V _{ss} -0.3	0.58	V			

Table 4-2 Threshold Level for 1.8V Signaling

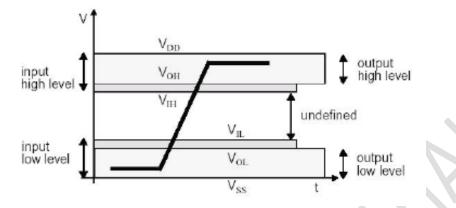
Parameter	Symbol	Min	Max.	Unit	Remarks
Input Leakage Current		-2	2	uA	DAT3 pull-up is
					disconnected.


Table 4-3 Input Leakage Current for 1.8V Signaling

Parameter	Symbol	Min	Max.	Unit	Remarks		
Peak voltage on all lines		-0.3	V _{DD} +0.3	V			
All Inputs							
Input Leakage Current		-10	10	uA			
All Outputs							
Output Leakage Current		-10	10	uA			

Table 4-4 Peak Voltage and Leakage Current

4.1.2 Bus Signal Line Load


Bus Operation Conditions – Signal Line's Load

Total Bus Capacitance = $C_{HOST} + C_{BUS} + N C_{CARD}$

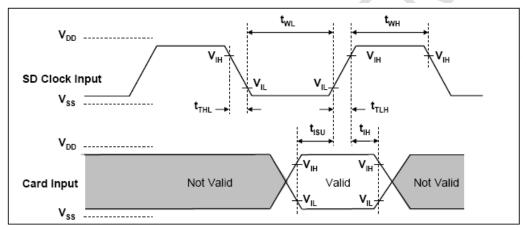
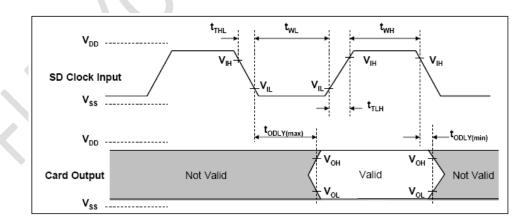
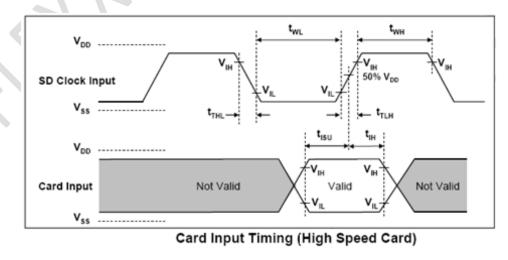

Parameter	symbol	Min	Max	Unit	Remark
Pull-up resistance	R _{CMD}	10	100	kΩ	to prevent bus floating
	Rdat				
Total bus capacitance for each	CL		40	рF	1 card
signal line					С _{ноsт} +С _{виs} shall
					not exceed 30 pF
Card Capacitance for each signal	CCARD		10 ¹	рF	
pin					
Maximum signal line inductance			16	nH	
Pull-up resistance inside card	R _{DAT3}	10	90	kΩ	May be used for card
(pin1)					detection
Capacity Connected to Power	Cc		5	uF	To prevent inrush current
Line					

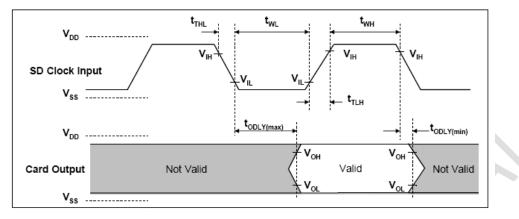
Table 4-5 Peak Voltage and Leakage Current


3.2 AC Characteristic

3.2.1 SD Interface timing (Default)

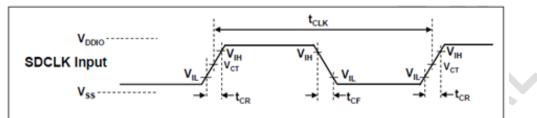
Card Input Timing (Default Speed Card)


Card Output Timing (Default Speed Mode)


Parameter	Symbol	Min	Max	Unit	Remark		
Clock CLK (A							
Clock frequency Data	f _{PP}	0	25	MHz	C _{card} ≤ 10 pF		
Transfer Mode					(1 card)		
Clock frequency	f _{OD}	0(1)/100	400	KHz	C _{card} ≤ 10 pF		
Identification Mode					(1 card)		
Clock low time	t_{WL}	10		ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock high time	t _{wн}	10		ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock rise time	t_{TLH}		10	ns	C _{card} ≤ 10 pF		
					(1 card)		
Clock fall time	t_{THL}		10	ns	C _{card} ≤ 10 pF		
					(1 card)		
In	puts CMD, I	DAT (refer	enced to CL	к)			
Input set-up time	tisu	5		ns	C _{card} ≤ 10 pF		
					(1 card)		
Input hold time	t _{IH}	5		ns	C _{card} ≤ 10 pF		
					(1 card)		
Outputs CMD, DAT (referenced to CLK)							
Output Delay time during	todly	0	14	ns	C _L ≤ 40 pF		
Data Transfer Mode					(1 card)		
Output Delay time during	todly	0	50	ns	C∟≤ 40 pF		
Identification Mode					(1 card)		

(1) OHz means to stop the clock. The given minimum frequency range is for cases where continues clock is required.

3.2.2 SD Interface Timing (High-Speed Mode)

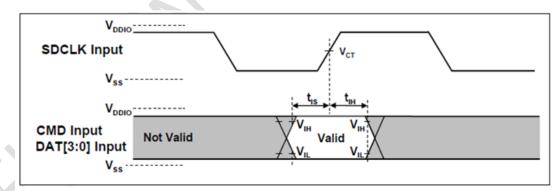

Card Output	Timina	(Default S	peed Mode)
eara earpar		(20100000	pood model

Parameter	Symbol	Min	Max	Unit	Remark
Clock CLK (All va	-				Nemark
			50	MHz	C
Clock frequency Data Transfer	f _{PP}	0	50		$C_{card} \le 10 \text{ pF}$
Mode	_	_			(1 card)
Clock low time	t _{WL}	7		ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Clock high time	twн	7		ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Clock rise time	t _{TLH}		3	ns	C _{card} ≤ 10 pF
					(1 card)
Clock fall time	t _{THL}		3	ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Inputs	SCMD, DAT	(reference	ed to CLK)		
Input set-up time	tisu	6		ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Input hold time	t⊪	2		ns	$C_{card} \le 10 \text{ pF}$
					(1 card)
Output	ts CMD, DA	T (referenc	ed to CLK)		
Output Delay time during Data	t _{ODLY}		14	ns	C _L ≤ 40 pF
Transfer Mode					(1 card)
Output Hold time	Т _{ОН}	2.5		ns	C _L ≤ 15 pF
					(1 card)
Total System capacitance of	CL		40	рF	CL ≤ 15 pF
each line ¹					(1 card)

(1) In order to satisfy severe timing, the host shall drive only one card.

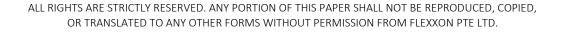
3.2.3 SD Interface timing (SDR12, SDR25, SDR50 and SDR104 Modes)

Input:

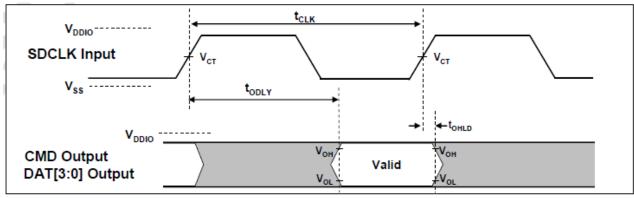


Clock Signal Timing

Symbol	Min	Max	Unit	Remark
tсıк	4.80	-	ns	208MHz (Max.), Between rising edge, V _{CT} = 0.975V
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t _{CR} , t _{CF} < 0.96ns (max.) at 208MHz, C _{CARD} =10pF t _{CR} , t _{CF} < 2.00ns (max.) at 100MHz, C _{CARD} =10pF The absolute maximum value of t _{CR} , t _{CF} is 10ns regardless of clock frequency
Clock Duty	30	70	%	

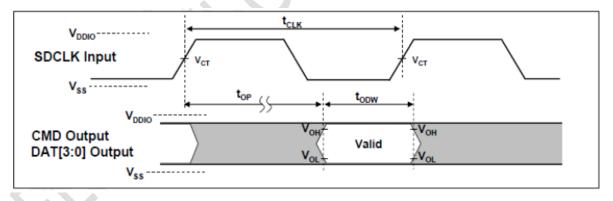

Clock Signal Timing

SDR50 and SDR104 Input Timing:

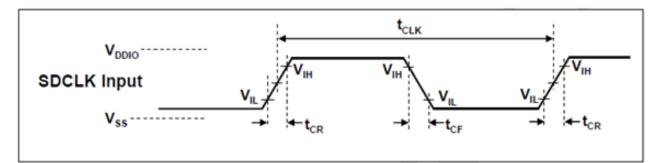


Card Input Timing

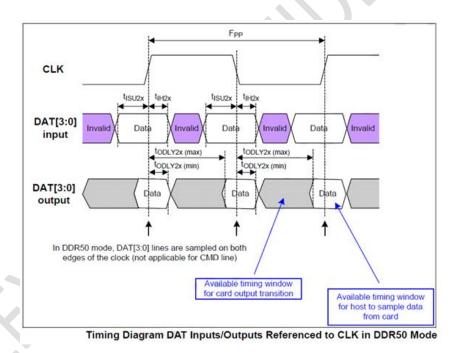
Symbol	Min	Max	Unit	SDR104 Mode
tıs	1.40	-	ns	C _{CARD} =10pF, V _{CT} = 0.975V
t _{ін}	0.8	-	ns	C _{CARD} = 5pF, V _{CT} = 0.975V
Symbol	Min	Max	Unit	SDR50 Mode
t _{is}	3.00	-	ns	C _{CARD} =10pF, V _{CT} = 0.975V
t _{IH}	0.8	-	ns	C _{CARD} = 5pF, V _{CT} = 0.975V


Output (SDR12, SDR25, SDR50):

Output Timing of Fixed Data Window


Symbol	Min	Max	Unit	Remark
t _{ODLY}	-	7.5	ns	t _{CLK} >=10.0ns, C _L =30pF, using driver Type B, for SDR50
t _{ODLY}	-	14	ns	t_{CLK} >=20.0ns, C _L =40pF, using driver Type B, for SDR25
				and SDR12,
Тон	1.5	-	ns	Hold time at the t_{ODLY} (min.), $C_L=15pF$

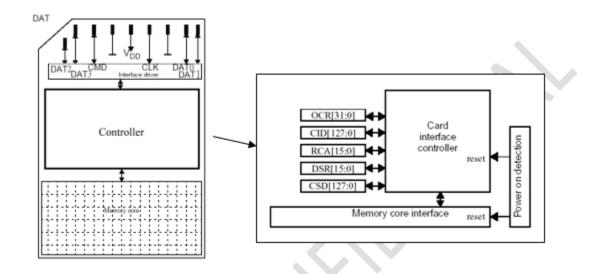
Output (SDR104 Mode):


Symbol	Min	Max	Unit	Remark
top	0	2	UI	Card Output Phase
∆t _{op}	-350	+1550	ps	Delay variable due to temperature change after tuning
t _{odw}	0.60	-	UI	t _{oDw} = 2.88ns at 208MHz

3.2.4 SD Interface timing (DDR50 Modes)

Clock Signal Timing

Symbol	Min	Max	Unit	Remark
t _{clk}	20	-	ns	50MHz (Max.), Between rising edge
t _{CR} , t _{CF}	-	0.2* t _{CLK}	ns	t _{CR} , t _{CF} < 4.00ns (max.) at 50MHz, C _{CARD} =10pF
Clock Duty	45	55	%	



Parameter	Symbol	Min	Max	Unit	Remark		
Input CMD (referenced to CLK rising edge)							
Input set-up time	tisu	3	-	ns	C _{card} ≤ 10 pF		
					(1 card)		
Input hold time	t _{iH}	0.8	-	ns	C _{card} ≤ 10 pF		
					(1 card)		
Ou	tput CMD (ref	erenced	d to CLK risi	ng edge)			
Output Delay time	t _{odly}		13.7	ns	C _L ≤ 30 pF		
during Data Transfer					(1 card)		
Mode							
Output Hold time	Т _{он}	1.5	-	ns	C∟≥ 15 pF		
					(1 card)		
Inputs D	DAT (reference	d to CLI	< rising and	falling edge	s)		
Input set-up time	t _{ISU2x}	3	-	ns	C _{card} ≤ 10 pF		
					(1 card)		
Input hold time	t _{IH2x}	0.8	-	ns	C _{card} ≤ 10 pF		
					(1 card)		
Outputs	Outputs DAT (referenced to CLK rising and falling edges)						
Output Delay time	todly2x	- 🗨	7.0	ns	C∟≤ 25 pF		
during Data Transfer					(1 card)		
Mode							
Output Hold time	T _{OH2x}	1.5	-	ns	C∟≥ 15 pF		
					(1 card)		

Table 4-6 Bus Timings – Parameters Values (DDR50 Mode)

5. PAD ASSIGNMENT

4.1 Pad Assignment and Descriptions

pin		SD	Mode			SPI Mode
	Name	Type ¹	Description	Name	Туре	Description
1	CD/DAT3	I/O/PP	Card Detect/	CS	³	Chip Select (net true)
	2	3	Data Line[bit3]			
2	CMD	PP	Command/Response	DI	-	Data In
3	V _{SS1}	S	Supply voltage ground	VSS	S	Supply voltage ground
4	V_{DD}	S	Supply voltage	VDD	S	Supply voltage
5	CLK	-	Clock	SCLK	l.	Clock
6	V _{SS2}	S	Supply voltage ground	VSS2	S	Supply voltage ground
7	DAT0	I/O/PP	Data Line[bit0]	DO	O/PP	Data Out
8	DAT1	I/O/PP	Data Line[bit1]	RSV		
9	DAT2	I/O/PP	Data Line[bit2]	RSV		

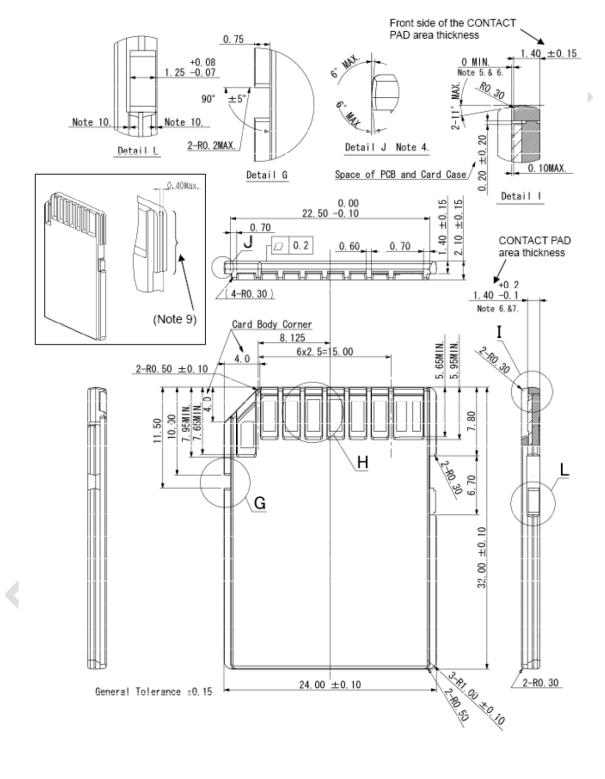
Table 5-1 SD Memory Card Pad Assignment

(1) S: power supply, I: input; O: output using push-pull drivers; PP: I/O using push-pull drivers.

(2) The extended DAT lines (DAT1-DAT3) are input on power up. They start to operate as DAT lines after SET_BUS_WIDTH command. The Host shall keep its own DAT1-DAT3 lines in input mode as well while they are not used. It is defined so in order to keep compatibility to MultiMedia Cards.

(3) At power up, this line has a 50KOhm pull up enabled in the card. This resistor serves two functions: Card detection and Mode Selection. For Mode Selection, the host can drive the line high or let it be pulled high to select SD mode. If the host wants to select SPI mode, it should drive the line low. For Card detection, the host detects that the line is pulled high. This pull-up should be disconnected by the user during regular data transfer with SET_CLR_CARD_DETECT (ACMD42) command.

SET_CLR_CARD_DETECT (ACMD42) command.


6. REGISTERS

Name	Width	Description
CID	128bit	Card identification number; card individual number for identification.
RCA	16bit	Relative card address; local system address of a card, dynamically suggested by the card and approved by the host during initialization.
DSR	16bit	Driver Stage Register; to configure the card's output drivers.
CSD	128bit	Card Specific Data; Information about the card operation conditions.
SCR	64bit	SD Configuration Register; Information about the SD Memory Card's Special Features capabilities
OCR	32bit	Operation conditions register.
SSR	512bit	SD Status; Information about the card proprietary features.
OCR	32bit	Card Status; Information about the card status.

Table 6-1 SD Registers

7. PHYSICAL DIMENSION

Dimension: 32mm(L) x 24mm(W) x 2.1mm(H)

8. ORDERING INFORMATION

Capacity	MPN (Diamond Grade)	MPN (Diamond Grade)
4GB	FDMS004GME-XE00	FDMS004GMG-XE00
8GB	FDMS008GME-XE00	FDMS008GMG-XE00
16GB	FDMS016GME-XE00	FDMS016GMG-XE00
32GB	FDMS032GME-XE00	FDMS032GMG-XE00
64GB	FDMS064GME-XE00	FDMS064GMG-XE00
128GB	FDMS128GME-XE00	FDMS128GMG-XE00
256GB	FDMS256GME-XE00	FDMS256GMG-XE00

REVISION HISTORY

Revision	Date	History
1.0	2019/03	First Release
1.1	2019/03	Update Product Specifications
1.2	2019/04	Update Ordering Information
1.3	2020/03	Update Product Overview and Ordering Information
1.4	2020/08	Update Performance
1.5	2020/11	Update Capacity