

AM27S06, AM27S07

64-Bit Noninverting-Output Bipolar RAM

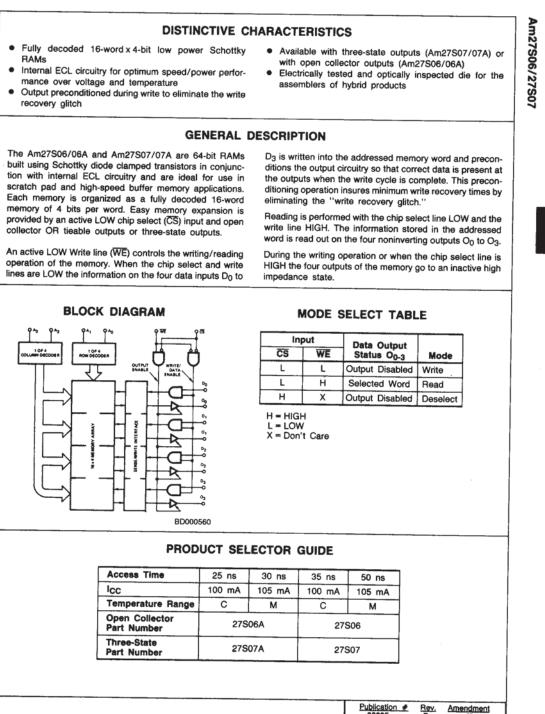
The AM27S06/06A and AM27S07/07A are 64-bit RAMs built using Schottky diode clamped transistors in conjunction with internal ECL circuitry and are ideal for use in scratch pad and high-speed buffer memory applications. Each memory is organized as a fully decoded 16-word memory of 4 bits per word. Easy memory expansion is provided by an active LOW chip select (\overline{CS}) input and open collector OR tieable outputs or three-state outputs.

Rochester Electronics Manufactured Components

Rochester branded components are manufactured using either die/wafers purchased from the original suppliers or Rochester wafers recreated from the original IP. All recreations are done with the approval of the OCM.

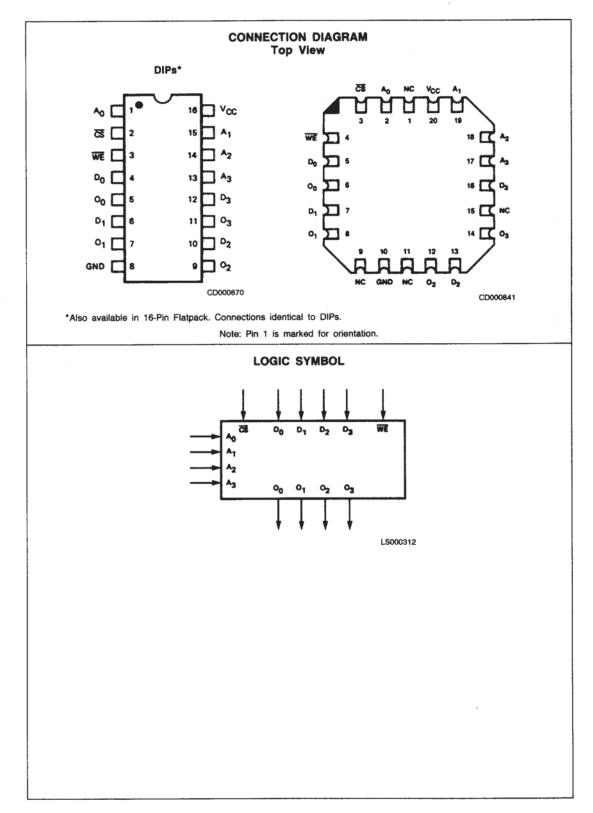
Parts are tested using original factory test programs or Rochester developed test solutions to guarantee product meets or exceeds the OCM data sheet.

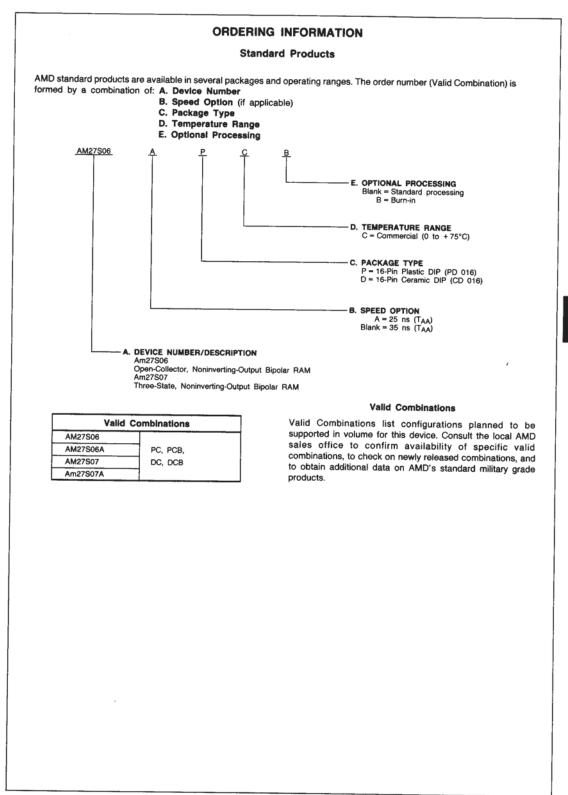
Quality Overview

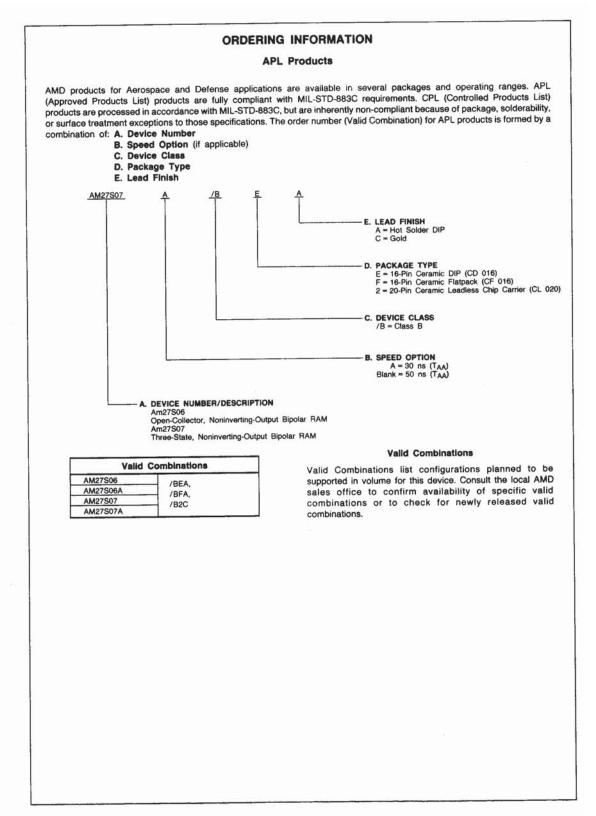

- ISO-9001
- AS9120 certification
- Qualified Manufacturers List (QML) MIL-PRF-38535
 - Class Q Military
 - Class V Space Level
- Qualified Suppliers List of Distributors (QSLD)
 - Rochester is a critical supplier to DLA and meets all industry and DLA standards.

Rochester Electronics, LLC is committed to supplying products that satisfy customer expectations for quality and are equal to those originally supplied by industry manufacturers.

The original manufacturer's datasheet accompanying this document reflects the performance and specifications of the Rochester manufactured version of this device. Rochester Electronics guarantees the performance of its semiconductor products to the original OEM specifications. 'Typical' values are for reference purposes only. Certain minimum or maximum ratings may be based on product characterization, design, simulation, or sample testing.


Am27S06/27S07


64-Bit Noninverting-Output Bipolar RAM



Publication # Rev. Amenda 03205 D /0 Issue Date: May 1986

3-101

ABSOLUTE MAXIMUM RATINGS

~.

Storage Temperature65 to +150°C
Ambient Temperature with
Power Applied 55 to +125°C
Supply Voltage0.5 V to +7.0 V
DC Voltage Applied to Outputs0.5 V to +Vcc Max.
DC Input Voltage0.5 V to +5.5 V
Output Current into Outputs
DC Input Current30 mA to +5 mA

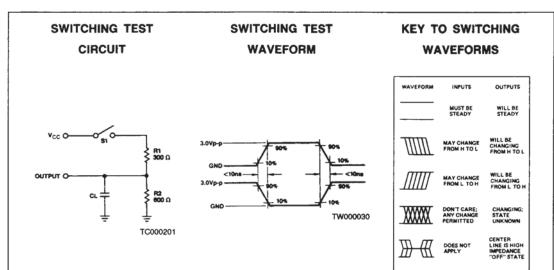
Stresses above those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent device failure. Functionality at or above these limits is not implied. Exposure to absolute maximum ratings for extended periods may affect device reliability.

OPERATING RANGES

Commercial (C) Devices
Temperature0 to +75°C
Supply Voltage + 4.75 V to + 5.25 V
Military (M) Devices
Temperature55 to +125°C
Supply Voltage +4.5 V to +5.5 V

Operating ranges define those limits between which the functionality of the device is guaranteed.

See Note 5


DC CHARACTERISTICS over operating range unless otherwise specified*

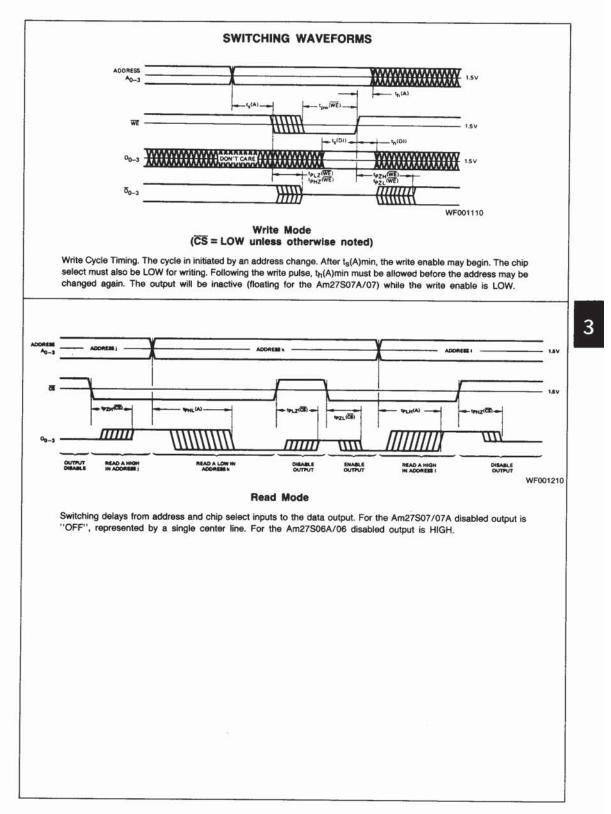
Parameter	Parameter	Test Conditions				27S06/27 506A/275			
Symbol	Description				Min.	Тур.	Max.	Units	
VOH (Note 2)	Output HIGH	V _{CC} = Min.	I _{OH} = -5.2 mA	COM'L	2.4	3.2		Volts	
(Note 2) Voltage	voitage	VIN - VIH or VIL	$I_{OH} = -2.0 \text{ mA}$	MIL	2.4				
VOL Output LOW		V _{CC} = Min.,	IOL = 16 mA	IOL = 16 mA		350	450		
	Voltage	VIN = VIH or VIL	or VIL IOL = 20 mA			380	500	m∨	
VIH Input HIGH Level		Guaranteed Input Logical HIGH		COM'L	2.0				
		Voltage for All Inputs (Note 3)		MIL	2.1			Volts	
VIL	VIL Input LOW Level	Guaranteed Input Logical LOW		COM'L			0.8		
	Input LOW Level Voltage for All Inputs (Note 3		s (Note 3)	MIL		<u> </u>	0.8	1	
հլ			CC - Max., WE, D0-D3, A0-A3			- 15	-250		
· · · · · · · · ·		VIN - 0.40 V	CS		-30	-250	μA		
ин	Input HIGH Current	Voc = Max., VIN = 2.7	C = Max., VIN = 2.7 V			0	10	μA	
ISC (Note 2)	Output Short Circuit Current	V _{CC} = Max., V _{OUT} = 0.0 V (Note	V _{CC} = Max., V _{OLT} = 0.0 V (Note 4)			-45	- 90		
lcc	Power Supply	All Inputs = GND		COM'L		75	100	mA	
	Current	V _{CC} = Max.		MIL		75	105		
VCL	Input Clamp Voltage	V _{CC} = Min., I _{IN} = -18	V _{CC} = Min., I _{IN} = -18 mA			-0.85	-1.2	Volts	
ICEX Output	Output Leakage	VOS - VIH OF VWE-V VOUT = 2.4 V, VCC -	IL Max.			0	40		
-UEX	Current VCS - VIH or VWE - VIL VOUT - 0.4 V, VCC - Max.		VII	(Note 2)	-40	0		μA	

Notes: 1. Typical limits are at V_{CC} = 5.0 V and T_A = 25°C.
2. This applies to three-state devices only.
3. These are absolute voltages with respect to device ground pin and include all overshoots due to system and/or tester noise. Do not attempt to test these values without suitable equipment.

not attempt to test these values without suitable equipment. 4. Not more than one output should be shorted at a time. Duration of the short circuit should not be more than one second. 5. Operating specification with adequate time for temperature stabilization and transverse air flow exceeding 400 linear feet per minute. Conformance testing performed instantaneously where $T_A = T_C = T_J$. $\theta_{JA} \approx 50^{\circ}$ % (with moving air) for Ceramic DIP. $\theta_{JC} \approx 10 - 17^{\circ}$ % for Flatpack and leadless chip carrier.

*See the last page of this spec for Group A Subgroup Testing information.

KS000010


SWITCHING CHARACTERISTICS over operating range unless otherwise specified*

				Am27S06A/27S07A			Am27S06/27S07				
			CDe	Devices M Devices		C Devices		M Devices			
No.	Parameter Symbol	Parameter Description	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Units
1	t _{PLH} (A)	Delay from Address to Output		25		30		35		50	ns
2	t _{PHL} (A)	Delay Irolli Address to Odiput		25		30		35		50	115
3	t _{PZH} (CS)	Delay from Chip Select (LOW) to		15		20		17		25	ns
4	tPZL(CS)	Active Output and Correct Data									
5	t _{PZH} (WE)	Delay from Write Enable (HIGH) to Active Output and Correct Data		20		25		35		40	ns
6	tPZL(WE)	(Write Recovery-See Note 1)						× .			
7	t _s (A)	Setup Time Address (Prior to Initiation of Write)	0		0		0		0		ns
8	t _h (A)	Hold Time Address (After Termination of Write)	0		0		0		0		ns
9	t _s (DI)	Setup Time Data Input (Prior to Termination of Write)	20		25		25		25		ns
10	t _h (DI)	Hold Time Data Input (After Termination of Write)	0		0		0		0		ns
11	tpw(WE)	MIN Write Enable Width Pulse to Insure Write	20		25		25		25		ns
12	tPHZ(CS)	to Active Output and Correct Data (Write Recovery-See Note 1)20253540Setup Time Address (Prior to Initiation of Write)000000Hold Time Address (After Termination of Write)0000000Setup Time Data Input (Prior to Termination of Write)202525252525Hold Time Data Input (After Termination of Write)000000Hold Time Data Input (After Termination of Write)000000MIN Write Enable Width Pulse202525252525	ns								
13	tPLZ(CS)	to inactive Output (HI-Z)									
14	tPLZ(WE)			20		25		25		35	ns
15	tPHZ(WE)	to inactive Output (HI-Z)			L		L				

Notes: 1. Output is preconditioned to data in during write to insure correct data is present on all outputs when write is terminated. (No write recovery glitch.)

recovery glitch.) 2. tpLH(A) and tpHL(A) are tested with S₁ closed and C_L = 30 pF with both input and output timing referenced to 1.5 V. 3. For open collector, all delays from Write Enable (WE) or Chip Select (CS) inputs to the Data Output (D_{OUT}), tpLZ(WE), tpLZ(CS), tpZL(WE) and tpZL(CS) are measured with S₁ closed and C_L = 30 pF and with both the input and output timing referenced to 1.5 V. 4. For 3-state output, tpZH(WE) and tpZH(CS) are measured with S₁ closed, C_L = 30 pF and with both the input and output timing referenced to 1.5 V. 5. For 3-state output, tpZH(WE) and tpZH(CS) are measured with S₁ closed, C_L = 30 pF and with both the input and output timing referenced to 1.5 V. tpZU(WE) and tpZL(CS) are measured with S₁ closed, C_L = 30 pF and with both the input and output timing referenced to 1.5 V. tpZU(WE) and tpZL(CS) are measured with S₁ open and C_L ≤ 5 pF and are measured between the 1.5 V level on the output. tpLZ(WE) and tpLZ(CS) are measured with S₁ closed and C_L ≤ 5 pF and are measured between the 1.5 V level on the input and the V_{OL}+ 500 mV level on the output.

*See the last page of this spec for Group A Subgroup Testing information.

GROUP A SUBGROUP TESTING

DC CHARACTERISTICS

Parameter Symbol	Subgroups
VOH	1, 2, 3
VOL	1, 2, 3
VIH	1, 2, 3
VIL	1, 2, 3
կլ	1, 2, 3
ιн	1, 2, 3
ISC	1, 2, 3
Icc	1, 2, 3
VCL	1, 2, 3
ICEX	1, 2, 3

SWITCHING CHARACTERISTICS

No.	Parameter Symbol	Subgroups	No.	Parameter Symbol	Subgroups		
. 1	t _{PLH} (A)	0 10 11	0	1 (DI)	0 10 11		
2	t _{PHL} (A)	9, 10, 11 9		t _s (DI)	9, 10, 11		
3	tpZH(CS)	9, 10, 11	10	t _h (Di)	9, 10, 11		
4	tpzL(CS)						
5	t _{PZH} (WE)	9, 10, 11	11	4	0 10 11		
6	tpzL(WE)		- 11	tpw(WE)	9, 10, 11		
-	t _S (A)	0 10 11	12	tPHZ(CS)	9, 10, 11		
7		9, 10, 11	13	tPLZ(CS)			
8	t _h (A)	9, 10, 11	14	tPLZ(WE)	9, 10, 11		
			15	tPHZ(WE)			

MILITARY BURN-IN

Military burn-in is in accordance with the current revision of MIL-STD-883, Test Method 1015, Conditions A through E. Test conditions are selected at AMD's option.