General Description

The MAX40109 evaluation system (EV system) demonstrates the precision sensor conditioning analog front end (AFE) for pressure sensors. The MAX40109 EV system includes the MAX40109 EV kit and the MAX32666FTHR board. Windows ${ }^{\circledR}$-compatible software provides a graphical user interface (GUI) to demonstrate the features of the MAX40109. The GUI supports ${ }^{2} \mathrm{C}$, SPI, and 1-Wire ${ }^{\circledR}$ communication.
The MAX40109 EV kit PCB comes with a MAX40109IATP+ installed which is the $1^{2} \mathrm{C}$ and 1 -Wire variant IC.

Features and Benefits

- On-Board Microcontroller (MAX32666) to Evaluate the MAX40109
- Accommodates Easy-to-Use Components
- Proven PCB Layout
- Fully Assembled and Tested

Quick Start

Required Equipment

- MAX40109 EV System (USB Cable Included)
- Windows PC
- 3 V to $36 \mathrm{~V}, 100 \mathrm{~mA}$ DC Power Supply
- 2.75 V to $6 \mathrm{~V}, 100 \mathrm{~mA}$ DC Power Supply
- Two DC Voltage Sources
- Voltmeter
- MAX40109EVkitSetupVXXX.zip File

Note: In the following sections, software-related items are identified by bolding. Text in bold refers to items directly from the EV kit software. Text in bold and underlined refers to items from the Windows operating system.

Procedure

Procedure for Voltage Output

The MAX40109 EV kit is fully assembled and tested. Follow the steps below to verify board operation.

- Set the 3 V to 36 V supply to 5 V . Connect the positive terminal of the 3 V to 36 V supply to the VDDHV test point and the negative terminal to the AGND test point of the EV kit, respectively.
- Measure the voltage at the VDD5V test point.
- Set the 2.75 V to 6 V supply to the voltage measured at the VDD5V test point. Connect the positive terminal of the second supply to the VDDA5 test point and the negative terminal to the DGND test point of the EV kit, respectively.
- Connect the first DC voltage source at INP- and AGND test points. Set the DC source to 1 V . Connect the second DC voltage source at INP+ and INP- test points. Set the DC source to 20 mV .
- Connect the voltmeter between the OUT and AGND test points.
- Verify all the shunts are in the default position as shown in Table 1.
- Turn on the power supplies and DC voltage sources.
- Start the MAX40109 GUI as shown in Figure 1.
- Within the Register Settings tab sheet, start by selecting Bypass (Raw Mode) from the Pressure Cal dropdown list within the Configuration Register group box. The default PGA Gain is set to 10 . Select 8 from the Analog Output Stage dropdown list on the right. Click the Set All button when the desired settings are finalized.
- Monitor the voltage at the OUT test point.

Windows is a registered trademark of Microsoft Corporation.
1-Wire is a registered trademark of Maxim Integrated Products, Inc.

Ordering Information appears at end of data sheet.

MAX40109 EV System Photo

Procedure for Current Output

The MAX40109 EV kit is fully assembled and tested. Follow the steps below to verify board operation.

- Remove the bypass capacitors C5 and C6. The VDDHV supply ground changes to the EXT test point.
- Set the 3 V to 36 V supply to 5 V . Connect the positive terminal of the 3 V to 36 V supply to the VDDHV test point and the negative terminal to the EXT test point of the EV kit, respectively.
- Measure the voltage at the VDD5V test point.
- Set the 2.75 V to 6 V supply to the voltage measured at the VDD5V test point. Connect the positive terminal of the second supply to the VDDA5 test point and the negative terminal to the DGND test point of the EV kit, respectively.
- Connect the first DC voltage source at the INN and AGND test points. Set the DC source to 1 V .
- Connect the second DC voltage source at INP+ and INP- test points. Set the DC source to 100 mV .
- The jumpers at the output stage should be placed as follow:
- J4: 1-2 position
- J6: 2-3 position
- J8: Installed
- J10: Installed
- Turn on the power supplies and DC voltage sources.
- Start the MAX40109 GUI as shown in Figure 1.
- Within the Register Settings tab sheet, start by selecting Bypass (Raw Mode) from the Pressure Cal dropdown list within the Configuration Register group box. The default PGA Gain is set to 10. Select 7 from the Analog Output Stage dropdown list on the right. Click Set All button when the desired settings are finalized.
- Monitor the voltage between the EXT and AGND test point. The measured voltage is divided by 50Ω (R11) and the value here is the current at the output. The expected current is 4 mA .
- Repeat from Step 6 but adjust the DC calibrator from 20 mV to 100 mV . The expected current is 20 mA .

Figure 1. MAX40109 EV System GUI Main Window (Register Setting Tab)

Table 1. MAX40109 EV System Jumper Descriptions

JUMPER	SHUNT POSITION	DESCRIPTION
J3	1-2*	${ }^{12} \mathrm{C}$ SDA connection to the on-board microcontroller.
	2-3	SPI DIN connection to the on-board microcontroller.
J4	1-2*	FB+ connection.
	2-3	SPI DSO connection to the on-board microcontroller.
J5	Installed	Connects the 5 V supply from the USB supply. The AGND ground must be externally connected to the microcontroller ground.
	Not installed*	User-supplied VDDHV. User must apply 3V to 36V at VDDHV. Disconnects the 5 V from the USB supply.
J6	1-2	SPI CSB connection to the on-board microcontroller.
	2-3*	FB- connection.
J7	1-2*	${ }^{12} \mathrm{C}$ SCL connection to the on-board microcontroller.
	2-3	SPI SCLK connection to the on-board microcontroller.
J8	Installed	Connects collector of the transistor to VDDHV.
	Not installed*	Disconnects collector of the transistor to VDDHV.
J9	1-2*	Connects the thermistor to the INT pin.
	2-3	Connects AGND to the INT pin.

J10	Installed*	Connects the OUT pin to the base of transistor Q1.
	Not installed	Disconnects the OUT pin to the base of transistor Q1.
J11	Installed*	Connects $\overline{\text { ALERT to the on-board microcontroller. }}$
	Not installed	Disconnects $\overline{\text { ALERT to the on-board microcontroller. }}$
	$1-2$	1-Wire DQ connection to the on-board microcontroller.
	$2-3$	Connects to VDD5V for I²C and PLC communications.
	$1-2$	User-supplied 5V supply to isolators.
	$2-3^{*}$	VDD5V supply to the isolators.

*Default position.

Detailed Description of Hardware

The MAX40109 EV system demonstrates the precision sensor conditioning AFE for pressure sensors. The MAX40109 EV system consist of two boards; the MAX40109 EV kit and the MAX32666FTHR board.

I2C Interface

To evaluate the EV kit with a user-supplied $I^{2} \mathrm{C}$ bus, the jumpers J 3 and J 7 must not have shunts installed. Apply the user-supplied ${ }^{2} \mathrm{C}$ to the SDA/DIN and SCL/SCLK test points, respectively. Make sure the return ground is DGND.

1-Wire Interface

To evaluate the EV kit with a user-supplied 1-Wire bus, jumper J12 must not have a shunt installed. Applied the usersupplied 1-Wire to the DQ test point. Make sure the return ground is DGND.

ALERT

To evaluate the EV kit with a user-supplied $\overline{\text { ALERT, jumper } J 11 \text { must not have a shunt installed. Apply the user-supplied }}$ $\overline{\mathrm{ALERT}}$ to the $\overline{\mathrm{ALERT}}$ test point.

Detailed Description of Software

The main window of the MAX40109 EV kit software contains controls to evaluate the MAX40109 IC. There are five tabs to demonstrate the features of the part. The Register Settings tab allows for a user-friendly access to the RAM register. The RAM and MTP tabs display a bit view of the register map. The Calibration tab allows the user to prototype coefficients before burning into MTP. The ADC Reading tab allows for sample collection of pressure and temperature in a time domain.

Register Settings Tab

The Register Settings tab (Figure 1) displays the control of the frequently used RAM registers. In addition, the user can select the digital interface from $I^{2} \mathrm{C}, \mathrm{SPI}, 1-$ Wire, and VDDHV. Once the interface is selected, a pop-up window appears to ensure the user places the appropriate jumper settings on the EV kit. The SPI and VDDHV selections should not be used for now and are intended for future use. Once the desired settings are configured, the user needs to click the Set All button.

RAM Tab

The RAM tab displays all RAM registers in a bit view (Figure 2). This tab is helpful in verifying the data of each RAM register. Refer to the MAX40109 IC data sheet for a detailed description of the RAM registers.

Figure 2. MAX40109 EV System GUI Main Window (RAM Tab)

MTP Tab

The MTP tab displays the MTP registers in a bit view (Figure 3). This tab is helpful in verifying the data of each MTP register. Always click the Initialize button before writing or burning into MTP. The user should be careful with the Burn button since there is a limited number of burns to the MTP register. Refer to the MAX40109 IC data sheet for a detailed description of the MTP registers.

Figure 3. MAX40109 EV System GUI Main Window (MTP Tab)

Calibration Tab

The Calibration tab displays the coefficients within the MTP registers. This tab is useful for prototyping coefficients before burning into MTP. Always click the Initialize button before writing or burning into MTP. The user should be careful with the Burn button since there is a limited number of burns to the MTP register.
Below are the steps to calibrate for temperature.

- Within the Register Settings tab sheet, start by selecting Bypass (Raw Mode) from the Temp Cal dropdown list within the Configuration Register group box. Next, select the desired PGA Gain, V/I Driver, ADC Sample Rates for Temperature, and Sensor Offset Calibration options. Lastly, select the desired temperature measurement option from INT or DRV in the Temp Mode dropdown list. Click Set All button when desired settings are finalized.
- Within the RAM tab sheet, read the Uncalibrated Temperature (0x08) register. Record codes at desired temperature range. Used the codes to create coefficient for K0-K3.
- Within the Calibration tab sheet, enter the user's coefficients within the T0 and Pout group box. Enter 0 for any coefficients that are not used. Once set, click the Initialize button followed by the Write button. The user can write to the coefficient register as many times as possible to make changes. Only click the Burn button if the coefficients are finalized.
- Return to the Register Setting tab sheet. Select Enabled (default) from the Temp Cal dropdown list within the Configuration Register group box. Click the Set All button.
- Within the RAM tab sheet, read the Calibrated Temperature (0x11) register. Record the codes at the desired temperature and compare with the initial uncalibrated temperature.

Below are the steps to calibrate for pressure.

- Within the Register Settings tab sheet, start by selecting Bypass (Raw Mode) from the Pressure Cal dropdown list within the Configuration Register group box. Next, select the desired PGA Gain, ADC Sample Rates for Pressure, and Bridge Drive options. Lastly, make sure the Sensor Offset Calibration options are left at Trim ResistorConnected, Current Source-Disconnected, and PGA Mode-Normal. Click the Set All button when the desired settings are finalized.
- Within the MPT tab, enable the zero-pressure offset by entering 0x404D to the CONFIG MTP (0×44) register. Once set, click the Initialize button followed by the Write button.
- Within the MTP tab sheet, enter the value field of the ZERO_PRESSURE_OFFSET (0x3D) register. Refer to the Zero Pressure Offset section of the MAX40109 IC data sheet for details on how to obtain the offset. Once set, click the Initialize button followed by the Write button.
- Within the RAM tab sheet, read the Uncalibrated Pressure (0x06) register. Record the data.
- Within the Calibration tab sheet, enter the user's coefficients within the T0 and Pout group box. Enter 0 for any coefficient that is not used. Once set, click the Initialize button followed by the Write button. The user can write to the coefficient register as many times as possible to make changes. Only click the Burn button if the coefficients are finalized.
- Return to the Register Setting tab sheet. Select Enabled (default) from the Pressure Cal dropdown list within the Configuration Register group box. Click the Set All button.
- Within the RAM tab sheet, read the Calibrated Pressure (0x0F) register. Record codes at desired pressure and compare with the initial uncalibrated pressure.

Figure 4. MAX40109 EV System GUI Main Window (Calibration Tab)

ADC Reading Tab

The ADC Reading tab displays the readings from the calibrated/uncalibrated pressure and temperature of the RAM registers.

Figure 5. MAX40109 EV System GUI Main Window (ADC Reading Tab)

Ordering Information

PART	
MAX40109ITEVSYS1\#	EV System (EV Kit and Microcontroller Board)

[^0]
Component List

ITEM	$\begin{gathered} \hline \text { REF_D } \\ \text { ES } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { DNI/ } \\ & \text { DNP } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { QT } \\ & \mathbf{Y} \\ & \hline \end{aligned}$	MANUFACTURER PART NUMBER	MANUFACTURER	VALUE	DESCRIPTION
1	$\begin{gathered} \text { ALERT } \\ \text { B, DQ, } \\ \text { EXT, } \\ \text { FB+/S } \\ \text { DO, } \\ \text { FB- } \\ \text { ICSB, } \\ \text { INT, } \\ \text { OUT, } \\ \text { SCL/S } \\ \text { CLK, } \\ \text { SDA/DI } \\ \text { N, TP1, } \\ \text { TP4, } \\ \text { TP6 } \\ \hline \end{gathered}$	-	12	5012	KEYSTONE	N/A	TEST POINT; PIN DIA $=0.125 \mathrm{IN}$; TOTAL LENGTH=0.445I N; BOARD HOLE=0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;
2	$\begin{aligned} & \mathrm{C} 2, \\ & \mathrm{C} 16 \end{aligned}$	-	2	06035C102KAT2AL;C1608X7R1H102K080 AE	AVX;TDK	1000PF	$\begin{array}{\|l\|} \hline \text { CAP; SMT } \\ \text { (0603); 1000PF; } \\ \text { 10\%; 50V; X7R; } \\ \text { CERAMIC } \\ \hline \end{array}$
3	$\begin{gathered} \text { C4, C6, } \\ \text { C9- } \\ \text { C15 } \end{gathered}$	-	9	C0603C104K5RAC;C1608X7R1H104K;EC J- 1VB1H104K;GRM188R71H104KA93;CGJ3 E2X7R1H104K080AA;C1608X7R1H104K0 80AA;CL10B104KB8NNN;CL10B104KB8N FN;06035C104KAT2A;06035C104KAT4A	KEMET;TDK;PANAS ONIC;MURATA;TDK; TDK;SAMSUNG;SAM SUNG;AVX;AVX	0.1UF	CAP; SMT (0603); 0.1UF; 10\%; 50V; X7R; CERAMIC;
4	C5	-	1	CC0805KKX5R9BB106;GRM21BR61H106 KE43	YAGEO;MURATA	10UF	$\begin{array}{\|l\|} \hline \text { CAP; SMT } \\ \text { (0805); 10UF; } \\ \text { 10\%; 50V; X5R; } \\ \text { CERAMIC } \\ \hline \end{array}$
5	C7, C8	-	2	C1608X7R1H224K080; GRM188R71H224KAC4	TDK;MURATA	0.22UF	$\begin{aligned} & \hline \text { CAP; SMT } \\ & \text { (0603); 0.22UF; } \\ & \text { 10\%; 50V; X7R; } \\ & \text { CERAMIC } \end{aligned}$
6	J1	-	1	PPPC121LFBN-RC	$\begin{gathered} \text { SULLINS } \\ \text { ELECTRONICS } \\ \text { CORP } \end{gathered}$	PPPC12 1LFBNRC	CONNECTOR; FEMALE; THROUGH HOLE; HEADER FEMALE; STRAIGHT; 12PINS
7	J2	-	1	PPPC161LFBN-RC	$\begin{aligned} & \text { SULLINS } \\ & \text { ELECTRONICS } \\ & \text { CORP. } \end{aligned}$	PPPC16 1LFBN- RC	CONNECTOR; FEMALE; THROUGH HOLE; LFB SERIES; 2.54MM CONTACT CENTER;

ITEM	$\begin{gathered} \text { REF_D } \\ \text { ES } \end{gathered}$	$\begin{aligned} & \hline \text { DNI/ } \\ & \text { DNP } \end{aligned}$	$\begin{gathered} \hline \text { QT } \\ \mathbf{Y} \end{gathered}$	MANUFACTURER PART NUMBER	MANUFACTURER	VALUE	DESCRIPTION
							STRAIGHT; 16PINS
8	$\begin{gathered} \mathrm{J} 3, \mathrm{~J} 4, \\ \mathrm{~J} 6, ~ \mathrm{~J}, \\ \mathrm{~J} 9, \\ \mathrm{~J} 12, \\ \mathrm{~J} 13 \end{gathered}$	-	7	PCC03SAAN	SULLINS	$\begin{gathered} \text { PCCO3S } \\ \text { AAN } \end{gathered}$	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 3PINS; -65 DEGC TO +125 DEGC
9	J5, J8, J10, J11	-	4	PCC02SAAN	SULLINS	$\begin{gathered} \text { PCCO2S } \\ \text { AAN } \end{gathered}$	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT THROUGH; 2PINS; -65 DEGC TO +125 DEGC
10	$\begin{aligned} & \text { MH1- } \\ & \text { MH4 } \end{aligned}$	-	4	9032	KEYSTONE	9032	MACHINE FABRICATED; ROUND-THRU HOLE SPACER; NO THREAD; M3.5; 5/8IN; NYLON
11	Q1	-	1	CMPT6428	CENTRAL SEMICONDUCTOR	$\begin{gathered} \text { CMPT64 } \\ 28 \end{gathered}$	TRANSISTOR, NPN, SOT-23, $\mathrm{PD}=0.35 \mathrm{~W}$, IC $=0.2 \mathrm{~A}$, VCEO $=60 \mathrm{~V}$
12	$\begin{aligned} & \mathrm{R} 8, \\ & \mathrm{R} 12 \end{aligned}$	-	2	RC1608J000CS;CR0603-J/-000ELF;RC0603JR-070RL	SAMSUNG ELECTRONICS;BOU RNS;YAGEO PH	0	$\begin{array}{\|l\|} \hline \text { RES; SMT } \\ \text { (0603); 0; 5\%; } \\ \text { JUMPER; } \\ \text { 0.1000W } \\ \hline \end{array}$
13	R9	-	1	ERJ-3GEYJ102	PANASONIC	1K	RES; SMT (0603); 1K; 5%; +/- 200PPM/DEGC; 0.1000 W
14	R11	-	1	CRCW060349R9FK	VISHAY DALE	49.9	$\begin{array}{\|l\|} \hline \text { RES; SMT } \\ \text { (0603); 49.9; 1\%; } \\ +/- \\ \text { 100PPM/DEGC; } \\ \text { 0.1000W } \\ \hline \end{array}$
15	$\begin{aligned} & \text { R13- } \\ & \text { R28 } \end{aligned}$	-	16	ERJ-3GEYJ472	PANASONIC	4.7K	$\begin{aligned} & \hline \text { RES; SMT } \\ & \text { (0603); 4.7K; 5\%; } \\ & \text { +/- } \\ & \hline \end{aligned}$

ITEM	$\begin{gathered} \hline \text { REF_D } \\ \text { ES } \end{gathered}$	DNI/ DNP	$\begin{gathered} \hline \text { QT } \\ \mathbf{Y} \end{gathered}$	MANUFACTURER PART NUMBER	MANUFACTURER	VALUE	DESCRIPTION
							$\begin{array}{\|l} \text { 200PPM/DEGC; } \\ \text { 0.1000W } \\ \hline \end{array}$
16	REFIN, VDD2V VDD5V VDDA5 VDDH V	-	5	5010	KEYSTONE	N/A	TEST POINT; PIN DIA $=0.125 \mathrm{IN}$; TOTAL LENGTH=0.445I N; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL;
17	RT1	-	1	TFPT0805L4701FV	VISHAY	4.7K	THERMISTOR; SMT (0805); 4.7K; TOL=+/-1\%
18	TP2, TP3, TP5, TP7TP12	-	9	5011	KEYSTONE	N/A	TEST POINT; PIN DIA $=0.125 \mathrm{IN}$; TOTAL LENGTH=0.445I N; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;
19	U1	-	1	MAX40109IATP+	ANALOG DEVICES	MAX401 09IATP+	EVKIT PART - IC; SNSR; PRECISION SENSOR CONDITIONING AFE FOR PRESSURE SENSORS; PACKAGE CODE:T2044- 5C; PACKAGE OUTLINE DRAWING:21- 0139; PACKAGE LAND PATTERN:90- 0429; TQFN20- EP
20	U3, U5	-	2	MAX14933ASE+	ANALOG DEVICES	MAX149 33ASE+	IC; ISO; TWOCHANNEL; 2.75KV I2C ISOLATOR; NSOIC16

ITEM	$\begin{gathered} \text { REF_D } \\ \text { ES } \\ \hline \end{gathered}$	DNI/ DNP	$\begin{aligned} & \text { QT } \\ & \mathbf{Y} \\ & \hline \end{aligned}$	MANUFACTURER PART NUMBER	MANUFACTURER	VALUE	DESCRIPTION
21	U4	-	1	MAX14931BASE+	ANALOG DEVICES	MAX149 31BASE $+$	IC; DISO; 3/1 CHANNEL; 25MBPS; 2.75KVRMS DIGITAL ISOLATOR; NSOIC16 150MIL
22	PCB	-	1	MAX40109	ANALOG DEVICES	PCB	PCB:MAX
23	C1, C3	DNP	0	06035C102KAT2AL;C1608X7R1H102K080 AE	AVX;TDK	1000PF	CAP; SMT (0603); 1000PF; 10\%; 50V; X7R; CERAMIC
24	$\begin{gathered} \text { R1-R4, } \\ \text { R7 } \end{gathered}$	DNP	0	ERJ-3GEYJ102	PANASONIC	1K	RES; SMT (0603); 1K; 5%; +/- 200PPM/DEGC; 0.1000 W

MAX40109 EV System Schematic

MAX40109 EV System Layout

MAX40109 EV System Component Placement Guide—Top Silkscreen

MAX40109 EV System PCB Layout—Top

MAX40109 EV System PCB Layout-Layer 2

MAX40109 EV System PCB Layout-Layer 3

MAX40109 EV System PCB Layout (continued)

MAX40109 EV System PCB Layout—Bottom

MAX40109 EV System Component Placement Guide—Bottom Silkscreen

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGE(S) CHANGED
0	$10 / 23$	Initial release	-
1	$10 / 23$	Removed individual boards from Ordering Information section	8

ALL INFORMATION CONTAINED HEREIN IS PROVIDED "AS IS" WITHOUT REPRESENTATION OR WARRANTY. NO RESPONSIBILITY IS ASSUMED BY ANALOG DEVICES FOR ITS USE, NOR FOR ANY INFRINGEMENTS OF PATENTS OR OTHER RIGHTS OF THIRD PARTIES THAT MAY RESULT FROM ITS USE. SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE. NO LICENSE, EITHER EXPRESSED OR IMPLIED, IS GRANTED UNDER ANY ADI PATENT RIGHT, COPYRIGHT, MASK WORK RIGHT, OR ANY OTHER ADI INTELLECTUAL PROPERTY RIGHT RELATING TO ANY COMBINATION, MACHINE, OR PROCESS IN WHICH ADI PRODUCTS OR SERVICES ARE USED. TRADEMARKS AND REGISTERED TRADEMARKS ARE THE PROPERTY OF THEIR RESPECTIVE OWNERS.

[^0]: \# Denotes RoHS-compliant.

