

MAX16169

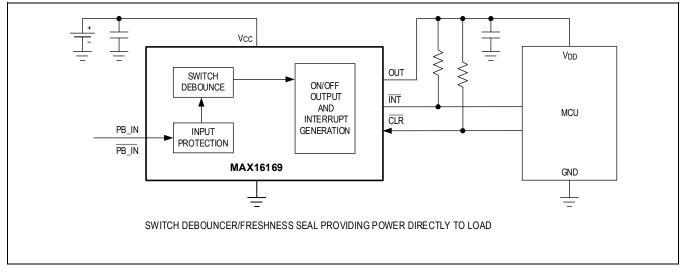
General Description

The MAX16169 is an extremely low-power, pushbutton, on/off controller with a switch debouncer and built-in latch. This device accepts a noisy input from a mechanical switch and produces a clean, latched output, and a one-shot interrupt output, in response to a switch closure exceeding the debounce period at PB_IN/PB_IN. A switch closure longer than the shutdown period at PB_IN/PB_IN results in a longer one-shot interrupt output. The MAX16169 family has two sets of devices, one in which a more extended switch closure greater than the shutdown period deasserts the latched output, and another in which the latched output stays asserted. See <u>Table 1</u> for more information.

The MAX16169 operates from a supply range of +1.3V to +5.5V and consumes less than 40nA of supply current to ensure minimal battery drain in low-power applications, and to allow use as a battery "freshness seal". The robust switch input (PB_IN/PB_IN) accepts up to ±60V levels and is ±40kV ESD-protected for harsh environments. The latched output can serve as a logic signal to control a regulator or as a switch to connect the load directly to the power supply when the load current is low, providing 200mA of output current with less than 30mV voltage drop. A separate INT output provides a system interrupt whenever a valid pushbutton signal is detected. An asynchronous CLR input allows an external signal to force the latched output to the off state.

The MAX16169 operates over the -40°C to +125°C temperature range and is available in a 2mm x 2mm 6pin micro dual-flat no-leads (μ DFN) package.

Applications


- Portable Medical Devices
- Portable Instruments
- Handheld Consumer Electronics
- Industrial Equipment
- Internet of Things (IoT) Devices
- Disposable Low-Power Electronics
- Asset Tracking Devices

Benefits and Features

- Ultra Low Current Saves Power
 - 40nA (max) Standby Current (I_{SB})
 - V_{CC} Range: 1.3V to 5.5V
- Debounces Noisy Switches
 - 50ms and 2s Debounce Timing Options
 - 8s and 16s Shutdown Timing Periods
- Flexible Configurations Provide Design Options
 - Latched Output Supplies 200mA Load Current with Less Than 30mV Drop
 - One-shot INT Output on Each Switch Closure
 - 8ms, 32ms, 64ms, and 128ms INT Timing
 Options
 - Active-Low or Active-High Pushbutton Input
 - 2mm x 2mm 6-pin µDFN
- Robust Features Increases End Equipment Reliability
 - Pushbutton Input Handles up to ±60V
 - ±40kV Human-Body Model (HBM) Electrostatic Discharge (ESD) Protection

Ordering Information appears at end of data sheet.

Typical Application Circuit

MAX16169

nanoPower Pushbutton On/Off Controller and Battery Freshness Seal

TABLE OF CONTENTS

General Description	1
Applications	1
Benefits and Features	1
Typical Application Circuit	2
Absolute Maximum Ratings	4
Package Information	4
6 µDFN	4
Electrical Characteristics	5
Typical Operating Characteristics	7
Pin Configurations	8
Pin Descriptions	8
Block Diagram	
Detailed Description	9
Operation	9
Robust Switch Input	11
±40kV ESD Protection	11
Human Body Model	11
Applications Information	12
Powering the Load	12
Ordering Information	

Absolute Maximum Ratings

V_{CC} to GND0.3V to +6V	Storage Temperature Range40°C to +150°C
PB_IN/PB_IN to GND60V to +60V	Soldering Temperature (reflow)+260°C
CLR, INT, OUT to GND0.3V to +6V	Continuous Power Dissipation (Multilayer Board)
Operating Temperature Range40°C to +125°C	6- μ DFN (T _A = +70°C, derate 4.50mW/°C above +70°C)
Junction Temperature+150°C	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Package Information

6 µDFN

Package Code	L622+1C				
Outline Number	<u>21-0164</u>				
Land Pattern Number	<u>90-0004</u>				
Thermal Resistance, Four Layer Board:					
Junction-to-Ambient (θ _{JA})	223.6°C/W				
Junction-to-Case Thermal Resistance (θ_{JC})	122°C/W				

For the latest package outline information and land patterns (footprints), go to <u>www.analog.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

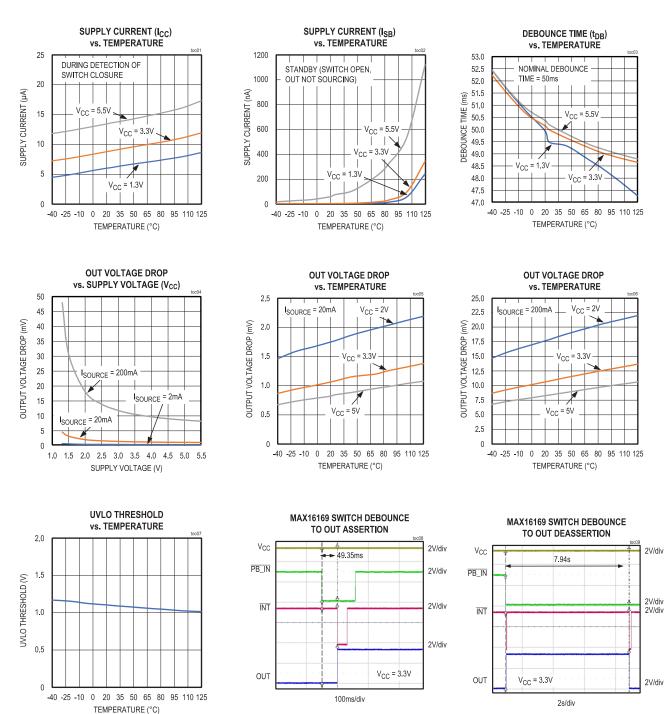
Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to <u>www.analog.com/thermal-</u> <u>tutorial</u>.

Electrical Characteristics

($V_{CC} = V_{MIN}$ to V_{MAX} , $T_A = -40^{\circ}$ C to +125°C, Limits over the operating temperature range and relevant supply voltage range are guaranteed by production and/or characterization. Typical values are at $T_A = +25^{\circ}$ C and $V_{CC} = +3.3$ V)

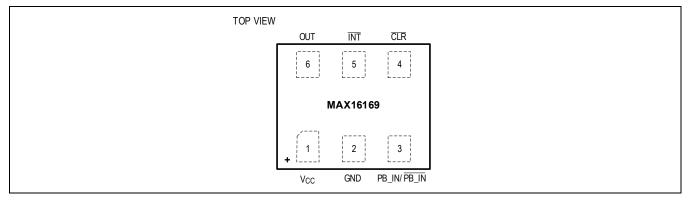
PARAMETER	SYMBOL	CONI	CONDITIONS			MAX	UNITS
Operating Voltage Range	V _{CC}			1.3		5.5	V
		PB_IN/PB_IN not c -40°C ≤ T_A ≤ +70°C	V_{CC} = 3.3V, OUT not asserted, PB_IN/PB_IN not connected. -40°C ≤ T _A ≤ +70°C			40	nA
Power Supply Current	I _{SB}	PB_IN/PB_IN not c	V_{CC} = 3.3V, OUT not asserted, PB_IN/PB_IN not connected. -40°C ≤ T _A ≤ +85°C			80	nA
	Icc	During PB_IN/PB_I assertion	During PB_IN/PB_IN detection or INT assertion		10	30	μA
Power Supply Current	I _{SB_UVLO}	V _{CC} < 1.3V, I _{OUT} = connected, CLR no	: 0, PB_IN/PB_IN not t asserted		1	5	μA
Timing Accuracy		Deviation from the r debounce time (t _{DB} and interrupt time (t), shutoff time (t _{SO}),	-20	±5	+20	%
	Max	CLR and	V _{CC} = 2.7V to 5.5V	70			0/ \ /
Input High Voltage	VIH	PB_IN/PB_IN	V _{CC} = 1.3V to 2.7V	80			%V _{CC}
Input Low Voltage	V _{IL}	CLR and PB_IN/PB	3_IN			30	%V _{CC}
Minimum Input High Time Detected		PB_IN	PB_IN				ms
Minimum Input Low Time Detected		PB_IN			50		ms
PB_IN/PB_IN Hysteresis					100		mV
PB_IN Pulldown Resistance		$0 < V_{PB_{IN}} < V_{CC}$	0 < V _{PB_IN} < V _{CC}		1400	2000	kΩ
PB_IN Pullup Resistance		$0 < V_{\overline{PB}IN} < V_{CC}$	0 < V _{PB_IN} < V _{CC}		1400	2000	kΩ
PB_IN/ <u>PB_IN</u> Input Current	I _{IN}	V _{PB_IN} = ±60V V _{PB_IN} = ±60V		-170		+170	μA
PB_IN/PB_IN Voltage		Continuous; 0V ≤ V	CC ≤ 5V	-60		+60	.,
Range		Transient; $0V \le V_{CO}$	_C ≤ 5.5V	-60		+60	V
CLR Input Current	I _{CLR}				±1	+10	nA
CLR Falling Edge to OUT Low Propagation Delay	tco	$R_{L} = 10k\Omega,$ $C_{L} = 100pF$			200		ns
CLR Lockout Time		The period following the rising edge of OUT during which transitions on CLR are ignored		1.6 x t _{INT}	2 x t _{INT}	2.4 x t _{INT}	ms
V _{CC} = 3.3V, I _{SINK} = 1.6mA		= 1.6mA			0.4		
OUT Output Voltage	V _{OL}	V _{CC} = 1.3V, I _{SINK} =	V _{CC} = 1.3V, I _{SINK} = 200µA			0.2	V

MAX16169


nanoPower Pushbutton On/Off Controller and Battery Freshness Seal

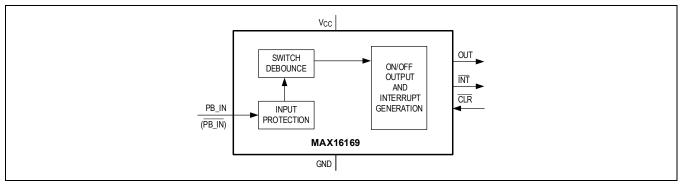
$(V_{CC} = V_{MIN}$ to V_{MAX} , $T_A = -40^{\circ}$ C to +125°C, Limits over the operating temperature range and relevant supply voltage range are
guaranteed by production and/or characterization. Typical values are at T_A = +25°C and V_{CC} = +3.3V)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
		V _{CC} = 3.3V, I _{SOURCE} = 200mA	V _{CC} – 0.03			
OUT Output Voltage	V _{OH}	V_{CC} = 2.0V, I_{SOURCE} = 2mA	V _{CC} – 0.01			V
		V _{CC} = 1.3V, I _{SOURCE} = 500uA	V _{CC} – 0.01			
INT Output Voltage		V _{CC} = 3.3V, I _{SINK} = 1mA			0.2	
INT Output voltage	V _{OL_INT}	V _{CC} = 1.3V, I _{SINK} = 200µA			0.2	V
INT Leakage Current			-10	±1	+10	nA
laterrat Dule - Duration	tu -	Beginning at t _{DB}	25.6	32	38.4	
Interrupt Pulse Duration	^t INT	Beginning at the end of t_{SO}	102.4	128	153.6	ms
PB_IN/PB_IN ESD Protection		Human Body Model		±40		kV


Typical Operating Characteristics

(V_{CC} = +3.3V, T_A = +25°C, unless otherwise noted.)

Pin Configurations


6 μDFN

Pin Descriptions

PIN	NAME	FUNCTION
1	V _{CC}	Power Supply Input. Bypass with a 0.1µF capacitor to ground.
2	GND	Ground
3	PB_IN/ PB_IN	Pushbutton Input. $\overline{PB_IN}$ is internally pulled up to V_{CC} . Holding $\overline{PB_IN}$ low for a period greater than the debounce time (t_{DB}) forces OUT to latch high and generates a one-shot pulse at \overline{INT} . For the MAX16169, a $\overline{PB_IN}$ switch closure longer than the shutdown period results in a longer one-shot pulse at \overline{INT} . With timing option A, MAX16169 deasserts the latched output when the switch closure period exceeds the shutdown period. With the timing option B/C, MAX16169 does not deassert the latched output.
4	CLR	Clear Input. Pulling $\overline{\text{CLR}}$ low deasserts the latched OUT signal. If OUT is already deasserted when $\overline{\text{CLR}}$ is pulled low, the state of OUT is unchanged.
5	ĪNT	Active-Low, Open-Drain Interrupt/Reset Output. \overline{INT} is a one-shot output pulse. \overline{INT} asserts for the interrupt timeout period when PB_IN is held high (\overline{PB}_{IN} is held low) for a period greater than the debounce time (t_{DB}). \overline{INT} is high-impedance when deasserted, even when pulled above V _{CC} .
6	OUT	Active-High, Push-Pull Latched Output. OUT is connected to V _{CC} when high.

Block Diagram

Detailed Description

The MAX16169 is a pushbutton on/off controller with a switch debouncer and latched output for controlling system power. A switch closure that pulls PB_IN high (\overline{PB}_{IN} low) and is stable for a period greater than or equal to the debounce time (t_{DB}) causes OUT to assert high. Driving \overline{CLR} low causes OUT to deassert. The MAX16169 family has two sets of devices, one in which a more extended switch closure greater than the shutdown period deasserts the latched output, and another in which the latched output stays asserted. Each debounced switch closure also initiates a one-shot \overline{INT} output. See $\underline{Table 1}$ for more details on the values of t_{DB} , t_{SO} , and other timing intervals.

Table 1. MAX16169 Input Timing Characteristics

TIMING OPTION*	DEBOUNCE TIME (t _{DB})	SHUTDOWN PERIOD (t _{SO})	INTERRUPT PERIOD (SWITCH CLOSURE > t _{DB})	INTERRUPT PERIOD (SWITCH CLOSURE > t _{SO})	SWITCH CLOSURE > t _{SO}
А	50ms	8s	32ms	128ms	OUT deasserts
В	2s	16s	32ms	128ms	OUT stays asserted
С	50ms	16s	32ms	128ms	OUT stays asserted

*Contact the factory for availability.

Operation

The MAX16169 operates from supply voltages between +1.3V and +5.5V, consuming less than 40nA of supply current when OUT is in the deasserted state, and PB_IN/PB_IN is unconnected. Whenever OUT is deasserted, the state of \overline{CLR} is ignored. After asserting OUT, \overline{CLR} continues to be ignored for a period of 2x the INT period. For low-power applications (up to about 200mA output current), OUT can drive the load directly with minimal voltage drop. Each debounced switch closure causes INT to assert. A switch closure that is longer than t_{SO} results in INT asserting for a period that is 4x longer than the nominal INT period. This longer INT can be used to signal the system to perform a specific function or initiate a shutdown process. Closing the switch for a time longer than this extended INT period will not cause INT to be reasserted or the INT period to be extended.

Note that when V_{CC} is first applied (for example, when the battery is initially installed), OUT is deasserted.

MAX16169

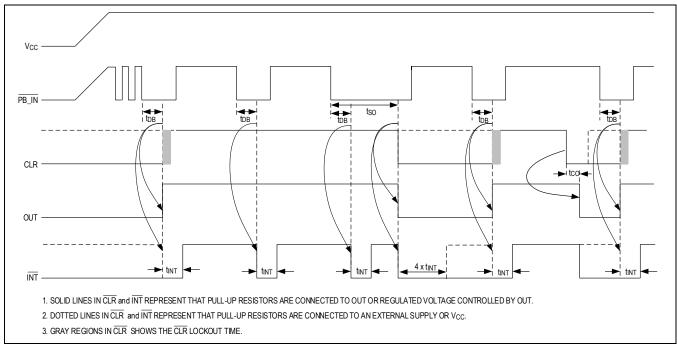


Figure 1. MAX16169 Timing Diagram with Long Pushbutton (tso) Causes Out to Deassert (PB_IN input example)

Very brief high periods (less than approximately 50ms) at PB_IN/PB_IN are ignored so that fast switch bounces do not interrupt the debounce logic, while valid short presses and releases cause the debouncer to reset. <u>Figure 1</u> shows the timing diagram of the MAX16169 with timing option A. A switch closure of a duration greater than t_{DB} causes OUT to assert. A switch closure of a duration greater than t_{SO} causes OUT to deassert and an extended interrupt at INT. Typically, INT and CLR are pulled up either to OUT or to a regulated voltage controlled by OUT, as shown in <u>Figure 1</u>. As such, INT and CLR are pulled low while OUT is deasserted. If pulled up to a constant supply voltage, INT and CLR will behave as shown by the horizontal dashed lines while OUT is deasserted.

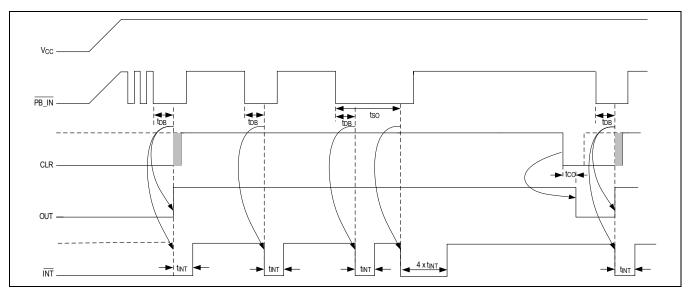


Figure 2. MAX16169 Timing Diagram with Long Pushbutton (tso) Keeps OUT Asserted (PB_IN input example)

<u>Figure 2</u> shows the timing diagram for the MAX16169 with timing option B/C. A switch closure of a duration greater than t_{DB} causes OUT to assert. A switch closure of a duration greater than t_{SO} does not cause OUT to deassert, but it causes an extended interrupt. Typically, \overline{INT} and \overline{CLR} are pulled up either to OUT or to a regulated voltage controlled by OUT, as shown in <u>Figure 2</u>. As such, \overline{INT} and \overline{CLR} are pulled low while OUT is deasserted. If pulled up to a constant supply voltage, \overline{INT} and \overline{CLR} will behave as shown by the horizontal dashed lines while OUT is deasserted.

Robust Switch Input

The switch input (PB_IN/PB_IN) has overvoltage clamping diodes to protect against damaging fault conditions. Switch input voltages can safely swing ±60V relative to ground.

±40kV ESD Protection

ESD-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. The MAX16169 has extra protection against static electricity to protect against ESD of \pm 40kV at the switch input without damage. ESD protection can be tested in various ways; this product is characterized for protection to \pm 40kV using the Human Body Model.

Human Body Model

<u>Figure 3</u> shows the Human Body Model, while <u>Figure 4</u> shows the current waveform it generates when discharged into a low-impedance. This model consists of a 100pF capacitor charged to the ESD voltage of interest, which is then discharged into the test device through a $1.5k\Omega$ resistor.

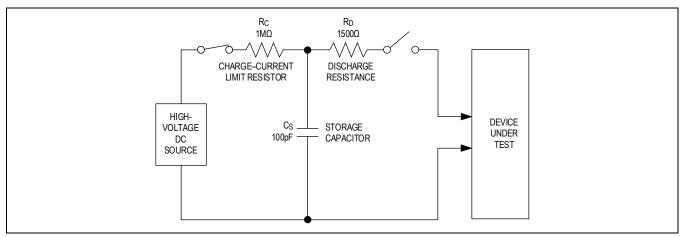


Figure 3. Human Body ESD Test Model

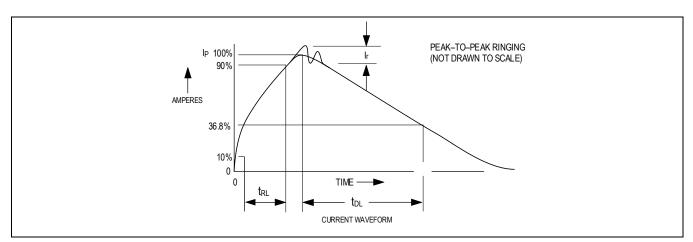


Figure 4. Human Body Current Waveform

Applications Information

Powering the Load

OUT is capable of driving most of the portable system loads. When the supply current of circuitry is 200mA, the voltage drop from V_{CC} to OUT is less than 30mV. The <u>Typical Application Circuit</u>, shows OUT providing power directly to the load.

Ordering Information

PART NUMBER	DEBOUNCE TIME (t _{DB})	SHUTDOWN PERIOD (t _{SO})	INTERRUPT PERIOD (SWITCH CLOSURE > t _{DB})	INTERRUPT PERIOD (SWITCH CLOSURE > t _{SO})	SWITCH CLOSURE > ^t SO	PB POLARITY	PACKAGE
MAX16169AALTA+/ MAX16169AALTA+T	50ms	8s	32ms	128ms	OUT deasserts	PB_IN	μDFN

All devices are specified over the -40°C to +125°C operating temperature range.

+Denotes a lead(Pb)-free/RoHS-compliant package.

T = Tape and real

Contact the factory for the availability of future variants.

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	11/23	Initial release	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.