

Sauls Wharf House Crittens Road Great Yarmouth Norfolk NR31 0AG Telephone +44 (0)1493 602602 Email:sales@midasdisplays.com Email:tech@midasdisplays.com www.midasdisplays.com

Specification									
Part		MCT035H6X240320PWL	MCT025U6V240220D\A/I						
Number:									
Vers	ion:								
Date:									
		Revision							
No.	Date	Description Item	Page						

Contents

		Page
1.	Revision History	3
2.	General Specification	4
3.	Module Coding System	5
4.	Interface Pin Function	6
5.	Contour Drawing	7
6.	Block Diagram	8
7.	Absolute Maximum Ratings	9
8.	Electrical Characteristics	10
9.	DC Characteristics	11
10.	AC Characteristics	12
11.	Optical Characteristics	16
12.	Reliability	18
13.	Initial Code For Reference	19

2. General Specification

This technical specification applies to 3.45' TFT-LCD panel. The 3.45' TFT-LCD panel is designed for camcorder, digital camera application and other electronic products which require high quality flat panel displays. This module follows RoHS.

■ Dot Matrix: 240 x 320

■ Module dimension: 62.9 x 86.54 x 4.1 mm

Active Area: 53.28 x 71.04 mm

■ Dot pitch: 0.222 x 0. 222 mm

■ LCD type: TFT, Mono Transmissive

View Direction: Wide View

■ Backlight Type: LED, Normally White

*Color tone slight changed by temperature and driving voltage.

Midas Active Matrix Display Part Number System

MC 057 320240 5 6 2 4 3 7 8 9 10 11 12 13 14 1 15 16

- 1 = **MC:** Midas Components
- 2 = **T:** TFT **A:** Active Matrix OLED
- 3 = Size
- 4 = Series
- 5 = Viewing Angle: 6: 6 O'clock 12: 12 O'clock 0: All round
- 6 = Blank: No Touch T: Resistive Touchscreen C: Capacitive Touchscreen
- 7 = Operating Temp Range: S: 0 to 50Deg C B: -20+60Deg C

W: -20+70Deg C E: -30+85Deg C

- 8 = No of Pixels MANUFACTURE SUPPLY
- 9 = **Orientation: P:** Portrait **L:** Landscape
- 10 = Mode: R: Reflective M: Transmissive T: Transflective

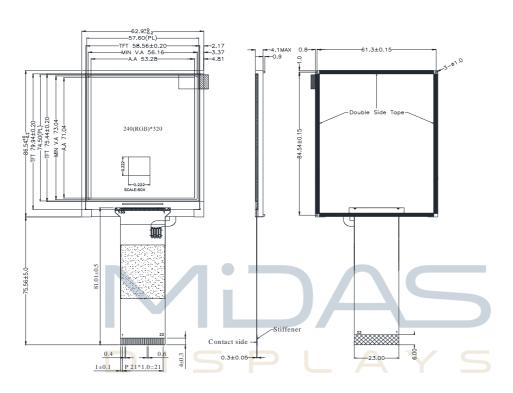
S: Sunlight Readable (transmissive)

W: White on Black (Monochrome)

- 11 = **Backlight: Blank:** None **L:** LED **C:** CCFL
- 12 = **Blank:** No Module/board **C:** Controller board module
- 13 = Blank: None V: Video
- 14 = Blank: None B: Bracket
- 15 = **Blank:** None H: Host Cable
- 16 = Blank: None K: Keyboard

4. Interface Pin Function

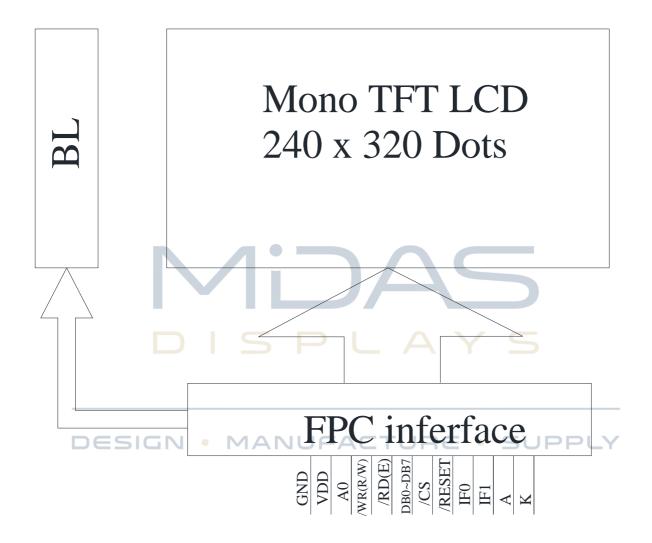
4.1. LCM PIN Definition


Pin	Symbol	Function	Remark
1	GND	System ground	
2	VDD	Power Supply: +3.3V	
3	NC	No connect	
4	A0	Data/Command select	
5	/WR(R/W)	Write strobe signal	
6	/RD(E)	Read strobe signal	
7	DB0	Data bus	
8	DB1	Data bus	
9	DB2	Data bus	
10	DB3	Data bus	
11	DB4	Data bus	
12	DB5	Data bus	
13	DB6	Data bus	
14	DB7	Data bus	
15	/CS	Chip select	
16	/RESET(RSTB)	Hardware reset	
17	IF0	Mode select	Note1
18	IF1	WIOUG SCIECE	INULEI
19	Α	LED +	
20	K	LED -	
21	NC NC	No connect	IDDLV
22	NC	No connect	

Note1:

Setting		MCU Type	Interface Pin Function					
IF1	IF0	wico i ype	CSB	A0	RWR	ERD	D[7:0]	
L	L	Parallel 8080 series MCU			/WR	/RD	D[7:0]	
L	Н	Parallel 6800 series MCU	CSB	A0	R/W	Е	ال ال	
Н	Н	Serial 4-Line series MCU	CSB		-	-	D7=SCL, D0=SDA, D[6:1]	
Н	L	Serial 3-Line series MCU		-	ı	1	are not used	

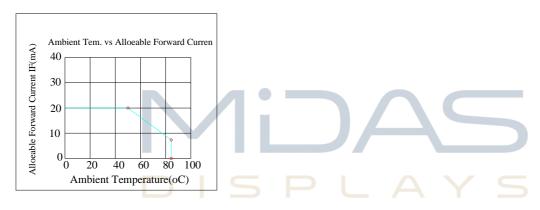
The un-used pins are marked as "-" and should be connected to "H" by VDDI.


5. Contour Drawing

PIN	Finction
1	GND
2	VDD
2 3 4	NC
4	A0
5	/WR(/RW
6	/RD(E)
7	DB0
80	DB1
9	DB2
10	DB3
11	DB4
12	DB5
13	DB6
14	DB7
15	/cs
16	/Reset
17	IFO
18	IF1
19	A
20	K
21	NC
22	NC

The non-specified tolerance of dimension is $\pm 0.3 mm$.

6.Block Diagram



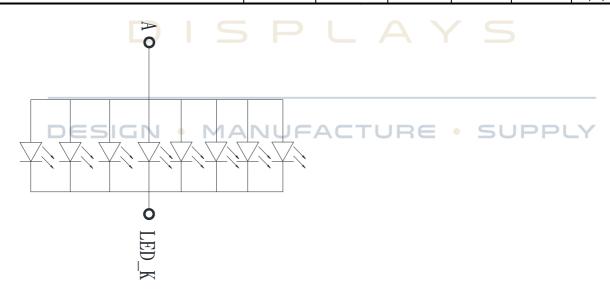
7. Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-30	_	+80	$^{\circ}$
Storage Temperature	TST	-30	_	+80	$^{\circ}$

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. \leq 60 °C, 90% RH MAX. Temp. > 60 °C, Absolute humidity shall be less than 90% RH at 60 °C

8. Electrical Characteristics


8.1. Operating conditions:

Item	Symbol	Condition	Min	Тур	Max	Unit	Remark
Supply Voltage For LCM	VDD	_	3.0	3.3	3.6	V	
Supply Current For LCM	IDD	_	_	13		mA	Note1
Power Consumption	_	_	_	_	46.8	mW	

Note1: This value is test for VDD=3.3V only

8.2. LED driving conditions

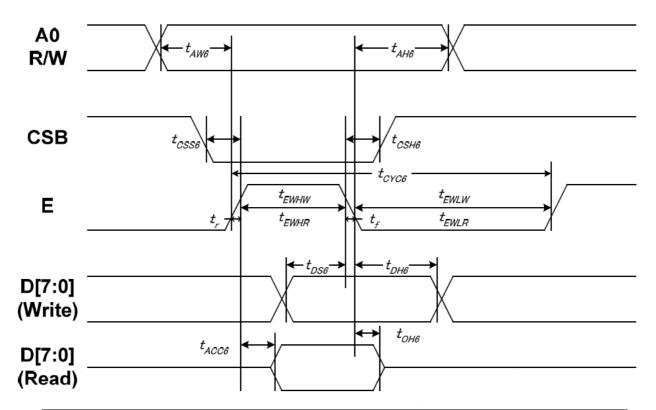
Parameter	Symbol	Min.	Тур.	Max.	Unit	Remark
LED current		_	160		mA	
Power Consumption	0	-			mW	
LED voltage	A-K	2.8	3.0	3.3	V	Note 1
LED Life Time		7/	50,000	_	Hr	Note
					/	2,3,4

Note 1: Power supply the back light specification

Note 2 : Ta = 25 ℃

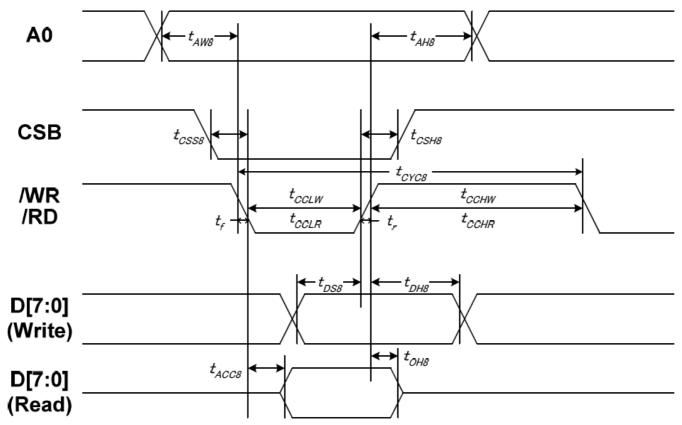
Note 3: Brightness to be decreased to 50% of the initial value

Note 4: The single LED lamp case


9.DC CHARATERISTICS

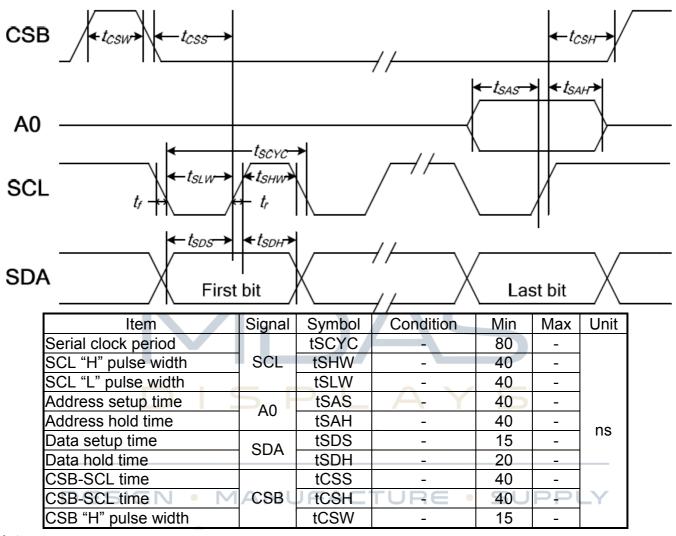
Parameter	Symbol		Rating	Unit	Condition		
T di difficter	Cymbol	Min	Тур	Max	Onic	Condition	
Low level input voltage	VIL	0	-	0.3VDD	V		
High level input voltage	VIH	0.7VDD	-	VDD	V		

10.AC CHARATERISTICS

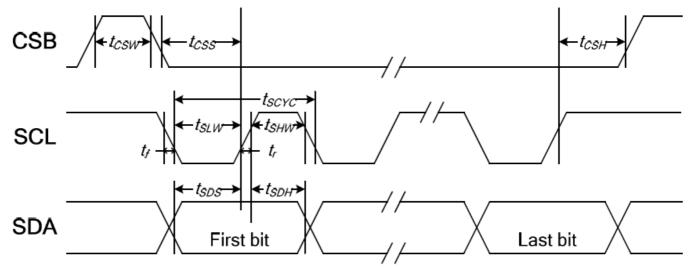

10.1. System Bus Timing for 6800 Series MPU

Item	Signal	Symbol	Condition	Min	Max	Unit
Address setup time	△A011	tAW6	j.	10		
Address hold time	AAUC	tAH6	E E) የ	1	_Y
System cycle time		tCYC6	-	200	-	
Enable L pulse width (WRITE)		tEWLW	-	100	ı	
Enable H pulse width (WRITE)	E	tEWHW	-	100	1	
Enable L pulse width (READ)		tEWLR	-	130	-	
Enable H pulse width (READ)		tEWHR	-	130	ı	ns
CSB setup time	CSB	tCSS6	-	100	-	
CSB hold time	COD	tCSH6	-	100	-	
Write data setup time		tDS6	-	70	-	
Write data hold time	D[7:0]	tDH6	-	20	-	
Read data access time	[טנייום	tACC6	CL = 100 pF	-	80	
Read data output disable time		tOH6	CL = 100 pF	15	80	

- 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,(tr + tf) \leq (tCYC8 tCCLW tCCHW) for (tr + tf) \leq (tCYC8 tCCLR tCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDDI as the reference.
- 3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).


10.2. System Bus Timing for 8080 Series MPU

Item	Signal	Symbol	Condition	Min	Max	Unit
Address setup time	A0	tAW8	_	10		
Address hold time	Au	tAH8	-	0	-	
System cycle time	ANU	tCYC8	TURE .	200	PP	_Y
WR L pulse width (WRITE)	WR	tCCLW	-	100	-	
WR H pulse width (WRITE)		tCCHW	-	100	-	
/RD L pulse width (READ)	/RD	tCCLR	-	120	-	
/RD H pulse width (READ)	/KD	tCCHR	-	120	-	ns
CSB setup time	CSB	tCSS8	-	100	-	
CSB hold time	COD	tCSH8	-	100	-	
Write data setup time		tDS8	-	70	-	
Write data hold time	רוס-דום	tDH8	-	20	-	
Read data access time	D[7:0]	tACC8	CL = 100 pF	-	80	
Read data output disable time		tOH8	CL = 100 pF	15	80	


- 1. The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast,(tr + tf) \leq (tCYC8 tCCLW tCCHW) for (tr + tf) \leq (tCYC8 tCCLR tCCHR) are specified.
- 2. All timing is specified using 20% and 80% of VDDI as the reference.
- 3. tCCLW and tCCLR are specified as the overlap between CSB being "L" and /WR and /RD being at the "L" level.CSB and /WR (or /RD) cannot act at the same time and CSB should be 100ns wider than /WR (or /RD).

10.3. System Bus Timing for 4-Line Serial Interface

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
- 2. All timing is specified using 20% and 80% of VDDI as the standard.

10.4. System Bus Timing for 3-Line Serial Interface

Item	Signal	Symbol	Condition	Min	Max	Unit
Serial clock period		tSCYC	_	80	-	
SCL "H" pulse width	SCL	tSHW	-	40	-	
SCL "L" pulse width		tSLW	- \	40	-	
Data setup time	SDA	tSDS	A Y	15	-	nc
Data hold time	SDA	tSDH	_	20	-	ns
CSB-SCL time		tCSS	-	40	-	
CSB-SCL time	CSB	tCSH	_	40	_	
CSB "H" pulse width		tCSW	-	15	-	
DESIGN • M	ANL	JEAC.	TURE •	SU	PPI	_Y

- 1. The input signal rise and fall time (tr, tf) are specified at 15 ns or less.
 - 2. All timing is specified using 20% and 80% of VDDI as the standard.

11. Optical Characteristics

Item		Symbol	Temp	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr	25℃	θ=0°、Ф=0	-	35	-	.ms	Note 3
		Tf	25℃		-		_		
Contrast rat	tio	CR	25℃	At optimized viewing angle	-	900		Note 4	
	Hor.	ΘR	25 ℃		80		Deg.	Note 1 Note 2	
Viewing angle		ΘL	25 ℃	CR≧10	80				
	Ver.	ΦВ	25 ℃		80				
		ΦТ	25℃			80			
Brightness	Brightness		25℃	-	400	500	-	cd/m ²	Center of display

Ta=25±2°C, IL=160mA

Note 1: Definition of viewing angle range

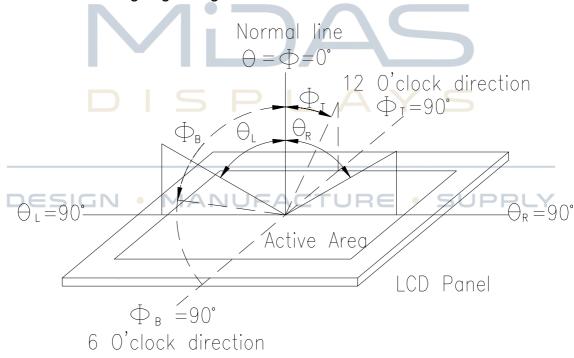


Fig. 11.1. Definition of viewing angle

Note 2: Test equipment setup:After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7(BM-5) luminance meter 1.0° field of view at a distance of 50cm and normal direction.

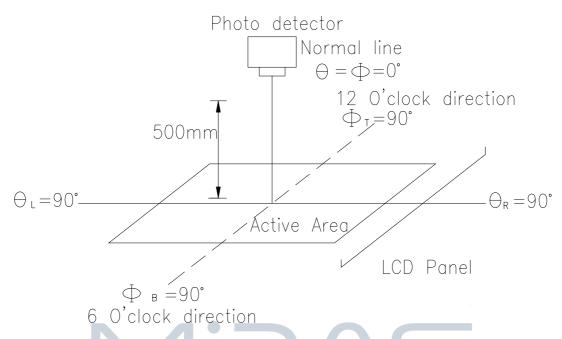
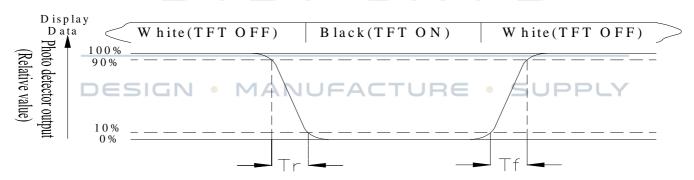



Fig. 11.2. Optical measurement system setup

Note 3: Definition of Response time: Definition of response time: The response time is defined as the time interval between the 10% and 90% amplitudes.

Note 4: Definition of contrast ratio: The contrast ratio is defined as the following expression

12.Reliability

Content of Reliability Test (Super Wide temperature, -30 °C~80 °C)

Environmental Test									
Test Item	Content of Test	Test Condition	Note						
High Temperature storage	Endurance test applying the high storage temperature for a long time.	80℃ 200hrs	2						
Low Temperature storage	Endurance test applying the low storage temperature for a long time.	-30℃ 200hrs	1,2						
High Temperature Operation	Endurance test applying the electric stress (Voltage & Current) and the thermal stress to the element for a long time.	80℃ 200hrs							
Low Temperature Operation	Endurance test applying the electric stress under low temperature for a long time.	-30℃ 200hrs	1						
High Temperature/ Humidity storage	The module should be allowed to stand at 60 °C,90%RH max For 96hrs under no-load condition excluding the polarizer, Then taking it out and drying it at normal temperature.	60℃,90%RH 96hrs	1,2						
Thermal shock resistance	The sample should be allowed stand the following 10 cycles of operation -30°C 25°C 80°C 30min 5min 30min 1 cycle	-30°C/80°C 10 cycles							
Vibration test DESI	Endurance test applying the vibration during transportation and using. IN MANUFACTURE	Total fixed amplitude: 15mm Vibration Frequency: 10~55Hz One cycle 60 seconds to 3 directions of X,Y,Z for Each 15 minutes	3						
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=800V, RS=1.5kΩ CS=100pF 1 time							

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

13.Initial Code For Reference

```
void Initial_code()
{
   Write_Command(0xae);
       Write_Data(0xa5);
       Write_Command(0x61);
       Write_Data(0x8f);
       Write_Data(0x04);
       Write_Data(0xa5);
       Write_Data(0xa5);
       Write_Command(0x62);
       Write_Data(0x42);
       Write_Data(0x0b);
       Write_Data(0x0c);
       Write_Data(0xa5);
       Write_Command(0x33);
       Write_Data(0x07);
                         MANUFACTURE • SUPPLY
       Write_Data(0x2c);
       Write_Data(0x09);
       Write_Data(0x2a);
       Write_Command(0x63);
       Write_Data(0x09);
       Write_Data(0x17);
       Write_Data(0xa5);
       Write_Data(0xa5);
   Write_Command(0x24);
       Write_Data(0x01);
       Write_Data(0xa5);
```

```
Write_Data(0xa5);
   Write_Data(0xa5);
Write_Command(0x22);
Write_Data(0x00);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Data(0xa5);
Write_Command(0x91);
Write_Data(0x00);
Write_Data(0x17);
Write_Data(0x1b);
Write_Data(0x1d);
Write_Command(0x92);
Write_Data(0x1f);
Write_Data(0x21);
Write_Data(0x23);
Write_Data(0x25);
Write_Command(0x93); MANUFACTURE • SUPPLY
Write_Data(0x27);
Write_Data(0x29);
Write_Data(0x2a);
Write_Data(0x2c);
Write_Command(0x94);
Write_Data(0x2e);
Write_Data(0x31);
Write_Data(0x34);
Write_Data(0x3f);
Write_Command(0x99);
Write_Data(0x00);
Write_Data(0x17);
Write_Data(0x1b);
Write_Data(0x1d);
```

```
Write_Command(0x9a);
Write_Data(0x1f);
Write_Data(0x21);
Write_Data(0x23);
Write_Data(0x25);
Write_Command(0x9b);
Write_Data(0x27);
Write_Data(0x29);
Write_Data(0x2a);
Write_Data(0x2c);
Write_Command(0x9c);
Write_Data(0x2e);
Write_Data(0x31);
Write_Data(0x34);
Write_Data(0x3f);
   Write_Command(0x12);
   Write_Data(0xa5);
    DESIGN • MANUFACTURE • SUPPLY
   Write_Command(0x15);
   Write_Data(0xa5);
```

}