

Sauls Wharf House Crittens Road Great Yarmouth Norfolk NR31 0AG Telephone +44 (0)1493 602602 Email:sales@midasdisplays.com Email:tech@midasdisplays.com www.midasdisplays.com

MDT0400EIH-MIPI	480 x 480	MIPI Interface	TFT Module				
Specification							
Version: 1		Date: 24/06/2020					
		Revision					
1	First issue						

Display F	eatures		
Display Size	4.0"		
Resolution	480 x 480		
Orientation	Square		
Appearance	RGB		
Logic Voltage	2.8V		oHS ompliant
Interface	MIPI	IVR	$\bullet \bullet \bullet$
Brightness	500 cd/m ²	/ 4 23	mpliant
Touchscreen	SPLA		mpnant
Module Size	78.80 x 82.95 x 4.77mm		0.54
Operating Temperature	-30°C ~ +80°C		
Pinout	24 way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		

* - For full design functionality, please use this specification in conjunction with the ST7701S specification.(Provided Separately)

Display Accessories						
Part Number	Description					

Optional Variants					
Appearances	Voltage				

Summary

TFT 4.0" is a color active matrix thin film transistor (TFT) liquid crystal display (LCD) that uses amorphous silicon TFT as a switching device. This TFT LCD has a 4.0 (1:1) inch diagonally

measured active display area with 480x480 (480 horizontal by 480 vertical pixel) resolution.

General Specifications

■ Size: 4.0 inch

■ Dot Matrix: 480× 3(RGB) × 480 dots

■ Module dimension: 78.8(H) * 82.95 (W) *4.77 mm

Active area: 71.856(H)*70.176 (V) mm

■ Dot pitch: 0.1497(H)*0.1462(V) mm

■ LCD type: TFT, Normally Black, Transmissive

■ View Direction: 80/80/80/80

■ Aspect Ratio: 1:1N • MANUFACTURE • SUPPLY

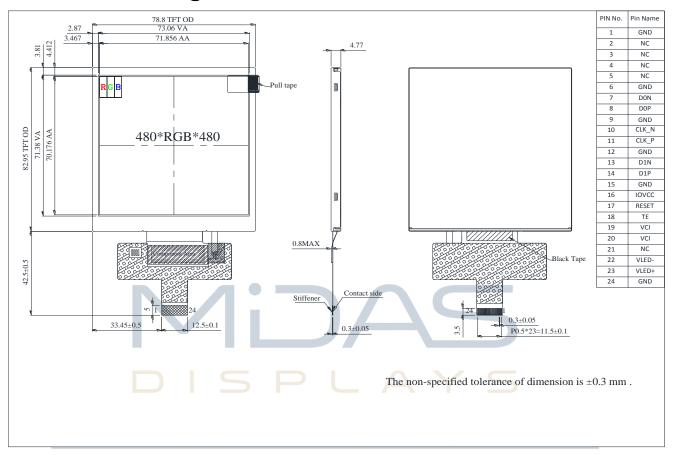
■ Interface: 2-Lanes MIPI

■ Driver IC: ST7701S

■ Backlight Type: LED ,Normally White

■ With /Without TP: Without TP

Surface: Glare


*Color tone slight changed by temperature and driving voltage.

Interface

1. LCM PIN Definition

Pin	Symbol	Function			
1	GND	Power ground			
2-5	NC	No connect			
6	GND	Power ground			
7	D0N	MIPI DSI differential data pair (Data lane 0)			
8	D0P	MIFT DSI dilleteritial data pair (Data larie 0)			
9	GND	Power ground			
10	CLK_N	MIPI DSI differential clock pair			
11	CLK_P	MIFT D31 differential clock pail			
12	GND	Power ground			
13	D1N	MIPI DSI differential data pair(Data lane 1)			
14	D1P	WIFT DSI differential data pair (Data laffe 1)			
15	GND	Power ground			
16	IOVCC	I/O and interface power supply (1.8V)			
17	RESET	Reset input			
18	TE	Tearing effect output pin.			
19	VCI	Analog power supply			
20	ies vciv	Analog power supply			
21	NC	No connect			
22	VLED-	Power for LED backlight cathode			
23	VLED+	Power for LED backlight anode			
24	GND	Power ground			

Contour Drawing

DESIGN • MANUFACTURE • SUPPLY

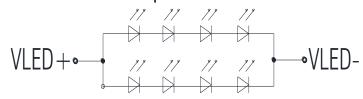
Absolute Maximum Ratings

Item	Symbol	Min	Тур	Max	Unit
Operating Temperature	TOP	-30	_	+80	$^{\circ}\!\mathbb{C}$
Storage Temperature	TST	-30	_	+80	$^{\circ}\mathbb{C}$

Note: Device is subject to be damaged permanently if stresses beyond those absolute maximum ratings listed above

1. Temp. \leq 60°C, 90% RH MAX. Temp. > 60°C, Absolute humidity shall be less than 90% RH at 60°C

Electrical Characteristics


1. Typical Operation Conditions

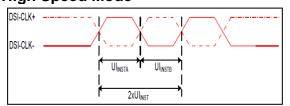
Item	Symbol		Values		Unit	Remark
item	Symbol	Min.	Typ.	Max.	Onit	Nemark
Interface Supply Voltage	VCI	2.5	2.8	3.6	V	
Power voltage	IOVCC	1.65	1.8	3.3	V	
Current for Driver(White)	IDD	-	11	16.5	mA	

2. Backlight Driving Conditions

Parameter	Symbol	N Min-A	Тур.	Re ^{Max} .	Unit	Remark
LED current	ILED	-	100	-	mA	
LED voltage	VLED+	10.8	12.4	13.6	V	Note 1
LED Life Time		50,000	-	-	Hr	Note 2,3,4

Note 1 : There are 1 Groups LED

CIRCUIT DIAGRAM


Note 2 : Ta = 25 $^{\circ}$ C

Note 3: Brightness to be decreased to 50% of the initial value

Note 4: The single LED lamp case.

Interface Timing

1. MIPI Interface Characteristics High Speed Mode

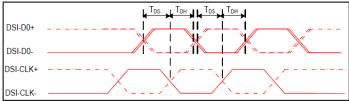


Figure 1 DSI clock channel timing

Figure 2 Rising and falling time on clock and data channel

VDDI=1.8, VDD=2.8, AGND=DGND=0V, Ta=25℃

Signal	Symbol	Parameter	MIN	MAX	Unit	Description
DSI-CLK+/-	2xUI _{INSTA}	Double UI instantaneous	4	25	ns	
DSI-CLK+/-	UI _{INSTA} UI _{INSTB}	UI instantaneous halfs	2	12.5	ns	UI = UI _{INSTA} = UI _{INSTB}
DSI-Dn+/-	tDS	Data to clock setup time	0.15	-	UI	
DSI-Dn+/-	tDH	Data to clock hold time	0.15	-	UI	

Table 1 Mipi Interface-High SpeedMode Timing Characteristics

Lowe Power Mode

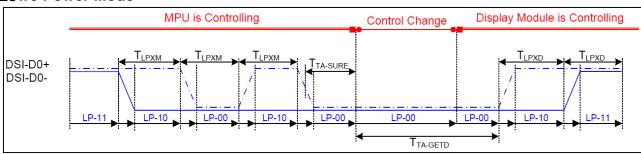


Figure 3 Bus Turnaround (BTA) from display module to MPU Timing

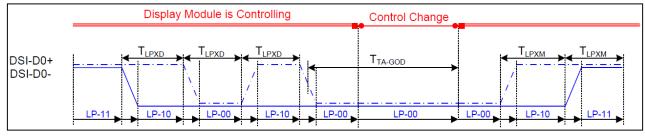


Figure 4 Bus Turnaround (BTA) from MPU to display module Timing

VDDI=1.8,VDD=2.8, AGND=DGND=0V, Ta=25°C

Signal	Symbol	Parameter	MIN	MAX	Unit	Description	
		Length of LP-00,LP-01,					
DSI-D0+/-	TLPXM	LP-10 or LP-11 periods	50	75	ns	Input	
		MPU → Display Module	Display Module				
		Length of LP-00,LP-01,					
DSI-D0+/-	TLPXD	LP-10 or LP-11 periods	50	75	ns	Output	
		MPU → Display Module					
DSI-D0+/-	TTA-SURED	Time-out before the MPU	TLPXD	2xT _{LP}	no	Outrot	
DSI-D0+/-	TIA-SURED	start driving	ILPXD	XD	ns	Output	
DSI-D0+/-	TTA-GETD	Time to drive LP-00 by	EvT		ns	lanut	
DSI-D0+/-	TIA-GETD	display module	SXI	5xT _{LPXD}		Input	
DSI-D0+/-	TTA-GOD	Time to drive LP-00 after	4vT	4xTLPXD		0.4.4	
D3I-D0+/-	TIA-GOD	turnaround request-MPU	4X1	LPXD	ns	Output	

Table 2 Mipi Interface Low Power Mode Timing Characteristics

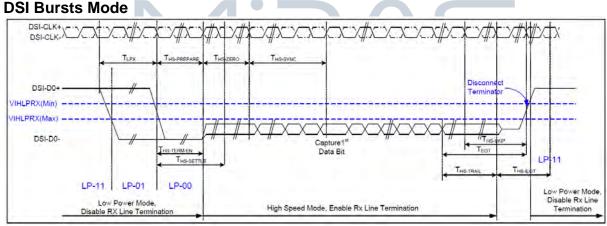


Figure 5 Data lanes-Low Power Mode to/from High Speed Mode Timing

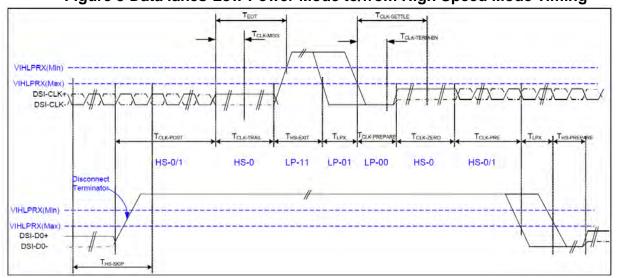
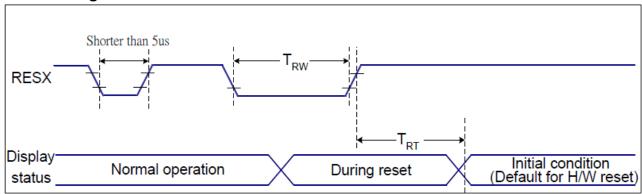



Figure 6 Clock lanes- High Speed Mode to/from Low Power Mode Timing

VDDI=1.8,VDD=2.8, AGND=DGND=0V, Ta=25 $^{\circ}$ C

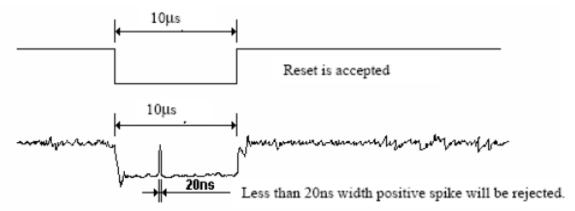
Signal	Symbol	Parameter	MIN	MAX	Unit	Description	
	l	ow Power Mode to High Speed Mo	ode Timi	ng			
DSI-Dn+/-	TLPX	Length of any low power state period	50	-	ns	Input	
DSI-Dn+/-	THS-PREPARE	Time to drive LP-00 to prepare for HS transmission	40+4 UI	85+6 UI	ns	Input	
DSI-Dn+/-	THS-TERM-EN	Time to enable data receiver line termination measured from when Dn crosses VILMAX	-	35+4 UI	ns	Input	
DSI-Dn+/-	THS-PREPARE + THS-ZERO	THS-PREPARE + time to drive HS-0 before the sync sequence	140+ 10UI	-	ns	Input	
	High Speed Mode to Low Power Mode Timing						
DSI-Dn+/-	THS-SKIP	Time-out at display module to ignore transition period of EoT	40	55+4 UI	ns	Input	
DSI-Dn+/-	THS-EXIT	Time to drive LP-11 after HS burst	100	-	ns	Input	
DSI-Dn+/-	THS-TRAIL	Time to drive flipped differential state after last payload data bit of a HS transmission burst	60+4 UI	-	ns	Input	
	Hig	h Speed Mode to/from Low Power	Mode Ti	ming			
DSI-CLK+/-	TCLK-POS	Time that the MPU shall continue sending HS clock after the last associated data lane has transition to LP mode	60+5 2UI	-	ns	Input	
DSI-CLK+/-	TCLK-TRAIL	Time to drive HS differential state after last payload clock bit of a HS transmission burst	60	-	ns	Input	
DSI-CLK+/-	THS-EXIT	Time to drive LP-11 after HS burst	100	-	ns	Input	
DSI-CLK+/-	TCLK-PREPARE	Time to drive LP-00 to prepare for HS transmission	38	95	ns	Input	
DSI-CLK+/-	TCLK-TERM-EN	Time-out at clock lan display module to enable HS transmission	_	38	ns	Input	
DSI-CLK+/-	TCLK-PREPARE + TCLK-ZERO	Minimum lead HS-0 drive period before starting clock	300	-	ns	Input	
DSI-CLK+/-	TCLK-PRE	Time that the HS clock shall be driven prior to any associated data lane beginning the transition from LP to HS mode	8UI	-	ns	Input	
DSI-CLK+/-	ТЕОТ	Time form start of TCLK-TRAIL period to start of LP-11 state	-	105n s+12 UI	ns	Input	

Reset Timing

Figure 6 Reset Timing

VDDI=1.8,VDD=2.8, AGND=DGND=0V, Ta=25 ℃

Related Pins	Symbol	Parameter	MIN	MAX	Unit
	TRW	Reset pulse duration	10	-	us
RESX	TDT	TDT Boost concel	-	5 (Note 1, 5)	ms
	TRT	Reset cancel		120(Note 1, 6, 7)	ms


Table 3 Reset Timing

Notes:

- 1. The reset cancel includes also required time for loading ID bytes, VCOM setting and other settings from NVM (or similar device) to registers. This loading is done every time when there is HW reset cancel time (tRT) within 5 ms after a rising edge of RESX.
- 2. Spike due to an electrostatic discharge on RESX line does not cause irregular system reset according to the table below:

RESX Pulse	Action
Shorter than 5us	Reset Rejected
Longer than 9us	Reset
Between 5us and 9us	Reset starts

- 3. During the Resetting period, the display will be blanked (The display is entering blanking sequence, which maximum time is 120 ms, when Reset Starts in Sleep Out –mode. The display remains the blank state in Sleep In –mode.) and then return to Default condition for Hardware Reset.
- 4. Spike Rejection also applies during a valid reset pulse as shown below:

- 5. When Reset applied during Sleep In Mode.
- 6. When Reset applied during Sleep Out Mode.
- 7. It is necessary to wait 5msec after releasing RESX before sending commands. Also Sleep Out command cannot be sent for 120msec.

DESIGN • MANUFACTURE • SUPPLY

Optical Characteristics

Item		Symbol	Condition.	Min	Тур.	Max.	Unit	Remark
Response time		Tr+ Tf	θ=0° \ Φ=0°	-	25	35	.ms	Note 3
Contrast ratio		CR	At optimized viewing angle	640	800	-	-	Note 4
Color Chromaticity	White	Wx	θ=0° · Ф=0	0.251	0.301	0.351		Note 2,6,7
		Wy		0.277	0.327	0.377		
Viewing angle	Hor.	ΘR	CR≧10	70	80	-	Deg.	Note 1
		ΘL		70	80	-		
	Ver.	ΦТ		70	80	-		
		ФВ		70	80	-		
Brightnes	ss	-	-	400	500	-	cd/m ²	Center of display
Uniformity		(U)	-	75	-	-	%	Note 5

Ta=25±2°C

Note 1: Definition of viewing angle range

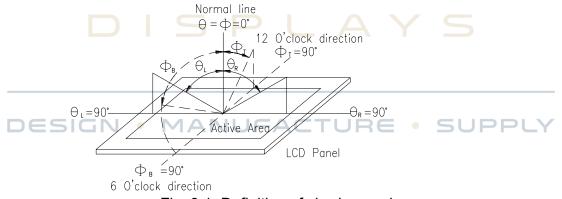


Fig. 9.1. Definition of viewing angle

Note 2: Test equipment setup:

After stabilizing and leaving the panel alone at a driven temperature for 10 minutes, the measurement should be executed. Measurement should be executed in a stable, windless, and dark room. Optical specifications are measured by Topcon BM-7or BM-5 luminance meter 1.0° field of view at a distance of 50cm and normal direction.

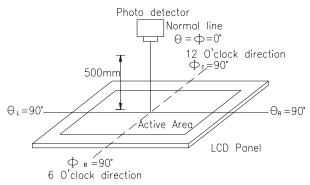
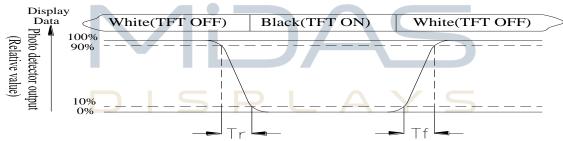



Fig. 9.2. Optical measurement system setup

Note 3: Definition of Response time:

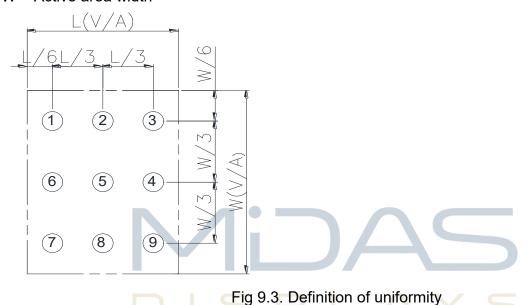
The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time, Tr, is the time between photo detector output intensity changed from 90%to 10%. And fall time, Tf, is the time between photo detector output intensity changed from 10%to 90%

Note 4: Definition of contrast ratio:

The contrast ratio is defined as the following expression.

Contrast ratio (CR) = Luminance measured when LCD on the "White" state

Luminance measured when LCD on the "Black" state


Note 5: Definition of Luminance Uniformity

Active area is divided into 9 measuring areas (reference the picture in below). Every measuring point is placed at the center of each measuring area.

Luminance Uniformity (U) = Lmin/Lmax x100%

L = Active area length

W = Active area width

Note 6: Definition of color chromaticity (CIE 1931) Color coordinates measured at the center point of LCD

Note 7: Measured at the center area of the panel when all the input terminals of LCD panel are electrically opened. N • MANUFACTURE • SUPPLY

Reliability

Content of Reliability Test (Super Wide temperature, -30°C~80°C)

Environmental Test					
Test Item	Content of Test	Test Condition	Note		
High Temperature	Endurance test applying the high storage temperature	80 ℃	2		
storage	for a long time.	200hrs			
Low Temperature	Endurance test applying the low storage temperature	-30°C	1,2		
storage	for a long time.	200hrs			
High Temperature	Endurance test applying the electric stress (Voltage &	80℃			
Operation	Current) and the thermal stress to the element for a	200hrs			
	long time.				
Low Temperature	Endurance test applying the electric stress under low	-30℃ 1			
Operation	temperature for a long time.	200hrs			
High Temperature/	The module should be allowed to stand at	60°C,90%RH	1,2		
Humidity storage	60℃,90%RH max	96hrs			
Thermal shock	The sample should be allowed stand the following 10	-30℃/80℃			
resistance	cycles of	10 cycles			
	operation				
	30min 5min 30min	5			
	1 cycle				
Vibration test	Endurance test applying the vibration during	Total fixed amplitude :	3		
	transportation and using.	1.5mm Vibration Frequency : 10~55Hz One cycle 60 seconds to 3			
DESIG	N • MANUFACTURE	directions of X,Y,Z for Each 15 minutes	Y		
Static electricity test	Endurance test applying the electric stress to the terminal.	VS=±600V(contact) ,±800v(air), RS=330Ω CS=150pF 10 times			

Note1: No dew condensation to be observed.

Note2: The function test shall be conducted after 4 hours storage at the normal Temperature and humidity after remove from the test chamber.

Note3: The packing have to including into the vibration testing.

Initial Code For Reference

External system porch setting:125>VBP≥17, VFP≥20

Two data lanes / maximum speed 550Mbps Void ST7701S PanelInitialCode(void) -----Reset Sequence-----LCD Nreset(1); Delayms (1); //Delay 1ms LCD Nreset(0); Delayms (1); //Delay 1ms LCD_Nreset(1); **Delayms (120); //Delay 120ms** WriteComm (0x11); **Delayms (120); //Delay 120ms** -----Initial setting---WriteComm (0xFF); WriteData (0x77); WriteData (0x01); WriteData (0x00); WriteData (0x00); WriteData (0x10); WriteComm (0xC0); WriteData (0x3B); WriteData (0x00); DESIGN • MANUFACTURE • SUPPLY WriteComm (0xC1); WriteData (0x0D); WriteData (0x02); WriteComm (0xC2); WriteData (0x21); WriteData (0x08); WriteComm (0xCC); WriteData (0x10); WriteComm (0xB0); WriteData (0x00); WriteData (0x05): WriteData (0x0F); WriteData (0x0D); WriteData (0x13); WriteData (0x07); WriteData (0x01);

```
WriteData (0x08);
WriteData (0x09);
WriteData (0x1E);
WriteData (0x05);
WriteData (0x12):
WriteData (0x10);
WriteData (0xA7);
WriteData (0x2F);
WriteData (0x18);
WriteComm (0xB1);
WriteData (0x00);
WriteData (0x0F);
WriteData (0x17);
WriteData (0x0C);
WriteData (0x0D);
WriteData (0x05);
WriteData (0x01);
WriteData (0x08);
WriteData (0x08);
WriteData (0x1E);
WriteData (0x05);
WriteData (0x13);
WriteData (0x11);
WriteData (0xA7);
WriteData (0x2F);
WriteData (0x18);
                         MANUFACTURE • SUPPLY
WriteComm (0xFF);
WriteData (0x77);
WriteData (0x01);
WriteData (0x00);
WriteData (0x00);
WriteData (0x11);
WriteComm (0xB0);
WriteData (0x4D);
WriteComm (0xB1);
WriteData (0x4F);
WriteComm (0xB2);
WriteData (0x07);
WriteComm (0xB3);
WriteData (0x80);
WriteComm (0xB5);
```

```
WriteData (0x47);
WriteComm (0xB7);
WriteData (0x85);
WriteComm (0xB8);
WriteData (0x21);
WriteComm (0xB9);
WriteData (0x10);
WriteComm (0xC1);
WriteData (0x78);
WriteComm (0xC2);
WriteData (0x78);
WriteComm (0xD0);
WriteData (0x88);
Delayms (100);
WriteComm (0xE0);
WriteData (0x00);
WriteData (0x00);
WriteData (0x02);
WriteComm (0xE1);
                        MANUFACTURE • SUPPLY
WriteData (0x08);
WriteData (0x00):
WriteData (0x0A);
WriteData (0x00);
WriteData (0x07);
WriteData (0x00);
WriteData (0x09);
WriteData (0x00);
WriteData (0x00);
WriteData (0x33);
WriteData (0x33);
WriteComm (0xE2);
WriteData (0x00);
```

```
WriteData (0x00);
WriteData (0x00);
WriteData (0x00);
WriteData (0x00);
WriteData (0x00);
WriteData (0x00);
WriteComm (0xE3);
WriteData (0x00);
WriteData (0x00);
WriteData (0x33);
WriteData (0x33);
WriteComm (0xE4);
WriteData (0x44);
WriteData (0x44);
WriteComm (0xE5);
WriteData (0x0E);
WriteData (0x2D);
WriteData (0xA0);
WriteData (0xA0);
WriteData (0x10);
WriteData (0x2D);
WriteData (0xA0);
WriteData (0xA0);
WriteData (0x0A);
WriteData (0x2D);
                          MANUFACTURE •
                                                            SUPPLY
WriteData (0xA0);
WriteData (0xA0):
WriteData (0x0C);
WriteData (0x2D);
WriteData (0xA0);
WriteData (0xA0);
WriteComm (0xE6);
WriteData (0x00);
WriteData (0x00);
WriteData (0x33);
WriteData (0x33);
WriteComm (0xE7);
WriteData (0x44);
WriteData (0x44);
WriteComm (0xE8);
WriteData (0x0D);
WriteData (0x2D);
```

```
WriteData (0xA0);
WriteData (0xA0);
WriteData (0x0F);
WriteData (0x2D);
WriteData (0xA0):
WriteData (0xA0);
WriteData (0x09);
WriteData (0x2D);
WriteData (0xA0);
WriteData (0xA0);
WriteData (0x0B);
WriteData (0x2D);
WriteData (0xA0);
WriteData (0xA0);
WriteComm (0xEB);
WriteData (0x02);
WriteData (0x01);
WriteData (0xE4);
WriteData (0xE4);
WriteData (0x44);
WriteData (0x00);
WriteData (0x40);
WriteComm (0xEC);
WriteData (0x02);
WriteData (0x01);
                          MANUFACTURE • SUPPLY
WriteComm (0xED);
WriteData (0xAB);
WriteData (0x89);
WriteData (0x76);
WriteData (0x54);
WriteData (0x01);
WriteData (0xFF);
WriteData (0xFF);
WriteData (0xFF);
WriteData (0xFF);
WriteData (0xFF);
WriteData (0xFF);
WriteData (0x10);
WriteData (0x45);
WriteData (0x67);
WriteData (0x98);
WriteData (0xBA);
WriteComm (0xFF);
WriteData (0x77);
```

```
WriteData (0x01);
WriteData (0x00);
WriteData (0x00);
WriteData (0x00);
WriteComm (0x11);
WriteComm (0x36);
WriteData (0x00);
WriteComm (0x29);
```


DESIGN • MANUFACTURE • SUPPLY