

Sauls Wharf House Crittens Road Great Yarmouth Norfolk NR31 0AG Telephone +44 (0)1493 602602 Email:sales@midasdisplays.com Email:tech@midasdisplays.com www.midasdisplays.com

MDT0500D5ISR-RGB	800 x 480	RGB Interface	TFT Module				
	Specification						
Version: 1 Date: 15/04/2019							
	Revision						
1	12/04/2019	First issue					

Display F	eatures		
Display Size	5.0"		
Resolution	800 x 480		
Orientation	Landscape		
Appearance	RGB		
Logic Voltage	3.3V		oHS ompliant
Interface	RGB	IVR	$\bullet \bullet \bullet$
Brightness	400 cd/m ²	/ 4 23	mpliant
Touchscreen	S P L RTP	, 00	mpnant
Module Size	120.70 x 75.80 x 4.20 mm		0024
Operating Temperature	-30°C ~ +85°C		
Pinout	40 way FFC	Box Quantity	Weight / Display
Pitch	0.5mm		

* - For full design functionality, please use this specification in conjunction with the ST7262 specification.(Provided Separately)

Display Accessories						
Part Number	Description					

Optional Variants					
je					

General Specifications

	Feature	Spec
	Size	5 inch
	Resolution	800(horizontal)*480(Vertical)
	Size	RGB-24bit
	Connect type	Connector
	Display Colors	16M
Characteristics	Technology type	a-Si
	Pixel pitch (mm)	0.135*0.135
	Pixel Configuration	R.G.BStripe
	Display Mode	Normally Black
	LCD Driver IC	ST7262-G4
	Viewing Direction	Full view
	LCM (W x H x D) (mm)	120.7*75.80*4.2
Mechanical	Active Area(mm)	108 x 64.80
iviechanical	Weight (g)	TBD
	LED Numbers	12 LEDs

Note 1: Requirements on Environmental Protection: RoHs

Note 2: LCM weight tolerance: +/- 5%

DESIGN • MANUFACTURE • SUPPLY

Input/Output Terminals

No.	Symbol	Description
1	VLED-	Backlight LED Cathode
2	VLED+	Backlight LED Anode.
3	GND	Ground
4	VDD	Power supply
5~12	R0~R7	Data bus
13~20	G0~G7	Data bus
21~28	B0~B7	Data bus
29	GND	Ground
30	DCLK	Dot clock signal input. Latching input data at its rising edge.
31	DISP	Standby mode. Normally pulled high. DISP="1": Normally operation (Default)
31	ЫЗІ	DISP="0": Timing controller, source driver will turn off ,all output are High-Z.
32	HSYNC	Horizontal sync input. Negative polarity.
33	VSYNC	Vertical sync input. Negative polarity
34	DE	Data enable input. Active high to enable the input data bus under "DE Mode."
35	NC	No connect
36	GND	System Ground
37	XR	The right side signal of TP
38	YD	The down side signal of TP
39	XL	The left side signal of TP
40	YU	The up side signal of TP

Absolute Maximum Rating

Item	Symbol	MIN	Тур	MAX	Unit	Remark
Supply Voltage	VDD	-0.5	-	5	V	-
Operating Temperature	TOPR	-30	-	85	$^{\circ}$ C	-
Storage Temperature	TSTG	-30	-	85	$^{\circ}$ C	

Electrical Characteristics

ELECTRICAL CHARACTERISTICS

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Supply Voltage	VDD	3.0	3.3	3.6	V	
IO Supply Voltage	VDDI	3.0	-	3.6	V	
Charge Pump Supply Voltage	PVDD	3.0	3.3	3.6	٧	

DC Characteristics for Digital Circuit

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Logic-High Input Voltage	Vih	0.7VDDI	11-	VDDI	V	
Logic-Low Input Voltage	Vil	DGND	117	0.3VDDI	V	
Logic-High Output Voltage	Voh	VDDI-0.4	112	VDDI	V	
Logic-Low Output Voltage	Vol	DGND	-	DGND+0.4	٧	

DC Characteristics for Analog Circuit NUFACTURE SUPPLY

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
Positive High-Voltage Power	VGH	13	15	16.5	V	
Negative High-Voltage Power	VGL	-7	-10	-11	V	No. as a series as more constraints
Output Voltage Deviation	Vod	(4)	±35	±45	mV	No Load@
Standby Current	Isc	12	02	50-	uA	FR=60Hz
Operation Current	loc	878	20	-	mA	

LED Driving Conditions

Item	Symbol	MIN	TYP	MAX	Unit	Remark
Forward Current	I_{F}	-	40	-	mA	
Forward Voltage	V_{F}	18.0	19.2	20.4	V	
Backlight Power consumption	$W_{ m BL}$	-	0.768	1	W	
LED Lifetime		-	30000	-	Hrs	

Note 1: Each LED: IF =20 mA, VF =3.2+/0.2V.

Note 2: Optical performance should be evaluated at Ta=25°C only.

Note 3: If LED is driven by high current, high ambient temperature & humidity condition. The life Time of LED will be reduced. Operating life means brightness goes down to 50% initial brightness. Typical operating life time is estimated data.

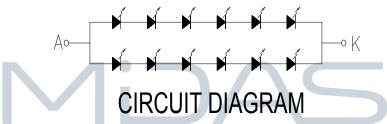
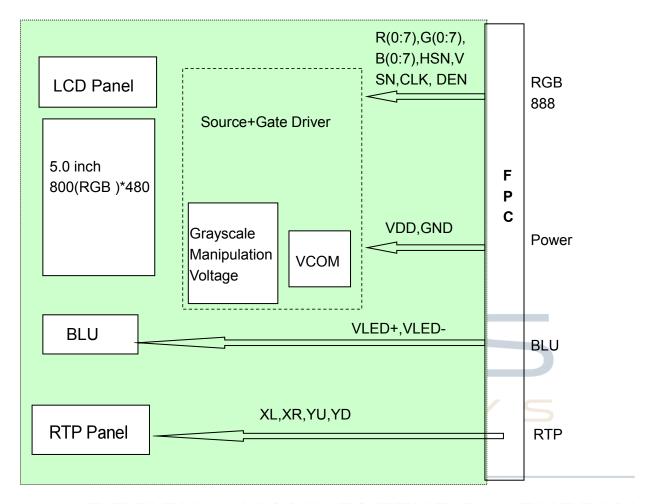
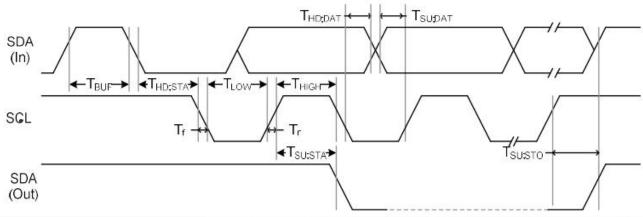
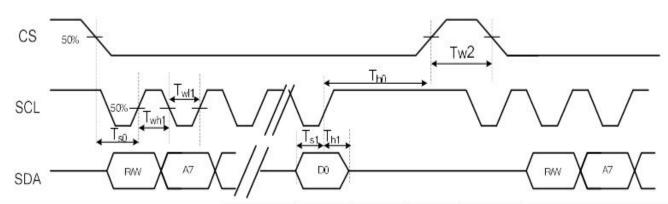



Figure: LED connection of backlight(Constant Current)

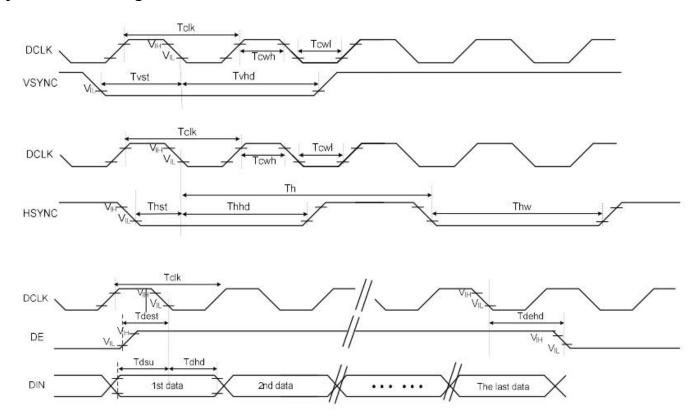
DESIGN • MANUFACTURE • SUPPLY


Block Diagram

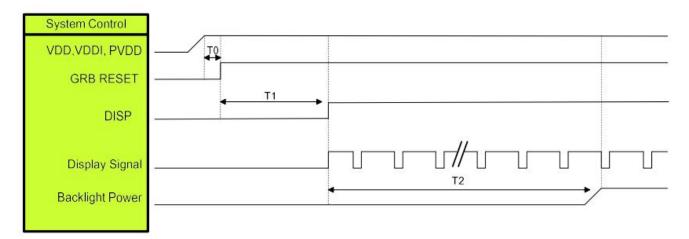
DESIGN • MANUFACTURE • SUPPLY


Interface Timing

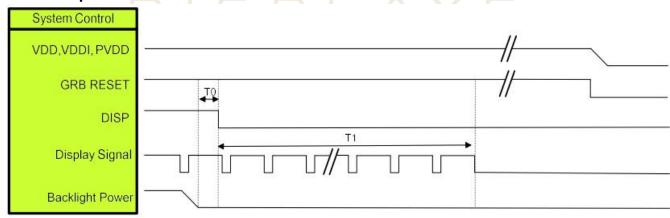
System Bus Timing for I2C Interface


Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
SCL Clock Frequency	FSCL	-	5	400	KHz	
SCL Clock Low Period	TLOW	1300	21	2	ns	
SCL Clock High Period	THIGH	600	-1	-	ns	
Signal Rise Time	Tr	20+0.1Cb	-	300	ns	
Signal Fall Time	Tf	20+0.1Cb	7.	300	ns	
Start Condition Setup Time	TSU;STA	600	2	2	ns	
Start Condition Hold Time	THD;STA	600	-	2	ns	
Data Setup Time	TSU;DAT	100	.	-	ns	
Data Hold Time	THD;DAT	0	5.1	900	ns	
Setup Time for STOP Condition	TSU;STO	600	21	2	ns	
Bus Free Time Between a STOP and START	TBUF	100	21	-	ns	
Capacitive load represented by each bus line		Cb		400	pF	
Tolerable Spike Width on Bus	TSW		15. I	50	ns	

System Bus Timing for 3-Wire SPI Interface

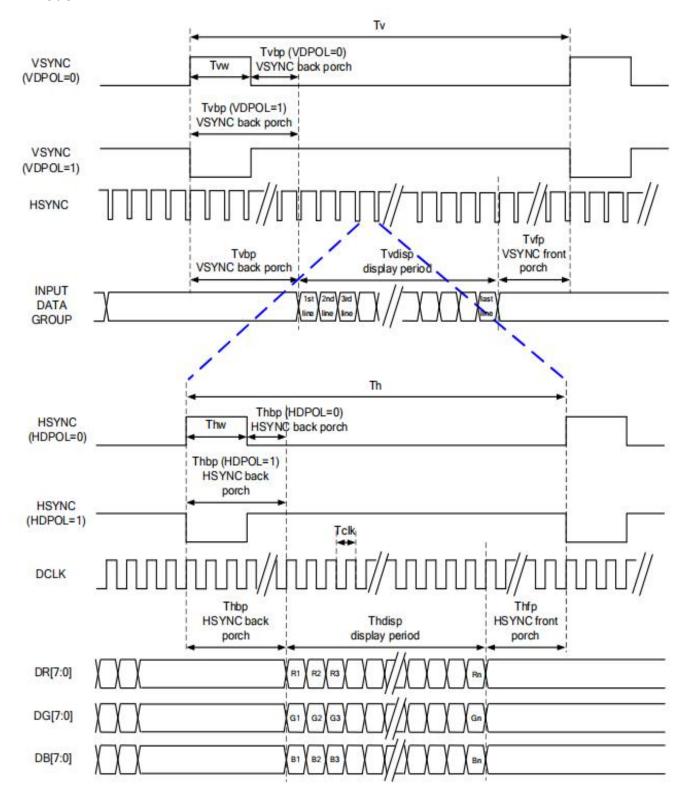

Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
CS Input Setup Time	Ts0	50	-	() = ()	ns	
Serial Data Input Setup Time	Ts1	50	-	1-0	ns	
CS Input Hold Time	Th0	50	-		ns	
Serial Data Input Hold Time	Th1	50	_	-	ns	
SCL Write Pulse High Width	Twh1	50	-	0 = 0	ns	
SCL Write Pulse Low Width	Twl1	50		1-0	ns	
SCL Read Pulse High Width	Trh1	300	-	-	ns	
SCL Read Pulse Low Width	Trl1	300		-	ns	
CS Pulse High Width	Tw2	400	¥	120	ns	

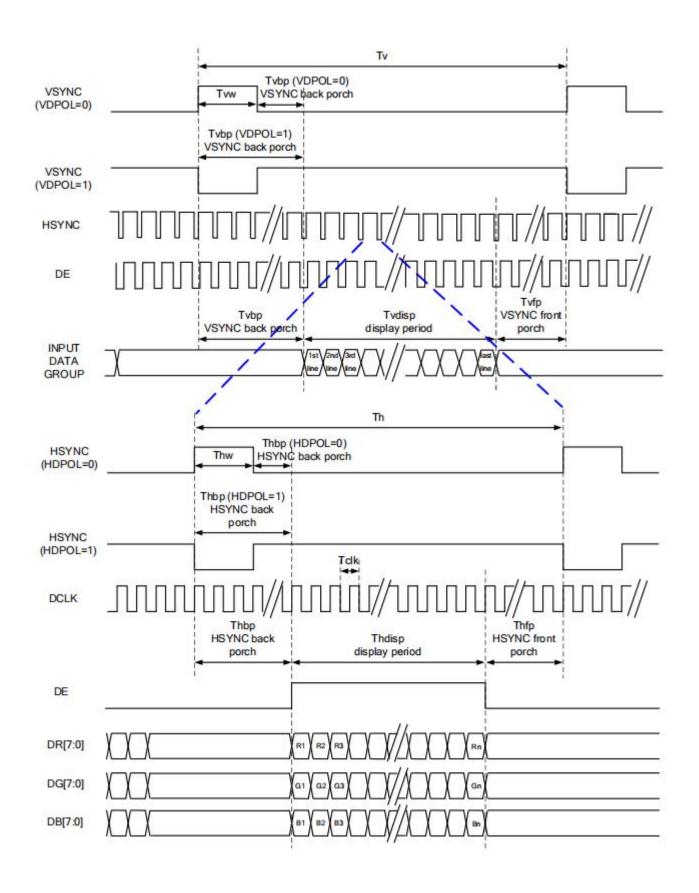
System Bus Timing for RGB Interface


Item	Symbol	Min.	Тур.	Max.	Unit	Conditions
CLK Pulse Duty	Tcw	40	50	60	%	
HSYNC Width	Thw	2	2	2	DCLK	
HSYNC Period	Th	55	60	65	us	
VSYNC Setup Time	Tvst	12		2	ns	
VSYNC Hold Time	Tvhd	12	-	¥1	ns	
HSYNC Setup Time	Thst	12	-	-	ns	
HSYNC Hold Time	Thhd	12	-	-	ns	
Data Setup Time	Tdsu	12	-		ns	
Data Hold Time	Tdhd	12	-	-	ns	
DE Setup Time	Tdest	12	-	-	ns	
DE Hold Time	Tdehd	12	-		ns	

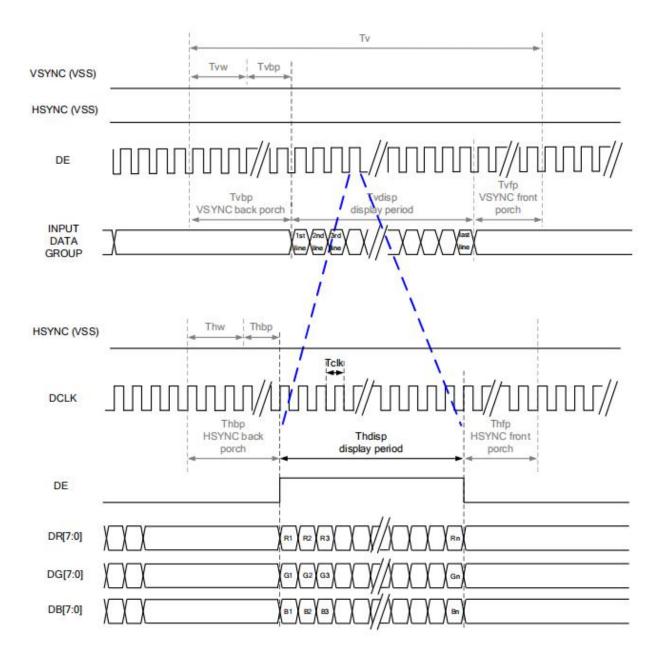
Power On Sequence

Symbol	Description	Min. Time	Unit
T0	System power stability to GRB RESET signal	0	ms
T1	GRB RESET= "High" to DISP="High"	10	ms
T2 Display Signal output to Backlight Power on		250	ms

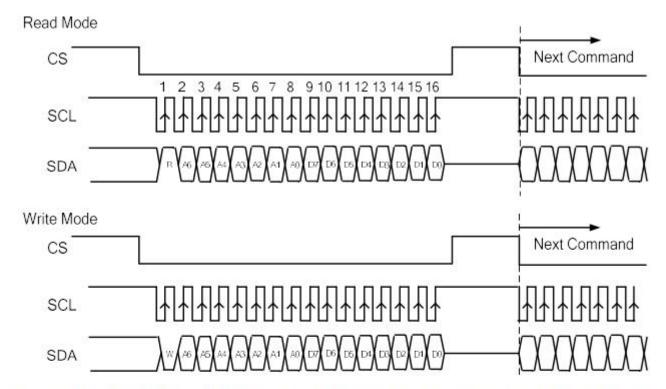

Power Off Sequence


Symbol	Description	Min. Time	Unit
TO	Backlight Power off to DISP="Low"	5	ms
T1	DISP="Low" to IC internal voltage discharge complete	80	ms

RGB Interface


SYNC Mode

SYNC-DE Mode


DE Mode

RGB Mode Selection Table	DCLK	HSYNC	VSYNC	DE
SYNC - DE Mode	Input	Input	Input	Input
SYNC Mode	Input	Input	Input	GND
DE Mode	Input	GND	GND	Input

Note: "Input" means these signals are driven by host side.

3-wire Serial Interface

- a. Each serial command consists of 16 bits of data which is loaded one bit a time at the rising edge of serial clock SCL.
- b. Command loading operation starts from the falling edge of CS and is completed at the next rising edge of CS.
- c. The serial control block is operational after power on reset, but commands are established by the VSYNC signal. If command is transferred multiple times for the same register, the last command before the VSYNC signal is valid.
- d. If less than 16 bits of SCL are input while CS is low, the transferred data is ignored.
- e. If 16 bits or more of SCL are input while CS is low, the previous 16 bits of transferred data before then rising edge of CS pulse are valid data.
- f. Serial block operates with the SCL clock
- g. Serial data can be accepted in the power save mode.
- h. After power on reset or GRB reset, it is required 100ms delay to begin SPI communication.

Optical Characteristics

Items	i	Symbol	Condition	Min.	Тур.	Max.	Unit	Remark	Note
Response	time	Tr+Tf		-	30	40	ms	FIG.1	Note4
Contrast F	Ratio	CR	-	800	1000	-	-	FIG.2	Note1
Surfac luminan		LV	θ =0°	350	400	-	cd/m2	FIG.2	Note2
NTSC	,	-	θ =0°	45	50	-	%	FIG.2	Note5
		θ_{T}		-	80	-	deg	FIG.3	
Viouing	nalo	θв	Center	-	80	-	deg	FIG.3	Note6
viewing a	Viewing angle		CR≥10	-	80	-	deg	FIG.3	Noteo
		θ_{R}		-	80	-	deg	FIG.3	
	Red	R _X		0.579	0.629	0.679	-		
	Reu	R _Y	0 -0°	0.276	0.326	0.376	-		
	Green	G _X	θ =0°	0.287	0.337	0.387	_		
Chromoticity	Green	G _Y	∅=0°	0.496	0.546	0.596	-	FIG.2	Note5
Chromaticity Blue	Dluc	Bx	Ta=25°	0.086	0.136	0.186	-	CIE1931	Notes
	Diue	B _Y	1a-25	0.093	0.143	0.193	-		
	White	W _X		0.250	0.300	0.350	- -		
	vviiite	W _Y		0.260	0.310	.0360	Y - =		

DESIGN • MANUFACTURE • SUPPLY

Note1. Definition of contrast ratio

Contrast ratio(Cr) is defined mathematically by the following formula. For more information see FIG.2.

Luminance measured when LCD on the "White" state

Contrast ratio=

Luminance measured when LCD on the "Black" state

For contrast ratio, Surface Luminance, Luminance uniformity and CIE, the testing data is base on TOPCON's BM-5 or BM-7 photo detector or compatible.

Note2. Definition of surface luminance.

Surface luminance is the luminance with all pixels displaying white. For more information see FIG.2.

Lv = Average Surface Luminance with all white pixels(P1,P2,P3,,Pn)

Note3. Definition of luminance uniformity

The luminance uniformity in surface luminance is determined by measuring luminance at each test position 1 through n, and then dividing the maximum luminance of n points luminance by minimum luminance of n points luminance. For more information see FIG.2.

Minimum surface luminance with all white pixels (P1,P2,P3,.....,Pn)
YU=

Maximum surface luminance with all white pixels (P1,P2,P3,.....,Pn)

Note4. Definition of response time

The response time is defined as the LCD optical switching time interval between "White" state and "Black"state. Rise time (Tr) is the time between photo detector output intensity changed from 90% to 10%. And fall time (Tf) is the time between photo detector output intensity changed from 10% to 90%. For additional information see FIG1.

Note5. Definition of color chromaticity (CIE1931)

CIE (x,y) chromaticity, The x,y value is determined by screen active area center position P5. For more information see FIG.2.

Note6. Definition of viewing angle

Viewing angle is the angle at which the contrast ratio is greater than 10. Angles are determined for the horizontal or x axis and the vertical or y axis with respect to the z axis which is normal to the LCD surface. For more information see FIG.3.

For viewing angle and response time testing, the testing data is base on Autronic-Melchers's ConoScope or DMS series Instruments or compatible.

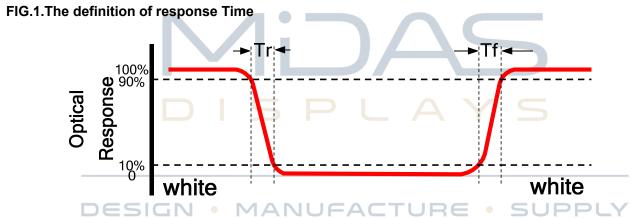
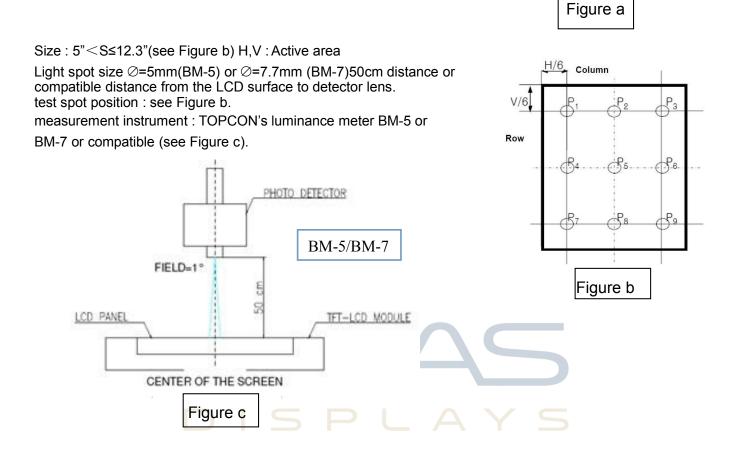


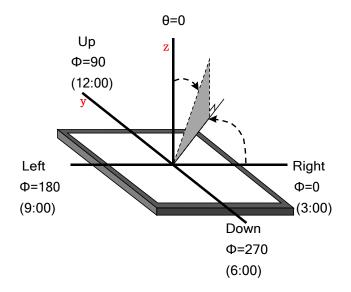
FIG.2. Measuring method for contrast ratio, surface luminance,

luminance uniformity, CIE (x,y) chromaticity

Size: S≤5"(see Figure a) A: 5 mm B: 5 mm


H,V: Active area

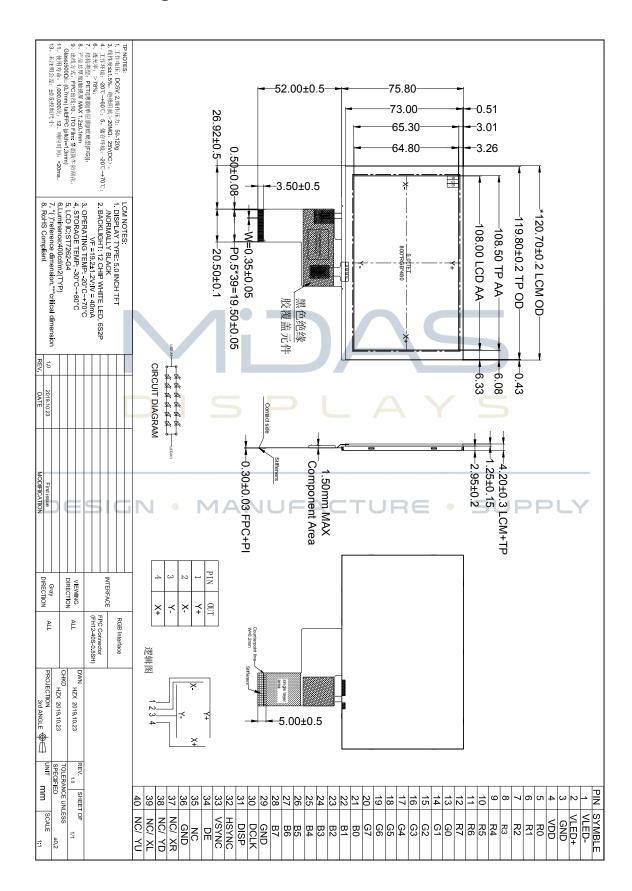
Light spot size \oslash =5mm(BM-5) or \oslash =7.7mm (BM-7)50cm distance or compatible distance from the LCD surface to detector lens.


test spot position : see Figure a.

measurement instrument: TOPCON's luminance meter BM-5 or

BM-7 or compatible (see Figure c).

FIG.3.The definition of viewing angle ANUFACTURE • SUPPLY


Environmental / Reliability Tests

No	Test Item	Condition	Remarks
1	High Temperature Operation	Ts= +70℃, 96hrs	Note 1 IEC60068-2-2, GB2423. 2-89
2	Low Temperature Operation	Ta= -20℃, 96hrs	Note 2 IEC60068-2-1 GB2423.1-89
3	High Temperature Storage	Ta= +80℃, 96hrs	IEC60068-2-2 GB2423. 2-89
4	Low Temperature Storage	Ta= -30°C,96hrs	IEC60068-2-1 GB/T2423.1-89
5	High Temperature & Humidity Storage	Ta= +60℃, 90% RH max,96 hours	IEC60068-2-3 GB/T2423.3-2006
6	Thermal Shock (Non-operation)	-20°C 30 min ~ +60°C 30 min Change time: 5min, 30 Cycle	Start with cold temperature, end with high temperature IEC60068-2-14, GB2423.22-87
7	Electro Static Discharge (Operation)	C=150pF, R=330 Ω, 5 points/panel Air:±8KV, 5 times; Contact: ±4KV, 5 times; (Environment: 15°C ~ 35°C, 30% ~ 60%, 86Kpa ~ 106Kpa)	IEC61000-4-2 GB/T17626.2-1998
8	Vibration (Non-operation)	Frequency range: 10~55Hz, Stroke: 1.mm Sweep: 10Hz~55Hz~10Hz 2 hours for each direction of X .Y. Z. (package condition)	IEC60068-2-6 GB/T2423.5-1995
9	Shock (Non-operation)	60G 6ms, ± X, ±Y , ± Z 3 times for each direction	IEC60068-2-27 GB/T2423.5-1995
10	Package Drop Test	Height: 80 cm, 1 corner, 3 edges, 6 surfaces	IEC60068-2-32 GB/T2423.8-1995

Note: 1. Ts is the temperature of panel's surface.

- 2. Ta is the ambient temperature of sample.
- 3. The size of sample is 5pcs.

Mechanical Drawing

TFT-LCD Module Inspection Criteria

Scope

The incoming inspection standards shall be applied to TFT - LCD Modules (hereinafter Called "Modules") that supplied by Midas Displays.

Incoming Inspection

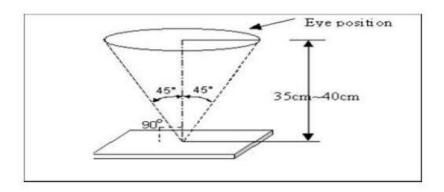
The customer shall inspect the modules within twenty calendar days of the delivery date (the "inspection period) at its own cost. The result of the inspection (acceptance or rejection) shall be recorded in writing, and a copy of this writing will be promptly sent to The seller, If the results of the inspecting from buyer does not send to the seller within twenty Calendar days of the delivery date. The modules shall be regards as acceptance. Should the customer fail to notify the seller within the inspection period, the buyers Right to reject the modules shall be lapsed and the modules shall be deemed to have Been accepted by the buyer

MANUFACTURE • SUPPLY

Inspection Sampling

- 3.1. Lot size: Quantity per shipment lot per model
- 3.2. Sampling type: Normal inspection, Single sampling
- 3.3. Inspection level: II
- 3.4. Sampling table: MIL-STD-105E
- 3.5. Acceptable quality level (AQL)

Major defect: AQL=0.65 Minor defect: AQL=1.00


Inspection Conditions

- 4.1 Ambient conditions:
- a. Temperature: Room temperature 25±5℃
- b. Humidity: (60 ± 10) %RH
- c. Illumination: Single fluorescent lamp non-directive (300 to 700 Lux)
- 4.2 Viewing distance

The distance between the LCD and the inspector's eyes shall be at least 35 ± 5 cm.

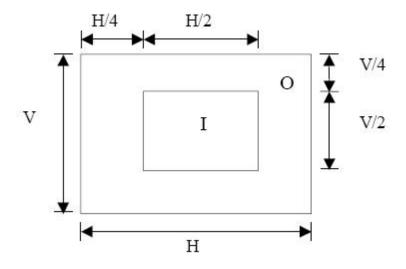
4.3 Viewing Angle

U/D: 45 ° /45° , L/R: 45° /45°

Inspection Criteria

Defects are classified as major defects and minor defects according to the degree of Defectiveness defined herein.

Major defect


Item No	Items to be inspected	Inspection Standard
5.1.1	All functional defects	1) No display 2) Display abnormally 3) Short circuit 4) line defect
`5.1.2	Missing	Missing function component
5.1.3	Crack	Glass Crack

Minor defect DESIGN • MANUFACTURE • SUPPLY

Item No	Items to be inspected	Inspection standard	
5.2.1	Spot Defect Including Black spot White spot Pinhole	For dark/white spot is defined $\varphi = (x+y) / 2$ $\longrightarrow \begin{array}{c} X \\ \downarrow \\ X \\ \downarrow \end{array} \qquad \begin{array}{c} Y \\ \\ Y \\ \end{array} \qquad \begin{array}{c} $	
	Foreign	Size φ(mm)	Acceptable Quantity
	particle	φ≤0.2	Ignore
	Polarizer dirt	0.2 < φ≤0.5	3
		0.5 < ♠	Not allowed

		Define:				
		Length Width				
5.2.2	Line Defect Including Black line White line Scratch	Width(mm) Length(mm)	Acceptable Quantity			
		W≤0.05	Ig	nore		
		0.05 < W≤0.1 L≤2.5		3		
		0.1 < W, or L>2.5	Not a	allowed		
		Sizeφ(mm)	Acceptab	ole Quantity		
		φ≤0.2	Ig	nore		
5.2.3	Polarizer	0.2 < φ≤0.3		2		
3.2.0	Dent/Bubble	0.3 < φ≤0.5		1		
		0.5 < ф	Not allowed			
		Total QTY		3		
		Bright and Black dot define:				
DE	SIGN • M	基點 and				
5.2.4	Electrical Dot Defect					
		Two Adjacent Dot				
		Inspection pattern: Full white, Full black, Red, green and b				
		Item		ole Quantity		
		Dlo-1- 3-4 3-6 -4	I 0	Note		
		Black dot defect	2	(5mm≤Distance)		
		Bright dot defect Two Adjacent Dot	1	(Smin \Distance)		
		There or more Adjacent Dot	<u> </u> allowed			
		There or more Adjacent Dot Total Dot	2	anoweu		
		Total Dut				

		1.Corner Fragment:	Z. Y
		Size(mm)	Acceptable Quantity
		X≤3mm	Ignore
		Y≤1mm	T: Glass thickness
		Z≤T	X: Length
			Y: Width
5.2.5	Glass defect		Z: thickness
		2. Side Fragment:	
		X Z	
		Size(mm)	Acceptable Quantity
		X≤5.0mm	T: Glass thickness
		Y ≤1mm	X: Length
DE	• M	ZSTUFACTURE	Y: Width PPLY Z: thickness

I area & O area

Note: 1). Dot defect is defined as the defective area of the dot area is larger than 50% of the dot area.

- 2). The distance between two bright dot defects (red, green, blue, and white) should be larger than 15mm.
- 3). The distance between black dot defects or black and bright dot defects should be more than 5mm apart.
- 4). Polarizer bubble is defined as the bubble appears on active display area. The defect of polarizer bubble shall be ignored if the polarizer bubble appears on the outside of active display area.

Mechanics specification

As for the outside dimension, weight of the modules, please refer to product specification For more details

Precautions for Use of LCD modules

Handling Precautions

- 1.1. The display panel is made of glass. Do not subject it to a mechanical shock by dropping it from a high place, etc.
- 1.2. If the display panel is damaged and the liquid crystal substance inside it leaks out, be sure not to get any in your mouth, if the substance comes into contact with your skin or clothes, promptly wash it off using soap and water.
- 1.3. Do not apply excessive force to the display surface or the adjoining areas since this may cause the color tone to vary.
- 1.4. The polarizer covering the display surface of the LCD module is soft and easily scratched. Handle this polarizer carefully.
- 1.5. If the display surface is contaminated, breathe on the surface and gently wipe it with a soft dry cloth. If still not completely clear, moisten cloth with one of the following solvents:
 - Isopropyl alcohol
 - Ethyl alcohol

Solvents other than those mentioned above may damage the polarizer. Especially, do not use the following:

- Water
- Ketene
- Aromatic solvents
- 1.6. Do not attempt to disassemble the LCD Module.
- 1.7. If the logic circuit power is off, do not apply the input signals.
- 1.8. To prevent destruction of the elements by static electricity, be careful to maintain an optimum work environment.
- 1.8.1. Be sure to ground the body when handling the LCD Modules.
- 1.8.2. Tools required for assembly, such as soldering irons, must be properly ground.
- 1.8.3. To reduce the amount of static electricity generated, do not conduct assembly and other work under dry conditions.
- 1.8.4. The LCD Module is coated with a film to protect the display surface. Be care when peeling off this protective film since static electricity may be generated.

Storage Precautions

- 2.1. When storing the LCD modules, avoid exposure to direct sunlight or to the light of fluorescent lamps.
- 2.2. The LCD modules should be stored under the storage temperature range If the LCD modules will be stored for a long time, the recommend condition is:

Temperature : 0°C ~ 40°C Relatively humidity: ≤80%

2.3. The LCD modules should be stored in the room without acid, alkali and harmful gas.

Transportation Precautions

The LCD modules should be no falling and violent shocking during transportation, and also should avoid excessive press, water, damp and sunshine.

DESIGN • MANUFACTURE • SUPPLY