

Datasheet

512-Kbit serial I²C bus EEPROM with configurable device address, software write protection registers and preprogrammed device address

TSSOP8

UFDFPN8 DFN8 - 2x3 mm

Product status link M24512E-F

Features

I²C interface

- Compatible with the following I²C bus modes:
 - 1 MHz (fast mode plus) _
 - 400 kHz (fast mode) _
 - 100 kHz (standard mode)

Memory

- 512-Kbit (64-Kbyte) of EEPROM
- Page size: 128-byte
- Additional 128-byte identification page

Supply voltage management

Wide voltage range: From 1.6 V to 5.5 V

Temperature

Operating temperature range: From -40 °C up to +85 °C

Fast write cycle time

• Byte and page write within 4 ms (3.1 ms typical)

Performance

- Enhanced ESD/latch-up protection •
- More than 4 million write cycles
- More than 200-year data retention •
- Fast wake-up time (less than 5µs) •

Ultralow power current consumption

- 330 nA (typ) in Standby mode
- 100 µA (typ) for read current
- 360 µA (typ) for write current

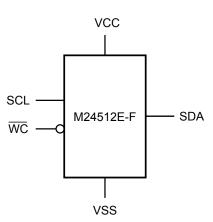
Advanced features

- Configurable device address register •
- Device type identifier register (in read-only)
- Preprogrammed device address
- Software write protection register
- Hardware write protection of the whole memory array
- Random and sequential read modes

Package

SO8N, TSSOP8, and UFDFPN8 (ECOPACK2)

1 Description


The M24512E-F is a 512-Kbit I²C-compatible EEPROM (electrically erasable programmable memory) organized as 64 K x 8 bits. The device can operate with a supply voltage from 1.6 V to 5.5 V with a clock frequency of 1 MHz (or less), over an ambient temperature range of -40 °C / +85 °C.

The M24512E-F offers three 8-bit registers. The device type identifier (DTI) register permanently locked in readonly mode. The configurable device address (CDA) register authorizing the user, through software, to configure up to eight possibilities of chip enable address. The software write protection (SWP) register authorizing the user, through software, to write protect partial or full memory array.

Moreover, the M24512E-F offers an additional page, named the identification page (128-byte). The identification page can be used to store sensitive application parameters which can be (later) permanently locked in read-only mode.

The M24512E-F is available in the standard 8-pin TSSOP8, SO8N, and UFDFPN8 with the $\overline{\text{WC}}$ pin.

On demand, the EEPROM can be delivered by STMicroelectronics with a preprogrammed and locked device address.

Figure 1. Logic diagram

DT73083V1

Table 1. Signal names

Signal name	Function	Direction		
SDA	Serial data	I/O		
SCL	Serial clock	Input		
WC	Write control	Input		
V _{CC}	Supply voltage	-		
V _{SS}	Ground	-		

Figure 2. 8-pin package connections, top view

NC 1	8	vcc
NC 2	7	
NC [] 3	6] SCL
vss [4	5] SDA

1. NC: Not connected

2. See Section 10 Package information for package dimensions, and how to identify pin 1.

DT54532V1

2 Signal description

2.1 Serial clock (SCL)

The signal applied on the SCL input is used to strobe the data available on SDA(in) and to output the data on SDA(out).

2.2 Serial data (SDA)

SDA is an input/output used to transfer data in or data out of the device. SDA(out) is an open drain output that may be wired-AND with other open drain or open collector signals on the bus. A pull-up resistor must be connected from serial data (SDA) to V_{CC} (Figure 24 and Figure 25 indicate how to calculate the value of the pull-up resistor).

2.3 Write control (WC)

This input signal is useful for protecting the contents of the memory, registers and identification page from inadvertent write operations. All write operations are disabled when write control (\overline{WC}) is driven high. All write operations are enabled when write control (\overline{WC}) is either driven low or left floating.

When write control (\overline{WC}) is driven high, device select and address bytes are acknowledged, data bytes are not acknowledged.

2.4 V_{SS} (ground)

 V_{SS} is the reference for the V_{CC} supply voltage.

2.5 Supply voltage (V_{CC})

2.5.1 Operating supply voltage (V_{CC})

Prior to selecting the memory and issuing instructions to it, a valid and stable V_{CC} voltage within the specified $[V_{CC}(min), V_{CC}(max)]$ range must be applied (see operating conditions in Section 9 DC and AC parameters). In order to secure a stable DC supply voltage, it is recommended to decouple the V_{CC} line with a suitable capacitor (usually of the order of 10 nF to 100 nF) close to the VCC/VSS package pins.

This voltage must remain stable and valid until the end of the transmission of the instruction and, for a write instruction, until the completion of the internal write cycle (t_W).

2.5.2 Power-up conditions

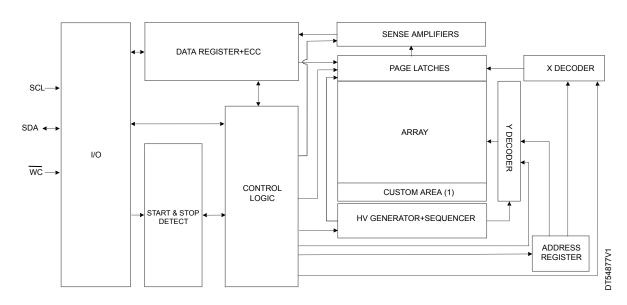
The V_{CC} voltage has to rise continuously from 0 V up to the minimum V_{CC} operating voltage (see operating conditions in Section 9 DC and AC parameters).

Once the V_{CC} is greater than, or equal to, the minimum V_{CC} level, the controller must wait for at least T_{WU} before sending the first command to the device. See Table 19 and Table 20 for the value of the wake-up time parameter.

2.5.3 Device reset

In order to prevent inadvertent write operations during power-up, a power-on-reset (POR) circuit is included. At power-up, the device does not respond to any instruction until V_{CC} has reached the internal reset threshold voltage. This threshold is lower than the minimum V_{CC} operating voltage (see operating conditions in Section 9 DC and AC parameters). When V_{CC} passes over the POR threshold, the device is reset and enters the standby power mode; however, the device must not be accessed until V_{CC} reaches a valid and stable DC voltage within the specified [V_{CC} (min), V_{CC} (max)] range (see operating conditions in Section 9 DC and AC parameters).

In a similar way, during power-down (continuous decrease in V_{CC}), the device must not be accessed when V_{CC} drops below V_{CC}(min). When V_{CC} drops below the power-on-reset threshold voltage, the device stops responding to any instruction sent to it.


2.5.4 Power-down conditions

During power-down (continuous decrease in V_{CC}), the device must be in the standby power mode (mode reached after decoding a stop condition, assuming that there is no internal write cycle in progress).

3 Memory organization

The memory is organized as shown below.

Figure 3. Block diagram

1. DTI, CDA, SWP registers and identification page.

4 Device features

The device type identifier 1011 must be used to address the DTI, SWP, CDA registers and the identification page.

4.1 Device type identifier register (DTI)

The device type identifier register (DTI), is an 8-bit register permanently locked in read-only mode. This register is factory programmed with device type identifier bits (DTI3, DTI2, DTI1 and DTI0) set to '1011' and with device type identifier lock bit (DTIL) set to '1' to freeze definitively the register. DTI3, DTI2, DTI1 and DTI0 are defining the device type identifier address in the device select code. At power up, the device loads the last configuration of DTI3, DTI2, DTI1, DTI0 and DTIL values.

This register is read by issuing the read device type identifier instruction. This instruction uses the same protocol and format as the random address read (from memory array) except for the following differences (refer to Table 9. Device select code, Table 10. First byte address and Table 11. Second byte address).

- Device type identifier = 1011b
- MSB address bits A15/A14/A13 must be equal to '111' (A15=1, A14=1 and A13=1)
- MSB address bits A12 to A8 are don't care
- LSB address bits A7 to A0 are don't care

The description of the configurable device address register is given in Table 2.

Table 2. Device type identifier register

bit 7	bit 6	bit5	bit4	bit3	bit2	bit1	bit0
DTI3=1	DTI2=0	DTI1=1	DTI0=1	X ⁽¹⁾	Х	Х	DTIL=1

1. X = Don't care bit. Read as '0'.

Note: Factory delivery of the register is 10110001b.

Table 3. Device type identifier register description

Bit	Function
	DTI3, DTI2, DTI1, DTI0 : Device type identifier bits.
Bits b7 to b4	b7, b6, b5, b4 are used to configure the device type identifier of the device select code.
	• (b7, b6, b5, b4)=(1, 0, 1, 1) the device type identifier is '1011' (factory default value)
	Note: Bits b7 to b4 are frozen at factory delivery.
Bits b3 to b1	Reserved bits. Read as '0'. (b3, b2, b1)=(0, 0, 0)
	DTIL: Device type identifier lock bit.
Bit b0	b0 indicates the DTI register status is in read-only mode.
	• (b0)= (1) the device type identifier lock bit is equal to 1 (factory default value)
	Note: Bit b0 is frozen at factory delivery.

4.2 Configurable device address register (CDA)

The configurable device address register (CDA) is an 8-bit register allowing the user to define a configurable device address (C2, C1, and C0) and a specific bit, named device address lock (DAL), to freeze definitively the configurable device address register. This register can be read and written by issuing the read or write configurable device address instruction. These instructions use the same protocol and format as the random address read or page write (from/into memory array) except for the following differences (refer to Table 9, Table 10 and Table 11):

- Device type identifier = 1011b
- MSB address bits A15/A14/A13 must be equal to '110' (A15=1, A14=1 and A13=0)
- MSB address bits A12 to A8 are don't care
- LSB address bits A7 to A0 are don't care

C2, C1, C0, and DAL are defining the chip enable address in the device select code and the device address lock. These bits can be written and reconfigured with a write command.

At power-up or after reprogramming, the device load the last configuration of C2, C1, C0 and DAL values. To prevent an unwanted change of configurable device address bits, the M24512E-F proposes to protect the CDA register freezing permanently it in read-only mode. The update of the CDA register is disabled (read-only) when the DAL bit is set to '1' (DAL=1b).

In the same way, the update of the CDA register is enabled when the DAL bit is set to '0' (DAL= 0b). Sending more than one byte during a write configurable device address command aborts the write cycle (CDA register content does not change).

- Updating the DAL bit from '0' to '1' is an irreversible action: the C2, C1, and C0 and DAL bits cannot be updated anymore.
 - If the write control input (\overline{WC}) is driven high, or if the DAL bit is set to '1' the write configurable device address command is not executed, the accompanying data byte is not acknowledged, as shown in Figure 6, and the write cycle does not start.

The description of the configurable device address register is given in Table 4.

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
X ⁽¹⁾	Х	Х	Х	C2	C1	C0	DAL

Table 4. Configurable device address register

1. X = Don't care bits. Read as 0.

Note:

Note:

Factory delivery of the CDA register is 00000000b.

For devices delivered with preprogrammed device address:

- The default value of C2, C1, and C0 are given in Table 6. Preprogrammed device address.
- DAL is set to '1'

Bit	Function
Bits b7 to b4	Reserved bits - Read as '0'. (b7, b6, b5, b4) = (0, 0, 0, 0)
	C2, C1, C0: Configurable device address bits.
	b3, b2, b1 are used to configure up to eight possibilities of chip enable address:
	• (b3, b2, b1) = (0, 0, 0): the chip enable address is 000
	• (b3, b2, b1) = (0, 0, 1): the chip enable address is 001
Bits b3 to b1	• (b3, b2, b1) = (0, 1, 0): the chip enable address is 010
	 (b3, b2, b1) = (0, 1, 1): the chip enable address is 011
	• (b3, b2, b1) = (1, 0, 0): the chip enable address is 100
	• (b3, b2, b1) = (1, 0, 1): the chip enable address is 101
	• (b3, b2, b1) = (1, 1, 0): the chip enable address is 110
	• (b3, b2, b1) = (1, 1, 1): the chip enable address is 111
	DAL: Device address lock bit.
	b0 locks the CDA register in read-only mode:
Bit b0	• b0 = 0: bits b3, b2, b1, b0 can be modified
Dit DO	• b0 = 1: bits b3, b2, b1, b0 cannot be modified and therefore the CDA register is frozen
	Note: Bits b3 to b0 can be updated (if $b0 = 0$) in the same write instruction. Setting b0 from 0 to 1 is an irreversible action.

Table 5. Configurable device address register description

If the M24512E-F is delivered with the preprogrammed device address, the configurable device address register becomes locked at factory delivery and can only be read. The C2, C1, and C0 are set as specified in Table 6. Preprogrammed device address, and the DAL bit is set to 1.

The corresponding commercial product number with the preprogrammed device address are given in Table 6.

Communication and the termination (1)	Chip	Chip enable address bits				
Commercial product number ⁽¹⁾	C2	C1	C0	- Availability		
M24512E-Fxx6T1	0	0	1	Yes		
M24512E-Fxx6T2	0	1	0	On demand		
M24512E-Fxx6T3	0	1	1	On demand		
M24512E-Fxx6T4	1	0	0	On demand		
M24512E-Fxx6T5	1	0	1	On demand		
M24512E-Fxx6T6	1	1	0	On demand		
M24512E-Fxx6T7	1	1	1	On demand		

Table 6. Preprogrammed device address

1. 'xx' in the part number varies by package.

4.3 Software write protection register (SWP)

The software write protection (SWP) register is a non-volatile 8-bit register allowing the user to protect a specific area of the memory against the write instruction. The SWP offers four non volatile bits to configure by the user:

- Two bits for setting the size of the write-protected memory and identified as block protection bits (BP0, BP1)
- One bit to enable / disable the write protection of the desired area and identified as write protect activation (WPA) bit
- One bit to definitively freeze in read-only mode the SWP register and identified as write protection lock (WPL) bit

This register can be read and written by issuing the read or write software write protection register instructions. These instructions use the same protocol and format as the random address read or page write (from/into memory array) except for the following differences (refer to Table 9, Table 10 and Table 11):

• Device type identifier = 1011b

- MSB address bits A15/A14/A13 must be equal to '101' (A15=1; A14=0; A13=1)
- MSB address bits A12 to A8 are don't care
- LSB address bits A7 to A0 are don't care

BP1 and BP0 are the block protection bits. WPL is the write protect lock bit and WPA is the write protect activation bit. These bits can be written and re-configured with a write command. At power up, the device loads the last configuration of the SWP register value.

The user can update the SWP register as often as the WPL bit stays at '0'. Writing more than one byte discard the write cycle (software write protection register content is not changed).

To prevent unwanted change of software write protection register bits, the M24512E-F proposes to protect the SWP register, freezing it permanently in read-only mode. The update of the SWP register is disabled (read only) when the WPL bit is set to '1' (WPL = 1b). In the same way, the update of the SWP register is enabled when the WPL bit is set to '0' (WPL = 0b).

When WPL is set to '1' and in case of write software write protection register, the device select and address bytes are acknowledged, data byte is not acknowledged and write cycle does not start.

- Updating the WPL bit from 0 to 1 is an irreversible action: the WPA, BP1, BP0 and WPL bits cannot be updated any more
- If the write control input (WC) is driven high or if the WPL bit is set to 1, the write configurable device address command is not executed and the accompanying data byte is not acknowledged, as shown in Figure 9.

The description of the software write protection register is given in the below table:

Table 7. Software write protection register values

bit 7	bit 6	bit 5	bit 4	bit 3	bit 2	bit 1	bit 0
X ⁽¹⁾	Х	Х	Х	WPA	BP1	BP0	WPL

1. X = Don't care bits. Read as 0.

Note:

Note:

Factory delivery of the SWP register is 0000000b.

Table 8. Software write protection register description

Bit	Function
Bits b7 to b4	• Reserved bits. Read as '0'. (b7, b6, b5, b4) = (0, 0, 0, 0)
	WPA: Write protect activation bit.
Bit b3	b3 enables or disables the write protection:
Dirbo	• b3 = 0: no write protection. The whole memory can be written.
	• b3 = 1: write protection active. The memory block is protected according to BP bits setting.
	BP1, BP0: block protection bits
	b2 and b1 define the size of the memory block to be protected against write instruction:
Bits b2 to b1	• (b2,b1) = (0,0): the upper quarter of memory is write-protected
	• (b2,b1) = (0,1): the upper half of memory is write protected
	• $(b2,b1) = (1,0)$: the upper $\frac{3}{4}$ of memory is write protected
	• (b2,b1) = (1,1): the whole memory is write protected
	WPL: write protection lock bit
	b0 locks the write protection register value.
Bit b0	• b0 = 0: bits [b3: b0] can be modified
Dit 00	• b0 = 1: bits [b3: b0] cannot be modified and therefore the write protection register is frozen.
	Note: bits b3 to b0 can be updated (if $b0 = 0$) in the same write instruction. Setting b0 from 0 to 1 is an irreversible action.

4.4 Identification page

The identification page (128 bytes) is an additional page, which can be read or written and (later) permanently locked in read-only mode. It is read or written by issuing the read or write identification page instruction. These instructions use the same protocol and format as the random address read or page write (from/into memory array) except for the following differences (refer to Table 9, Table 10 and Table 11):

- Device type identifier = 1011b
- MSB address bits A15/A14/A13 must be equal to '000' (A15 = 0, A14 = 0 and A13 = 0)
- MSB address bits A12 to A8 are don't care
- LSB address bit A7 is don't care, bits A6 to A0 define the byte address inside the identification page

If the identification page is locked, the data bytes transferred during the write identification page instruction are not acknowledged (NoACK).

The identification page is filled with all bytes written to FFh.

5 Device operation

57

The device supports the I²C protocol. This is summarized in Figure 4. Any device that sends data on to the bus is defined to be a transmitter, and any device that reads the data is defined to be a receiver. The device that controls the data transfer is known as the bus controller, and the other as the target device. A data transfer can only be initiated by the bus controller, which also provides the serial clock for synchronization. The device is always a target in all communications.

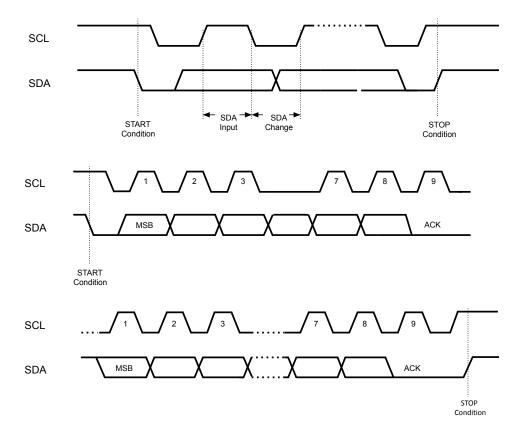


Figure 4. I²C bus protocol

5.1 Start condition

Start is identified by a falling edge of serial data (SDA) while serial clock (SCL) is stable in the high state. A start condition must precede any data transfer instruction. The device continuously monitors (except during a write cycle) serial data (SDA) and serial clock (SCL) for a start condition.

5.2 Stop condition

Stop is identified by a rising edge of serial data (SDA) while the serial clock (SCL) is stable in the high state. A stop condition terminates communication between the device and the bus controller. A read instruction that is followed by NoAck can be followed by a stop condition to force the device into the standby mode. A stop condition at the end of a write instruction triggers the internal write cycle.

5.3 Data input

During data input, the device samples serial data (SDA) on the rising edge of serial clock (SCL). For correct device operation, serial data (SDA) must be stable during the rising edge of serial clock (SCL), and the serial data (SDA) signal must change only when serial clock (SCL) is driven low.

5.4 Acknowledge bit (ACK)

The acknowledge bit is used to indicate a successful byte transfer. The bus transmitter, whether a bus controller or target device, releases serial data (SDA) after sending eight bits of data. During the ninth clock pulse period, the receiver pulls serial data (SDA) low to acknowledge the receipt of the eight data bits.

5.5 Device addressing

To start communication between the bus controller and the target device, the bus controller must initiate a Start condition. Following this, and unless the product is delivered with the preprogrammed device address, the bus controller sends the device select code and byte address as specified in Table 9, Table 10, and Table 11.

When the device select code is received, the device responds only if the bits b3, b2 and b1 values match the values of the C2, C1 and C0 bits programmed in the configurable device address register.

If a match occurs, the corresponding device gives an acknowledgment on serial data (SDA) during the ninth bit time. If the device does not acknowledge the device select code, the device deselects itself from the bus, and goes into Standby mode (therefore it does not acknowledge the device select code).

The eighth bit is the read/write bit (RW). This bit is set to '1' for read and '0' for write operations.

Features	Device typ	ifier bit	S	Chip en	RW			
reatures	Bit 7 (MSB) ⁽²⁾	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Memory	1	0	1	0	C2	C1	C0	RW
Device type identifier	1	0	1	1	C2	C1	C0	RW
Configurable device address	1	0	1	1	C2	C1	C0	RW
Software write protection	1	0	1	1	C2	C1	C0	RW
Identification page	1	0	1	1	C2	C1	C0	RW
Identification page lock	1	0	1	1	C2	C1	C0	RW

Table 9. Device select code

1. C0, C1 and C2 are compared with the value read on bits b1,b2 and b3 of the CDA register.

2. The most significant bit, b7, is sent first.

Table 10. First byte address

Features	Bit 7 (MSB) ⁽¹⁾	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Memory	A15	A14	A13	A12	A11	A10	A9	A8
Device type identifier	1	1	1	X ⁽²⁾	Х	Х	Х	Х
Configurable device address	1	1	0	Х	Х	Х	Х	Х
Software write protection	1	0	1	Х	Х	Х	Х	Х
Identification page	0	0	0	Х	Х	Х	Х	Х
Identification page lock	0	1	1	Х	Х	Х	Х	Х

1. The most significant bit, b7, is sent first.

2. X = Don't care bit

Table 11. Second byte address

Features	Bit 7 (MSB) ⁽¹⁾	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)
Memory	A7	A6	A5	A4	A3	A2	A1	A0
Device type identifier	X ⁽²⁾	Х	Х	Х	Х	Х	Х	Х
Configurable device address	X	Х	Х	Х	Х	Х	Х	Х
Software write protection	X	Х	Х	Х	Х	Х	Х	Х
Identification page	X	A6	A5	A4	A3	A2	A1	A0
Identification page lock	X	Х	Х	Х	Х	Х	Х	Х

1. The most significant bit, b7, is sent first.

2. X = Don't care bit

6 Instructions

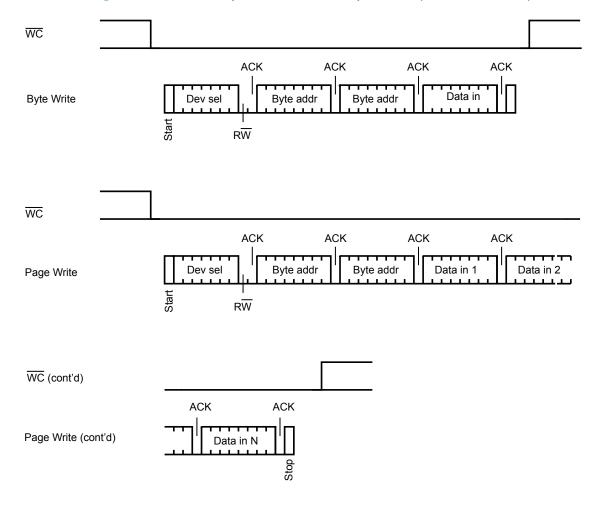
57/

6.1 Write operations on memory array

Following a start condition the bus controller sends a device select code with the R/W bit (RW) reset to 0. The device acknowledges this, as shown in Figure 5, and waits for two address bytes. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. See in Section 5.5 Device addressing (Table 9, Table 10, and Table 11) how to address the memory array.

When the bus controller generates a stop condition immediately after a data byte ACK bit (in the " 10^{th} bit" time slot), either at the end of a byte write or a page write, the internal write cycle t_W is triggered. A stop condition at any other time slot does not trigger the internal write cycle.

After the stop condition and the successful completion of an internal write cycle (t_W) , the device internal address counter is automatically incremented to point to the next byte after the last modified byte.

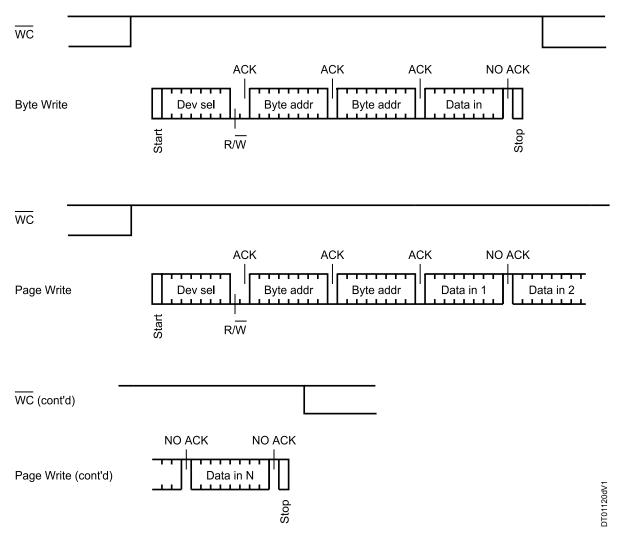

During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any requests.

If the addressed area is write protected by software through the SWP setting or hard protected through $\overline{\text{WC}}$ pin driven high, the write instruction is not executed and the accompanying data bytes are not acknowledged, as shown in Figure 6.

6.1.1 Byte write

After the device select code and the address bytes, the bus controller sends one data byte. If the addressed location is write-protected, through the SWP setting or through the \overline{WC} pin being driven high, the device replies with NoAck, and the location is not modified. If, instead, the addressed location is not write-protected, the device replies with ACK. The bus controller terminates the transfer by generating a stop condition, as shown in Figure 5.

Figure 5. Write mode sequences without write protection (data write enabled)



6.1.2 Page write

The page write mode allows up to 128 bytes to be written in a single write cycle, provided that they are all located in the same page in the memory: that is, the most significant memory address bits, A15/A7, are the same. If more bytes are sent than fit up to the end of the page, a "roll-over" occurs, that is, the bytes exceeding the page end are written on the same page, from location 0.

The bus controller sends from 1 to 128 bytes of data, each of which is acknowledged by the device if the addressed bytes are not write-protected through the SWP setting or through \overline{WC} pin (driven low). In the opposite case, when the addressed bytes are write-protected by SWP setting or \overline{WC} pin (driven high), the contents of the addressed memory location are not modified, and each data byte is followed by a NoAck, as shown in Figure 6. After each transferred byte, the internal page address counter is incremented.

The transfer is terminated by the bus controller generating a stop condition.

Figure 6. Write mode sequences with write protection (data write inhibited)

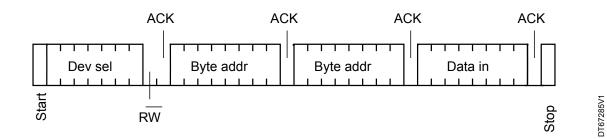
6.2 Write operations on features

6.2.1 Write operation on DTI register

Write operations on device type identifier (DTI) register are not allowed. The register is delivered locked in read-only.

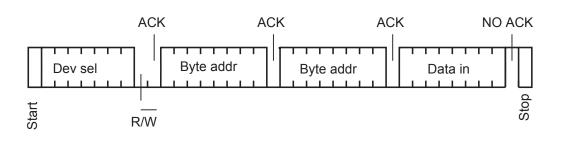
6.2.2 Write operation on CDA register

Write operations on the configurable device address register are performed according to the state of the device address lock bit (DAL) or the status of the \overline{WC} line.


If the configurable device address register is write protected by software with DAL=1 or hard protected with \overline{WC} line driven high, the write operation on this register is not executed and the accompanying data byte is not acknowledged as shown in Figure 8.

Following a start condition the bus controller sends a device select code with the R/W bit (\overline{RW}) set to 0. The device acknowledges this, as shown in Figure 7, and waits for the address bytes where the register is located. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the configurable device address register.

When the bus controller generates a stop condition immediately after the data byte ACK bit (in the "10th bit" time slot), the internal write cycle t_W is triggered. A stop condition at any other time slot does not trigger the internal write cycle.


During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any requests (no ACK).

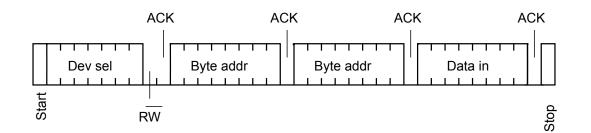
If the three bits C2, C1, and C0 have been reconfigured with a correct write command, the device acknowledges if the chip enable address of the device select code is equal to the new values of C2, C1, and C0, otherwise no ACK. Sending more than one byte aborts the write cycle (configurable device address content does not change). Bits (C2, C1, C0, and DAL) can be updated (DAL = '0' to '1') in the same program instruction.

Figure 7. Write CDA register (data write enabled)

Figure 8. Write CDA register (data write inhibited by software or hardware)

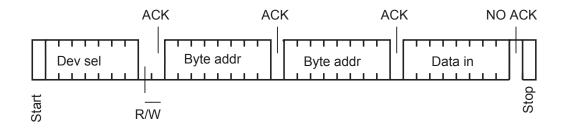
DT67286V

6.2.3 Write operation on SWP register


Write operations on SWP register are performed according to the state of the write protect lock bit (WPL) or to the status of \overline{WC} line.

Following a start condition the bus controller sends a device select code with the R/W bit (RW) set to 0. The device acknowledges this, as shown in Figure 9, and waits for the address bytes where the SWP register is located. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the software write protection register.

When the bus controller generates a stop condition immediately after the data byte ACK bit (in the "10th bit" time slot), the internal write cycle t_W is triggered. A stop condition at any other time slot does not trigger the internal write cycle.


During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any requests (no ACK).

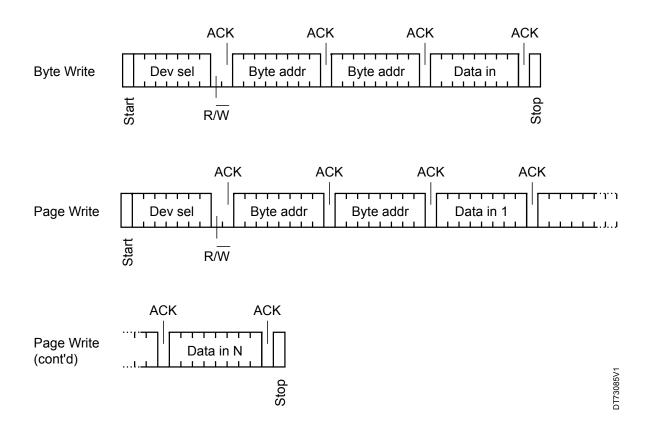
Sending more than one byte aborts the write cycle (software write protection register content is not changed). If the SWP register is already locked or hard write protected with $\overline{\text{WC}}$ line driven high, the write operation is not executed and the accompanying data byte is not acknowledged as shown in Figure 10.

Figure 9. Write SWP register (data write enabled)

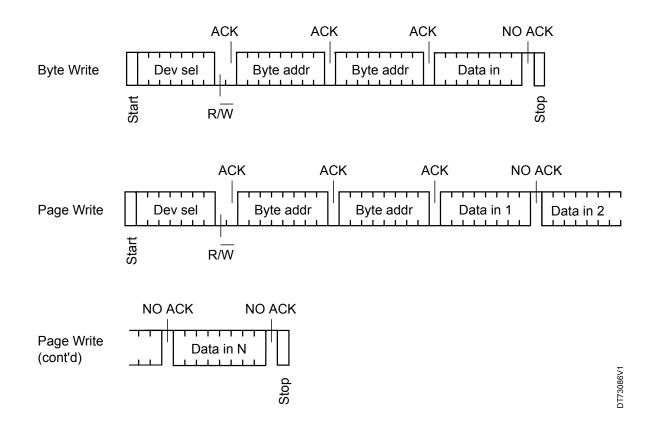
Figure 10. Write SWP register (data write inhibited by software or hardware)

DT67286V1

6.2.4 Write operation on identification page


Following a start condition the bus controller sends a device select code with the R/W bit (\overline{RW}) set to 0. The device acknowledges this, as shown in Figure 11, and waits for the address bytes where the identification page is located. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the identification page.

When the bus controller generates a stop condition immediately after the data byte ACK bit (in the "10th bit" time slot), the internal write cycle t_W is triggered. The device internal address counter is automatically incremented to point to the next byte after the last modified byte.


A stop condition at any other time slot does not trigger the internal write cycle.

During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any requests (no ACK).

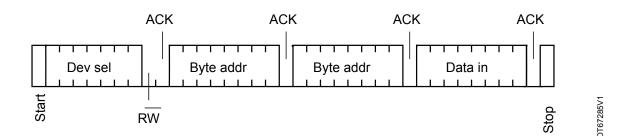
If the identification page is already locked or hard write protected with $\overline{\text{WC}}$ line driven high, the write operation is not executed and the accompanying data bytes are not acknowledged as shown in Figure 12.

Figure 11. Write identification page (page unlocked)

Figure 12. Write identification page (page locked or hard protected)

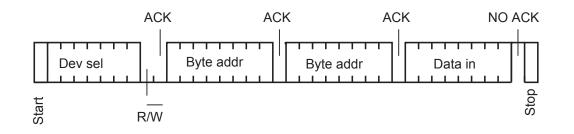
6.2.5 Lock operation on identification page

The lock identification page instruction (lock ID) permanently locks the identification page in read-only mode.


Following a start condition the bus controller sends a device select code with the R/W bit (RW) set to 0. The device acknowledges this, as shown in Figure 13, and waits for the address bytes where the identification page is located. The device responds to each address byte with an acknowledge bit, and then waits for a specific data byte value. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the identification page.

The data byte must be equal to the binary value xxxx xx1x, where x is don't care.

When the bus controller generates a stop condition immediately after the data byte ACK bit (in the " 10^{th} bit" time slot), the internal write cycle t_W is triggered. A stop condition at any other time slot does not trigger the internal write cycle.


During the internal write cycle, serial data (SDA) is disabled internally, and the device does not respond to any requests (no ACK).

If the identification page is already locked or hard write protected with \overline{WC} line driven high, the write operation is not executed and the accompanying data bytes are not acknowledged as shown in Figure 14.

Figure 13. Lock operation on identification page (unlocked or data write enabled)

Figure 14. Lock operation on identification page (already locked or data write inhibited by hardware)

DT67286V1

6.3 Minimizing write delays by polling on ACK

During the internal write cycle, the device disconnects itself from the bus, and writes a copy of the data from its internal latches to the memory cells. The maximum write time (t_w) is shown in Table 19. AC characteristics in fast mode and Table 20. AC characteristics in fast mode plus, but the typical time is shorter. To make use of this, a polling sequence can be used by the bus controller.

The sequence, as shown in Figure 15, is:

- Initial condition: a write cycle is in progress.
- Step 1: the bus controller issues a Start condition followed by a device select code (the first byte of the new instruction).
- Step 2: if the device is busy with the internal write cycle, no ACK is returned and the bus controller goes back to step 1. If the device has terminated the internal write cycle, it responds with an ACK, indicating that the device is ready to receive the second part of the instruction (the first byte of this instruction having been sent during Step 1).

Note:

In case of write command to configurable device address register when C2, C1, and C0 are reconfigured, the device returns ACK only if:

- Chip enable address of the device select code is equal to the new C2, C1 and C0 values
- An internal write cycle is completed (new C2 , C1, and C0 values have been programmed in the chip enable register)

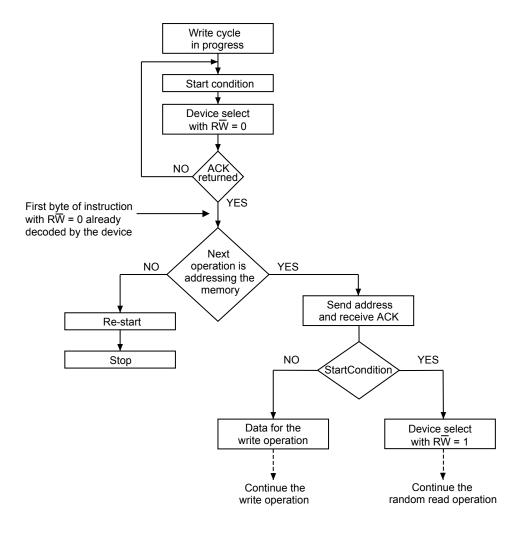


Figure 15. Write cycle polling flowchart using ACK

- DT01847eV1
- The seven most significant bits of the device select code of a random read (bottom right box in the figure) must be identical to the seven most significant bits of the device select code of the write (polling instruction in the figure).

6.4 ECC (error correction code) and write cycling

The error correction code (ECC) is an internal logic function which is transparent for the I²C communication protocol.

The ECC logic is implemented on each group of four EEPROM bytes (A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer). Inside a group, if a single bit out of the four bytes happens to be erroneous during a read operation, the ECC detects this bit and replaces it with the correct value. The read reliability is therefore much improved.

Even if the ECC function is performed on groups of four bytes, a single byte can be written/cycled independently. In this case, the ECC function also writes/cycles the three other bytes located in the same group (A group of four bytes is located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3], where N is an integer). As a consequence, the maximum cycling budget is defined at group level and the cycling can be distributed over the 4 bytes of the group: the sum of the cycles seen by byte0, byte1, byte2 and byte3 of the same group must remain below the maximum value defined Table 16. Cycling performance by groups of four bytes.

6.5 Read operations on the memory array

Following a start condition the bus controller sends a device select code with the R/W bit ($R\overline{W}$) set to '0'. The device acknowledges this and waits for the two-bytes address. The device responds to each address byte with an acknowledge bit. Then, the bus controller sends another start condition, and repeats the device select code, with the $R\overline{W}$ bit set to '1'. The device acknowledges this, and outputs the contents of the data. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the memory array.

After each byte read (data out), the device waits for an acknowledgment (data in) during the ninth bit time. If the bus controller does not acknowledge during this ninth time, the device terminates the data transfer and switches to its standby mode after a stop condition.

After the successful completion of a read operation, the device internal address counter is incremented by one, to point to the next byte address.

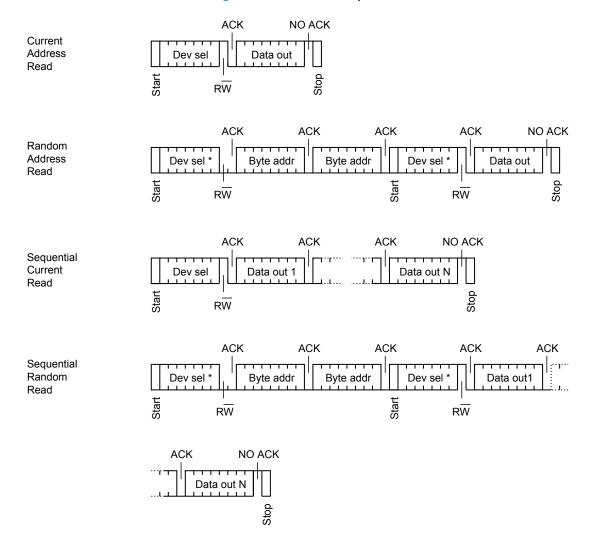


Figure 16. Read mode sequences

Note: *: The seven most significant bits of the first device select code of a random read must be identical to the seven most significant bits of the device select code of the write.

DT01105dV1

6.5.1 Random address read

A dummy write is first performed to load the address into this address counter (as shown in Figure 16. Read mode sequences) but without sending a stop condition. Then, the bus controller sends another start condition, and repeats the device select code, with the RW bit set to 1. The device acknowledges this, and outputs the contents of the addressed byte. The bus controller must not acknowledge the byte, and terminates the transfer with a stop condition.

6.5.2 Current address read

For the current address read operation, following a start condition, the bus controller only sends a device select code with the $R\overline{W}$ bit set to 1. The device acknowledges this, and outputs the byte addressed by the internal address counter. The counter is then incremented. The bus controller terminates the transfer with a stop condition, as shown in Figure 16. Read mode sequences, without acknowledging the byte.

Note: The address counter value is defined by instructions accessing either the memory, registers, or the identification page. When accessing the registers or the identification page, the address counter value is loaded with the byte location, therefore the next current address read in the memory uses this new address counter value. When accessing the memory, it is safer to always use the random address read instruction (this instruction loads the address counter with the byte location to read in the memory, see Section 6.5.1 Random address read) instead of the current address read instruction.

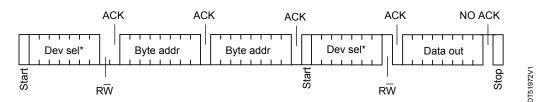
6.5.3 Sequential read

This operation can be used after a current address read or a random address read. The bus controller does acknowledge the data byte output, and sends additional clock pulses so that the device continues to output the next byte in sequence. To terminate the stream of bytes, the bus controller must not acknowledge the last byte, and must generate a stop condition, as shown in Figure 16. Read mode sequences.

The output data comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last memory address, the address counter "rolls-over", and the device continues to output data from the memory address 00h.

6.6 Read operations on features

Only the random address read or sequential random read commands are authorized to access the four additional features. The address counter contains meaningful address value only after these authorized commands have been performed.


6.6.1 Read operation on DTI register

Following a start condition the bus controller sends a device select code with the R/W bit ($R\overline{W}$) set to 0. The device acknowledges this and waits for the address bytes where the DTI register is located. The device responds to each address byte with an acknowledge bit. Then, the bus controller sends another start condition, and repeats the device select code, with the $R\overline{W}$ bit set to 1. The device acknowledges this, and outputs the contents of the DTI register. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the device type identifier register.

After the successful completion of a read device type identifier, the device internal address counter is not incremented by one, to point to the next byte address. Reading more than one byte with the sequential random read command loops on reading the device type identifier register value.

To terminate the stream of data byte, the bus controller must not acknowledge the byte, and must generate a stop condition, as shown in Figure 17.

The device type identifier register cannot be read while a write cycle (t_W) is ongoing.

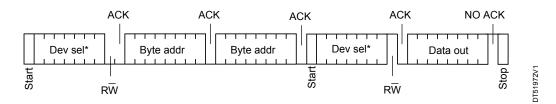
Figure 17. Random read DTI register

*: The seven most significant bits of the device select code of a random read must be identical.

6.6.2 Read operation on CDA register

Following a start condition the bus controller sends a device select code with the R/W bit ($R\overline{W}$) set to 0. The device acknowledges this and waits for the address bytes where the CDA register is located. The device responds to each address byte with an acknowledge bit. Then, the bus controller sends another start condition, and repeats the device select code, with the $R\overline{W}$ bit set to 1. The device acknowledges this, and outputs the contents of the CDA register. See in Section 5.5 Device addressing (Table 9, Table 10, and Table 11) how to address the configurable device address register.

After the successful completion of a read configurable device address, the device internal address counter is not incremented by one, to point to the next byte address. Reading more than one byte loops on reading the configurable device address register value.


To terminate the stream of data byte, the bus controller must not acknowledge the byte, and must generate a stop condition, as shown in Figure 18. Random read CDA register.

The configurable device address register cannot be read while a write cycle (t_W) is ongoing.

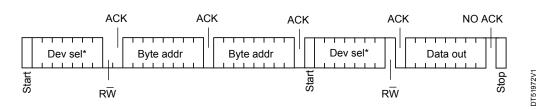
The configurable device address bit (C2, C1, and C0) value can be checked by sending the device select code.

- If the chip enable address b3, b2, and b1 sent in the device select code is matching with the C2, C1, and C0 value, the device sends an ACK.
- Otherwise, the device answers no ACK.

Figure 18. Random read CDA register

*: The seven most significant bits of the device select code of a random read must be identical.

6.6.3 Read operation on SWP register


Following a start condition the bus controller sends a device select code with the R/W bit ($R\overline{W}$) set to 0. The device acknowledges this and waits for the address bytes where the SWP register is located. The device responds to each address byte with an acknowledge bit. Then, the bus controller sends another start condition, and repeats the device select code, with the $R\overline{W}$ bit set to 1. The device acknowledges this, and outputs the contents of the SWP register. See in Section 5.5 Device addressing (Table 9, Table 10, and Table 11) how to address the software write protection register.

After the successful completion of a read operation on SWP, the device internal address counter is not incremented by one, to point to the next byte address. Reading more than one-byte loops on reading the SWP register value.

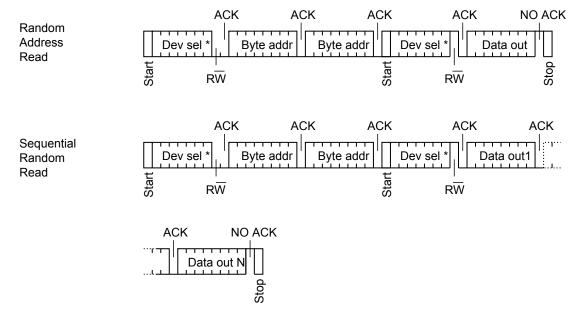
To terminate the stream of data byte, the bus controller must not acknowledge the byte, and must generate a stop condition, as shown in Figure 19.

The SWP register cannot be read while a write cycle (t_W) is ongoing.

Figure 19. Random read SWP register

*: The seven most significant bits of the device select code of a random read must be identical.

6.6.4 Read operation on identification page


Following a start condition the bus controller sends a device select code with the R/W bit ($R\overline{W}$) set to 0. The device acknowledges this and waits for the address bytes where the identification page is located. The device responds to each address byte with an acknowledge bit. Then, the bus controller sends another start condition, and repeats the device select code, with the $R\overline{W}$ bit set to 1. The device acknowledges this, and outputs the contents of the identification page. See in Section 5.5 Device addressing (Table 9, Table 10 and Table 11) how to address the identification page.

After each byte read (data out), the device waits for an acknowledgment (data in) during the ninth bit time.

The output data of the identification page comes from consecutive addresses, with the internal address counter automatically incremented after each byte output. After the last identification page address (7Fh), the address counter "rolls-over", and the device continues to output data from identification page address 00h.

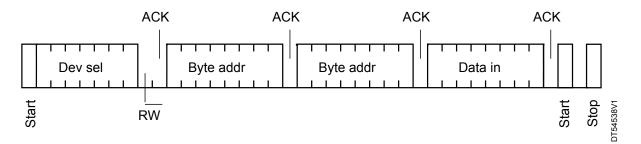
To terminate the stream of data byte, the bus controller must not acknowledge the byte, and must generate a stop condition, as shown in Figure 20. Random read identification page.

If the bus controller does not acknowledge during this ninth time, the device terminates the data transfer as shown in Figure 20. Random read identification page and switches to its standby mode.

Figure 20. Random read identification page

Note:

*: The seven most significant bits of the device select code of a random read must be identical.



6.6.5 Read lock status on identification page

The lock/unlock status of the identification page can be checked by transmitting a specific truncated command. Following a start condition the bus controller sends a device select code with the R/W bit ($R\overline{W}$) set to 0. The device acknowledges this and waits for the address bytes where the identification page is located. The device responds to each address byte with an acknowledge bit, and then waits for the data byte. See in Section 5.5 Device addressing (Table 9, Table 10, and Table 11) how to address the identification page. The device returns an acknowledge bit after the data byte if the identification page is unlocked (unlock status) as shown in Figure 21, otherwise a NoAck bit as shown in Figure 22, if the identification page is locked (lock status). Right after this, it is recommended to transmit to the device a start condition followed by a stop condition, so that:

- Start: the truncated command is not executed because the start condition resets the device internal logic
- Stop: the device is then set back into standby mode by the stop condition

Figure 21. Read lock status (identification page unlocked)

Figure 22. Read lock status (identification page locked)

7 Initial delivery state

At factory delivery, unless a device-specific address has been preprogrammed, the device is delivered with:

- All the memory array bits set to 1 (each byte contains FFh)
- The DTI register locked and set to 10110001b (B1h)
- The CDA register set to 0000000b (00h)
- The SWP register set to 0000000b (00h)
- All the identification page bits set to 1 (each byte contains FFh)

8 Maximum rating

Stressing the device outside the ratings listed in Table 12 may cause permanent damage to the device. These are stress ratings only, and operation of the device at these, or any other conditions outside those indicated in the operating sections of this specification, is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Symbol	Parameter	Min.	Max.	Unit
-	Ambient operating temperature	-40	130	°C
T _{STG}	Storage temperature	-65	150	°C
T _{LEAD}	Lead temperature during soldering	see note ⁽¹⁾		°C
I _{OL}	DC output current (SDA = 0)	-	5	mA
V _{IO}	Input or output range	-0.50	6.5	V
V _{CC}	Supply voltage	-0.50	6.5	V
V _{ESD}	Electrostatic pulse (human body model) ⁽²⁾	-	4000	V

Table 12. Absolute maximum ratings

 Compliant with JEDEC Std J-STD-020 (for small body, Sn-Pb or Pb-free assembly), the ST ECOPACK 7191395 specification, and the European directive on Restrictions of Hazardous Substances (RoHS directive 2011/65/EU of July 2011).

 Positive and negative pulses applied on different combinations of pin connections, according to ANSI/ESDA/JEDEC JS-001 (C1=100 pF, R1=1500 Ω, R2 = 500 Ω).

9 DC and AC parameters

This section summarizes the operating and measurement conditions, and the DC and AC characteristics of the device.

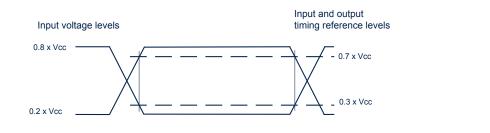

Symbol	Parameter	Min.	Max.	Unit
V _{CC}	Supply voltage	1.6	5.5	V
T _A	Ambient operating temperature	-40	85	°C
f _C	Operating clock frequency	-	1	MHz

Table 13. Operating conditions

Table 14. AC measurement conditions

Symbol	Parameter	Min.	Max.	Unit
C _{bus}	Load capacitance	-	100	pF
-	SCL input rise/fall time, SDA input fall time	-	50	ns
-	Input levels	0.2 V _{CC} t	o 0.8 V _{CC}	V
-	Input and output timing reference levels	0.3 V _{CC} t	o 0.7 V _{CC}	V

Figure 23. AC measurement I/O waveform

Table 15. Input parameters

Symbol	Parameter	Test condition	Min.	Max.	Unit
C _{IN} ⁽¹⁾	Input capacitance (SDA)	-	-	8	pF
C _{IN} ⁽¹⁾	Input capacitance (other pins)	-	-	6	pF
Z _L ⁽²⁾		V _{IN} < 0.3 V _{CC}	30	-	kΩ
Z _H ⁽²⁾	Input impedance (WC) ⁽³⁾	V _{IN} > 0.7 V _{CC}	500	-	kΩ

1. Specified by design – Not tested in production.

2. Evaluated by characterization - Not tested in production.

3. The memory is selected (after a start condition).

DT54878V1

Table 16. Cycling performance by groups of four bytes

Symbol	Parameter	Test condition	Max.	Unit
Nevelo	Ncycle Write cycle endurance ⁽¹⁾	$T_A \le 25 \text{ °C}, V_{CC}(min) < V_{CC} < V_{CC}(max)$	4,000,000	Write cycle ⁽²⁾
NCycle		$T_A = 85 \text{ °C}, V_{CC}(min) < V_{CC} < V_{CC}(max)$	1,200,000	

1. The write cycle endurance is defined by characterization and qualification. For devices embedding the ECC functionality, the write cycle endurance is defined for a group of four bytes located at addresses [4*N, 4*N+1, 4*N+2, 4*N+3] where N is an integer.

2. A Write cycle is executed when either a page write, a byte write, a write registers, a write identification page or a lock identification page instruction is decoded. When using the byte write, the page write or the write identification page, refer also to Section 6.4 ECC (error correction code) and write cycling.

Table 17. Memory cell data retention

Parameter	Test condition	Min.	Unit
Data retention ⁽¹⁾	T _A = 55 °C	200	Year

1. The data retention behavior is checked in production, while the data retention limit defined in this table is extracted from the characterization and qualification results.

Table 18. DC characteristics

Symbol	Parameter	Test conditions	Min.	Max.	Unit
ILI	Input leakage current	$V_{IN} = V_{SS} \text{ or } V_{CC}$	-	± 2	μA
	(SCL, SDA)	device in standby mode			
I _{LO}	Output leakage current	SDA in high-Z, external voltage applied on SDA: V_{SS} or V_{CC}	-	± 2	μA
I _{CC} ⁽¹⁾	Supply current (Read)	f _C = 400 kHz	-	0.5 ⁽²⁾	mA
ICC. 7	Supply current (read)	$f_{C} = 1 \text{ MHz}$	-	1 ⁽³⁾	mA
lass	Supply current (Write)	Averaged on T_W , $V_{CC} \le 3.3 V$	-	1 ⁽⁴⁾	m۸
I _{CC0}	Supply current (write)	Averaged on T_W , V_{CC} > 3.3 V	- 1.5	1.5 ⁽⁵⁾	mA
		Device not selected ⁽⁶⁾ ,		4(7)	
L		V_{IN} = V_{SS} or V_{CC} ; V_{CC} < 2.5 V	-	1 ⁽⁷⁾	μA
I _{CC1}	Standby supply current	Device not selected ⁽⁶⁾ ,		2	
		V_{IN} = V_{SS} or V_{CC} ; $V_{CC} \ge 2.5$ V	-	2	μA
VIL	Input low voltage	$1.6 \text{ V} \le \text{V}_{\text{CC}} \le 2.5 \text{ V}$	-0.45	0.25 V _{CC}	V
۷IL	(SCL, SDA, \overline{WC})	$2.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V}$	-0.45	0.30 V _{CC}	V
	Input high voltage	$1.6 \text{ V} \le \text{V}_{\text{CC}} < 2.5 \text{ V}$	0.75 V _{CC}	6.5	V
N	(SCL, SDA)	$2.5 V \le V_{CC} \le 5.5 V$	0.70 V _{CC}	6.5	V
V _{IH}	Input high voltage	$1.6 \text{ V} \le \text{V}_{\text{CC}} < 2.5 \text{ V}$	0.75 V _{CC}	V _{CC} +0.6	V
	(WC)	$2.5 \text{ V} \le \text{V}_{\text{CC}} \le 5.5 \text{ V}$	0.70 V _{CC}	V _{CC} +0.6	V
		I _{OL} = 1 mA, V _{CC} = 1.6 V	-	0.2	V
V _{OL}	Output low	I_{OL} = 2.1 mA, V_{CC} = 2.5 V or			
		I_{OL} = 3 mA, V_{CC} = 5.5 V	-	0.4	V

1. Evaluated by characterization - Not tested in production.

2. 70 µA typical value at 1.8V. Evaluated by characterization - Not tested in production.

3. 100 µA typical value at 1.8V. Evaluated by characterization - Not tested in production.

4. 360 µA typical value at 1.8V. Evaluated by characterization - Not tested in production.

5. 650 µA typical value at 3.3V. Evaluated by characterization - Not tested in production.

6. The device is not selected after power-up, after a read instruction (after the stop condition), or after the completion of the internal write cycle t_W (t_W is triggered by the correct decoding of a Write instruction).

7. 330 nA typical value at 1.8V, 25°C. Evaluated by characterization - Not tested in production.

Table 19. AC	characteristics	in fast	mode
--------------	------------------------	---------	------

Symbol	Alt.	Parameter	Min.	Max.	Unit
f _C	f _{SCL}	Clock frequency	-	400	kHz
t _{CHCL}	t _{HIGH}	Clock pulse width high	600	-	ns
t _{CLCH}	t _{LOW}	Clock pulse width low	1300	-	ns
t _{QL1QL2} ⁽¹⁾	t _F	SDA (out) fall time	20 ⁽²⁾	300	ns
t _{XH1XH2} ⁽¹⁾	t _R	Input signal rise time	(3)	(3)	ns
t _{XL1XL2} ⁽¹⁾	t _F	Input signal fall time	(3)	(3)	ns
t _{DXCH}	t _{SU:DAT}	Data in setup time	100	-	ns
t _{CLDX}	t _{HD:DAT}	Data in hold time	0	-	ns
t _{CLQX} ⁽⁴⁾	t _{DH}	Data out hold time	100	-	ns
t _{CLQV} ⁽⁵⁾	t _{AA}	Clock low to next data valid (access time)	-	900	ns
t _{CHDL}	t _{SU:STA}	Start condition setup time	600	-	ns
t _{DLCL}	t _{HD:STA}	Start condition hold time	600	-	ns
t _{CHDH}	t _{SU:STO}	Stop condition set up time	600	-	ns
t _{DHDL}	t _{BUF}	Time between Stop condition and next Start condition	1300	-	ns
t _{WLDL} ⁽¹⁾⁽⁶⁾	t _{SU:WC}	$\overline{\text{WC}}$ set up time (before the start condition)	0	-	μs
t _{DHWH} ⁽¹⁾⁽⁷⁾	t _{HD:WC}	WC hold time (after the stop condition)	1	-	μs
t _{VV}	t _{WR}	Write cycle time	-	4 ⁽⁸⁾	ms
t _{NS} ⁽¹⁾	-	Pulse width ignored (input filter on SCL and SDA) - single glitch	-	50	ns
t _{WU} ⁽⁹⁾⁽¹⁰⁾	-	Wake up time	-	5	μs

1. Evaluated by characterization - Not tested in production.

2. With $C_L = 10 \, pF$.

3. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the I²C specification that the input signal rise and fall times be more than 20 ns and less than 300 ns when $f_C < 400$ kHz.

- 4. To avoid spurious start and stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
- t_{CLQV} is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3V_{CC} or 0.7V_{CC}, assuming that the R_{bus} × C_{bus} time constant is within the values specified in Figure 24.
- 6. $\overline{WC} = 0$ setup time condition to enable the execution of a write command.
- 7. $\overline{WC} = 0$ hold time condition to enable the execution of a write command.

8. 3.1 ms typical.

- 9. Specified by design Not tested in production.
- 10. Wake up time: Delay between the V_{CCmin} stable and the first accepted command.

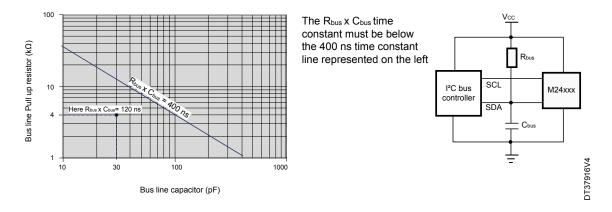
Table 20. AC characteristics in fast mode plus

Symbol	Alt.	Parameter	Min.	Max.	Unit
f _C	f _{SCL}	Clock frequency	-	1	MHz
t _{CHCL}	t _{HIGH}	Clock pulse width high	260	-	ns
t _{CLCH}	t _{LOW}	Clock pulse width low	500	-	ns
t _{XH1XH2}	t _R	Input signal rise time	(1)	(1)	ns
t _{XL1XL2}	t _F	Input signal fall time	(1)	(1)	ns
t _{QL1QL2} ⁽²⁾	t _F	SDA (out) fall time	20 ⁽³⁾	120	ns
t _{DXCH}	t _{SU:DAT}	Data in setup time	50	-	ns
t _{CLDX}	t _{HD:DAT}	Data in hold time	0	-	ns
t _{CLQX} ⁽⁴⁾	t _{DH}	Data out hold time	100	-	ns
t _{CLQV} ⁽⁵⁾	t _{AA}	Clock low to next data valid (access time)	-	450	ns
t _{CHDL}	t _{SU:STA}	Start condition setup time	250	-	ns
t _{DLCL}	t _{HD:STA}	Start condition hold time	250	-	ns
t _{CHDH}	t _{SU:STO}	Stop condition setup time	250	-	ns
t _{DHDL}	t _{BUF}	Time between Stop condition and next Start condition	500	-	ns
t _{WLDL} ⁽²⁾⁽⁶⁾	t _{SU:WC}	WC set up time (before the start condition)	0	-	μs
t _{DHWH} ⁽²⁾⁽⁷⁾	t _{HD:WC}	WC hold time (after the stop condition)	1	-	μs
t _W	t _{WR}	Write cycle time	-	4 ⁽⁸⁾	ms
t _{NS} ⁽²⁾	-	Pulse width ignored (input filter on SCL and SDA)	-	50	ns
t _{WU} ⁽⁹⁾⁽¹⁰⁾	-	Wake up time	-	5	μs

1. There is no min. or max. values for the input signal rise and fall times. It is however recommended by the l²C specification that the input signal rise and fall times be less than 120 ns when $f_C < 1$ MHz.

2. Evaluated by characterization - Not tested in production.

3. With CL = 10 pF.


- 4. To avoid spurious Start and Stop conditions, a minimum delay is placed between SCL=1 and the falling or rising edge of SDA.
- t_{CLQV} is the time (from the falling edge of SCL) required by the SDA bus line to reach either 0.3 V_{CC} or 0.7 V_{CC}, assuming that the Rbus × Cbus time constant is within the values specified in Figure 25.
- 6. $\overline{WC} = 0$ setup time condition to enable the execution of a write command.
- 7. $\overline{WC} = 0$ hold time condition to enable the execution of a write command.

8. 3.1 ms typical.

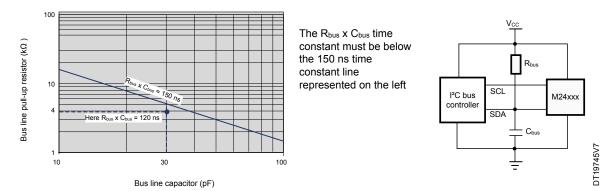

- 9. Specified by design Not tested in production.
- 10. Wake up time: Delay between the V_{CCmin} stable and the first accepted commands.

Figure 24. Maximum R_{bus} value versus bus parasitic capacitance (C_{bus}) for an I^2C_{bus} at maximum frequency $f_C = 400 \text{ kHz}$

Figure 26. AC waveforms

10 Package information

To meet environmental requirements, ST offers these devices in different grades of ECOPACK packages, depending on their level of environmental compliance. ECOPACK specifications, grade definitions, and product status are available at: www.st.com. ECOPACK is an ST trademark.

10.1 SO8N package information

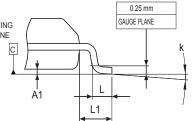

This SO8N is an 8-lead, 4.9 x 6 mm, plastic small outline, 150 mils body width, package.

Figure 27. SO8N – Outline

E1 E

HHH

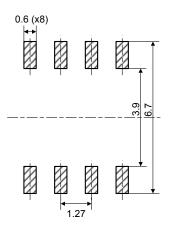
07_S08_ME_V2

1. Drawing is not to scale.

Table 21. SO8N – Mechanical data	Table 2	21.	SO8N -	Mechanical	data
----------------------------------	---------	-----	--------	------------	------

Symbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.750	-	-	0.0689
A1	0.100	-	0.250	0.0039	-	0.0098
A2	1.250	-	-	0.0492	-	-
b	0.280	-	0.480	0.0110	-	0.0189
С	0.170	-	0.230	0.0067	-	0.0091
D ⁽²⁾	4.800	4.900	5.000	0.1890	0.1929	0.1969
E	5.800	6.000	6.200	0.2283	0.2362	0.2441
E1 ⁽³⁾	3.800	3.900	4.000	0.1496	0.1535	0.1575
е	-	1.270	-	-	0.0500	-
h	0.250	-	0.500	0.0098	-	0.0197
k	0°	-	8°	0°	-	8°
L	0.400	-	1.270	0.0157	-	0.0500
L1	-	1.040	-	-	0.0409	-
ссс	-	-	0.100	-	-	0.0039

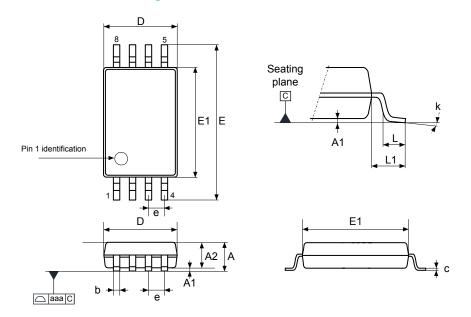
1. Values in inches are converted from mm and rounded to four decimal digits.


2. Dimension "D" does not include mold flash, protrusions or gate burrs. Mold flash, protrusions or gate burrs shall not exceed 0.15 mm per side

3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

Note:

The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the outermost extremes of the plastic body exclusive of mold flash, tie bar burrs, gate burrs and interleads flash, but including any mismatch between the top and bottom of plastic body. Measurement side for mold flash, protusions or gate burrs is bottom side.


07_SO8N_FP_V2

1. Dimensions are expressed in millimeters.

10.2 TSSOP8 package information

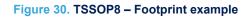
This TSSOP is an 8-lead, 3 x 6.4 mm, 0.65 mm pitch, thin shrink small outline package.

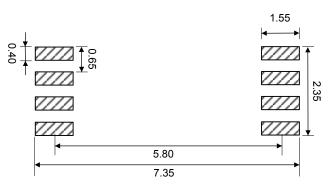
Figure 29. TSSOP8 – Outline

1. Drawing is not to scale.

Sumbol		millimeters			inches ⁽¹⁾	
Symbol	Min.	Тур.	Max.	Min.	Тур.	Max.
А	-	-	1.200	-	-	0.0472
A1	0.050	-	0.150	0.0020	-	0.0059
A2	0.800	1.000	1.050	0.0315	0.0394	0.0413
b	0.190	-	0.300	0.0075	-	0.0118
с	0.090	-	0.200	0.0035	-	0.0079
D ⁽²⁾	2.900	3.000	3.100	0.1142	0.1181	0.1220
е	-	0.650	-	-	0.0256	-
E	6.200	6.400	6.600	0.2441	0.2520	0.2598
E1 ⁽³⁾	4.300	4.400	4.500	0.1693	0.1732	0.1772
L	0.450	0.600	0.750	0.0177	0.0236	0.0295
L1	-	1.000	-	-	0.0394	-
k	0°	-	8°	0°	-	8°
aaa	-	-	0.100	-	-	0.0039

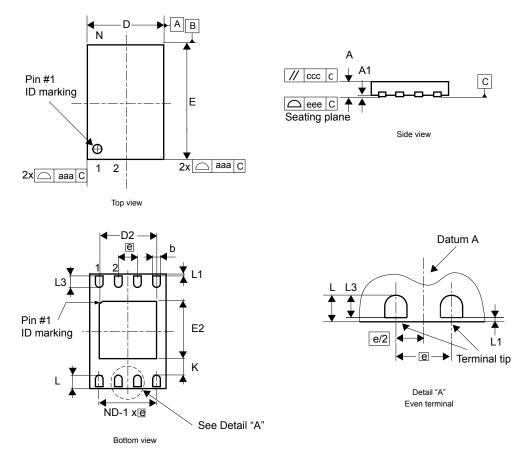
1. Values in inches are converted from mm and rounded to four decimal digits.


2. Dimension "D" does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.15 mm per side.


3. Dimension "E1" does not include interlead flash or protrusions. Interlead flash or protrusions shall not exceed 0.25 mm per side.

Note:

The package top may be smaller than the package bottom. Dimensions D and E1 are determinated at the outermost extremes of the plastic body exclusive of the mold flash, tie bar burrs, gate burrs, and interleads flash, but including any mismatch between the top and bottom of the plastic body. The measurement side for the mold flash, protrusions, or gate burrs is the bottom side.


1. Dimensions are expressed in millimeters.

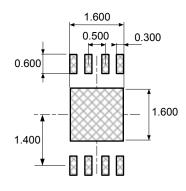
10.3 UFDFPN8 (DFN8) package information

This UFDFPN is a 8-lead, 2 x 3 mm, 0.5 mm pitch ultra thin profile fine pitch dual flat package.

Figure 31. UFDFPN8 - Outline

- 1. Maximum package warpage is 0.05 mm.
- 2. Exposed copper is not systematic and can appear partially or totally according to the cross section.
- 3. Drawing is not to scale.
- 4. The central pad (the area E2 by D2 in the above illustration) must be either connected to V_{SS} or left floating (not connected) in the end application.

Sumbol		millimeters			inches ⁽¹⁾	
Symbol	Min	Тур	Max	Min	Тур	Мах
А	0.450	0.550	0.600	0.0177	0.0217	0.0236
A1	0.000	0.020	0.050	0.0000	0.0008	0.0020
b ⁽²⁾	0.200	0.250	0.300	0.0079	0.0098	0.0118
D	1.900	2.000	2.100	0.0748	0.0787	0.0827
D2	1.200	-	1.600	0.0472	-	0.0630
E	2.900	3.000	3.100	0.1142	0.1181	0.1220
E2	1.200	-	1.600	0.0472	-	0.0630
е	-	0.500	-	-	0.0197	-
К	0.300	-	-	0.0118	-	-
L	0.300	-	0.500	0.0118	-	0.0197
L1	-	-	0.150	-	-	0.0059
L3	0.300	-	-	0.0118	-	-
aaa	-	-	0.150	-	-	0.0059
bbb	-	-	0.100	-	-	0.0039
ссс	-	-	0.100	-	-	0.0039
ddd	-	-	0.050	-	-	0.0020
eee ⁽³⁾	-	-	0.080	-	-	0.0031


Table 23. UFDFPN8 - Mechanical data

1. Values in inches are converted from mm and rounded to four decimal digits.

2. Dimension b applies to plated terminal and is measured between 0.15 and 0.30 mm from the terminal tip.

3. Applied for exposed die paddle and terminals. Exclude embedding part of exposed die paddle from measuring.

Figure 32. UFDFPN8 - Footprint example

ZWb_UFDFN8_FP_V2

1. Dimensions are expressed in millimeters.

11 Ordering information

Table 24. Orderi	ng information so	cheme					
Example:	M24	512E	- F	MN	6	Т	Ρ
Device type							
M24 = I ² C serial access EEPROM							
Device function							
512E = 512-Kbit (64 K x 8 bit)							
Operating voltage ⁽¹⁾							
$F = V_{CC} = 1.6 V \text{ to } 5.5 V$							
Package ⁽²⁾							
MN = SO8 (150 mil width)							
DW = TSSOP8 (169 mil width)							
MC = UFDFPN8 (DFN8)							
Device grade							
6 = Industrial device tested with standard test flow over -40	to 85 °C						
Option							
T = tape and reel packing							
blank = tube packing							
Plating technology and device address							
P or G = ECOPACK2 and device address 000							

1 to 7 = ECOPACK2 and preprogrammed device address⁽³⁾

- 1. Products with finished good M24512EFMN6TPV0B or with top marking 24512FP and KxxxV on the second line are associated to the datasheet M24512E-F revision 1 October 07,2022.
- 2. ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimony oxide flame retardants).
- 3. See Table 6. Preprogrammed device address.

Note: For a list of available options (memory, package, and so on) or for further information on any aspect of this device, contact your nearest ST sales office.

Note: Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity.

Revision history

Table 25. Document revision history

Date	Revision	Changes
07-Oct-2022	1	Initial release
		Added TSSOP8 and UFDFPN8 packages. Note 1 in Table 24. Ordering information scheme
		Updated:
13-Feb-2023	2	minimum Voltage supply from 2.5 V to 1.6 V
		 Section 4.1 Device type identifier register (DTI), Section 4.2 Configurable device address register (CDA), Section 4.3 Software write protection register (SWP), Section 6.2.3 Write operation on SWP register Table 15, Input perspectate. Table 19, DC observatoriation
		Table 15. Input parameters, Table 18. DC characteristics
		Updated:
		Features
		Section 1 Description
		Section 4.2 Configurable device address register (CDA)
26-Oct-2023	3	Section 6.2.2 Write operation on CDA register
		Table 18. DC characteristics
		Table 24. Ordering information scheme
		Added:
		Table 6. Preprogrammed device address

Contents

1	Desc	cription		2						
2	Sign	al desc	ription	3						
	2.1	Serial	clock (SCL)	3						
	2.2	Serial	data (SDA)	3						
	2.3	Write control (WC)								
	2.4	V _{SS} (g	round)	3						
	2.5	Supply	/ voltage (V _{CC})	4						
		2.5.1	Operating supply voltage (V _{CC})	4						
		2.5.2	Power-up conditions	4						
		2.5.3	Device reset	4						
		2.5.4	Power-down conditions	4						
3	Mem	nory org	ganization	5						
4	Devi	ice featu	ures	6						
	4.1	Device	e type identifier register (DTI)	6						
	4.2	Config	urable device address register (CDA)	7						
	4.3	Softwa	are write protection register (SWP)	8						
	4.4	Identifi	ication page	10						
5	Devi	ice opei	ration							
	5.1	Start c	ondition	12						
	5.2	Stop c	ondition	12						
	5.3	Data ir	nput							
	5.4	Acknow	wledge bit (ACK)	12						
	5.5	Device	addressing.	13						
6	Instr	ructions	5							
	6.1	Write o	operations on memory array	14						
		6.1.1	Byte write	15						
		6.1.2	Page write	16						
	6.2	Write o	operations on features	17						
		6.2.1	Write operation on DTI register	17						
		6.2.2	Write operation on CDA register	17						
		6.2.3	Write operation on SWP register							
		6.2.4	Write operation on identification page	19						
		6.2.5	Lock operation on identification page	21						
	6.3	Minimi	zing write delays by polling on ACK							

	6.4	ECC (e	error correction code) and write cycling				
	6.5	Read operations on the memory array					
		6.5.1	Random address read	25			
		6.5.2	Current address read	25			
		6.5.3	Sequential read	25			
	6.6	Read o	perations on features				
		6.6.1	Read operation on DTI register	26			
		6.6.2	Read operation on CDA register	27			
		6.6.3	Read operation on SWP register	27			
		6.6.4	Read operation on identification page				
		6.6.5	Read lock status on identification page	29			
7	Initia	l delive	ry state				
8	Maxi	mum ra	iting				
9	DC a	nd AC I	parameters				
10	Pack	Package information					
	10.1	SO8N	package information				
	10.2	TSSOF	P8 package information	41			
	10.3	UFDFF	PN8 (DFN8) package information				
11	Orde	ring inf	ormation				
Rev	ision ł	nistory					

List of tables

Table 1.	Signal names	2
Table 2.	Device type identifier register.	6
Table 3.	Device type identifier register description	6
Table 4.	Configurable device address register	7
Table 5.	Configurable device address register description	8
Table 6.	Preprogrammed device address	
Table 7.	Software write protection register values	9
Table 8.	Software write protection register description	
Table 9.	Device select code	
Table 10.	First byte address	13
Table 11.	Second byte address	13
Table 12.	Absolute maximum ratings	
Table 13.	Operating conditions	32
Table 14.	AC measurement conditions	32
Table 15.	Input parameters	32
Table 16.	Cycling performance by groups of four bytes	
Table 17.	Memory cell data retention	33
Table 18.	DC characteristics	34
Table 19.	AC characteristics in fast mode	35
Table 20.	AC characteristics in fast mode plus	36
Table 21.	SO8N – Mechanical data	40
Table 22.	TSSOP8 – Mechanical data	
Table 23.	UFDFPN8 - Mechanical data	
Table 24.	Ordering information scheme.	
Table 25.	Document revision history	46

List of figures

Figure 1.	Logic diagram.	2
Figure 2.	8-pin package connections, top view	2
Figure 3.	Block diagram	5
Figure 4.	I ² C bus protocol 1	11
Figure 5.	Write mode sequences without write protection (data write enabled) 1	15
Figure 6.	Write mode sequences with write protection (data write inhibited) 1	16
Figure 7.	Write CDA register (data write enabled)1	17
Figure 8.	Write CDA register (data write inhibited by software or hardware) 1	17
Figure 9.	Write SWP register (data write enabled)	8
Figure 10.	Write SWP register (data write inhibited by software or hardware)1	8
Figure 11.	Write identification page (page unlocked) 1	19
Figure 12.	Write identification page (page locked or hard protected)	20
Figure 13.	Lock operation on identification page (unlocked or data write enabled)	21
Figure 14.	Lock operation on identification page (already locked or data write inhibited by hardware) 2	21
Figure 15.	Write cycle polling flowchart using ACK	22
Figure 16.	Read mode sequences	24
Figure 17.	Random read DTI register	26
Figure 18.	Random read CDA register	27
Figure 19.	Random read SWP register	
Figure 20.	Random read identification page	28
Figure 21.	Read lock status (identification page unlocked)	29
Figure 22.	Read lock status (identification page locked) 2	29
Figure 23.	AC measurement I/O waveform	32
Figure 24.	Maximum R_{bus} value versus bus parasitic capacitance (C_{bus}) for an I^2C_{bus} at maximum frequency f_C = 400 kHz 3	37
Figure 25.	Maximum R_{bus} value versus bus parasitic capacitance (C_{bus}) for an I ² C bus at maximum frequency f_C = 1 MHz 3	37
Figure 26.	AC waveforms	38
Figure 27.	SO8N – Outline	39
Figure 28.	SO8N - Footprint example	10
Figure 29.	TSSOP8 – Outline	11
Figure 30.	TSSOP8 – Footprint example	12
Figure 31.	UFDFPN8 - Outline	13
Figure 32.	UFDFPN8 - Footprint example	14

IMPORTANT NOTICE - READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgment.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. For additional information about ST trademarks, refer to www.st.com/trademarks. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2023 STMicroelectronics – All rights reserved