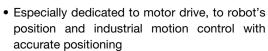
Vishay MCB

Rotational Absolute Inductive Kit Encoder Version 60 mm Position Sensor

LINKS TO ADDITIONAL RESOURCES



QUICK REFERENCE DATA					
Sensor type	ROTATIONAL, inductive technology				
Output type	Connector Molex 5037630691				
Market appliance	Industrial				
Dimensions	Diameter 60 mm				

FEATURES

• Off-axis rotational absolute inductive encoder

ROHS COMPLIAN

- Rotation speed up to 10 000 rpm
- High repeatability, high precision, high resolution, single or multi-turns variant
- Embedded self-calibration
- · Easy assembly with status LED colors
- · Memorization of last position before power off
- Not sensitive to external magnetic fields (no hall effect cells), electrical fields and temperature
- Not sensitive to moisture and pollution
- Especially dedicated for harsh conditions (vibrations, shocks, EMC...)
- · Built-in self-monitoring
- Material categorization: for definitions of compliance please see www.vishay.com/doc?99912

ELECTRICAL SPECIFICATIONS					
PARAMETER	RAIK060I11318				
Voltage power supply (on sensor connector)	5 V _{DC} ± 0.25 V _{DC}				
Supply current at 5 V _{DC}	≤ 100 mA				
Standard output format	BiSS-C				
Optional output format	SSI or SPI (on request)				
Useful electrical angle	360°				
Accuracy at 25 °C	Better than 13 bits (0.044°)				
Repeatability	≥ 17 bits				
Resolution	262 144 points (18 bits, ≈ 0.0014°)				
Startup time	≤ 5 ms				
Data latency time	≤ 5 µs				
Maximum sampling rate	33 kHz (BiSS-C multi-turn version, MA 10 MHz)				
Variant multi-turn counter	65 536 turns (16 bits, two's complement, -32 768 to +32 767)				
For multi-turns options	Memorization of the position and the multi-turn counter values at power-off				

MECHANICAL SPECIFICATIONS (All Versions)				
PARAMETER				
Mechanical angle	360°			
Maximum rotation speed	10 000 rpm (more on request)			
Rotor weight	≤ 5.5 g			
Stator weight	< 10 g			

www.vishay.com

Vishay MCB

SAP PAF	SAP PART NUMBERING GUIDELINES (CORRESPONDING TO ASSEMBLY CASE 1) (1)									
TYPE	MODEL	DESIGN	SIZE (mm)		FUNCTION	ACCURACY (BITS)	RESOLUTION (BITS)	OUTPUT	PACKAGING	OPTION
								F = SPI CCW	B = box	713 = option single-turn
								J = SSI CCW	B = box	714 = option single-turn
								L = BiSS-C	B = box	715 = option single-turn
R = rotational	Al	K = kit	060	I	1	13	18	F = SPI CCW	B = box	717 = option multi-turn counting
							J = SSI CCW	B = box	718 = option multi-turn counting	
								L = BiSS-C	B = box	716 = option multi-turn counting

SAP PAF	SAP PART NUMBERING GUIDELINES (CORRESPONDING TO ASSEMBLY CASE 2) (1)									
TYPE	MODEL	DESIGN	SIZE	TYPE	FUNCTION	ACCURACY	RESOLUTION	OUTPUT	PACKAGING	OPTION
			(mm)			(BITS)	(BITS)			
								F = SPI CCW		
	I AI K = kit						J = SSI CCW		Single-turn	
						13	13 18	L = BiSS-C CCW	B = box	
				060 I 1				F = SPI CCW		693 = multi-turn
R = rotational		K = kit	060		1					counting
								J = SSI CCW		694 = multi-turn
								0 = 001 00VV		counting
				L = BiSS-C CCW		692 = multi-turn				
								L - DIOS-C CCVV		counting

Notes

- SPI output version on request

 (1) See section "Mounting and Electrical Connection Procedure" for details of assembly

ACCESSORY	
External connector equipped with wires to obtain a wires output (see section "Accessories on Request")	ACCSRAIKWIRESOB073

PERFORMANCE						
PARAMETER	ARAMETER					
Standard operating temperature range	-40 °C to +105 °C					
Storage temperature range	-55 °C to +125 °C					
Humidity	≤ 80 % no condensing					
Environmental protection	Coating on PCB components side (on request)					
Vibrations	$0.05g^2$ /Hz, 20 Hz to 2000 Hz for 1 hour along three major axis					
Shocks	100 g, 6 ms, ½ sine (one on each axis)					

www.vishay.com

Vishay MCB

EMC PARAMETERS						
PARAMETER	STANDARD	LEVEL				
Electrostatic discharge immunity (ESD)	61000-4-2 :2008	Level 4 (8 kV) - contact discharge (important: valid only on the connector interface)				
Immunity of radiated radio-frequency electromagnetic field (80 MHz to 6 GHz)	EN 61000-4-3:2020	Level 3 (10 V/m)				
Immunity to conducted disturbances induced by radio-frequency fields (150 kHz to 80 GHz)	EN 61000-4-6:2014	Level 3 (10 V)				
Immunity to power frequency magnetic field (at 50 Hz)	EN 61000-4-8:2010	Level X (1500 A/m, 2 mT)				
Radiated emission (30 MHz to 1 GHz)	EN 55011	Class A Group 1 (Industrial (1))				

Notes

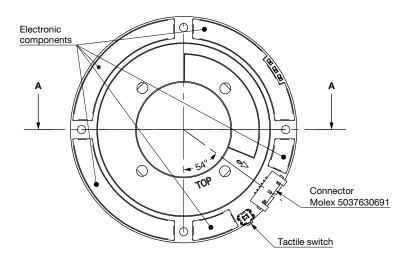
- Levels compliant with EN IEC 61326-1, industrial
- The sensor does not integrate protection against surges caused by overvoltages from switching and lightning transients (61000-4-5). It is recommended to use external protection if this standard is to be applied. To minimize the risk, we recommend that the power supply cable does not exceed 3 meters, and the data line does not exceed 30 meters
- (1) This equipment is not intended for use in residential environments and may not provide adequate protection to radio reception in such environments

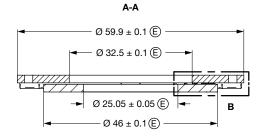
OTHER INFORMATION

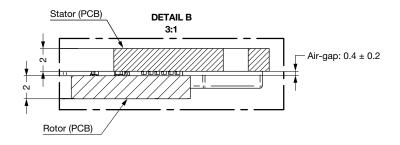
ATTENTION!

Observe Precautions for Handling Electrostatic Sensitive Devices!

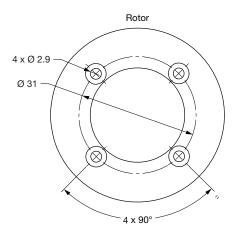

Warning: the rotor and the stator must have the same serial number!

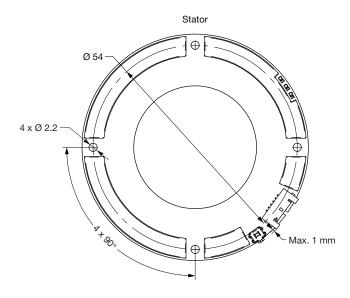

- Do not damage the rotor disk surface
- Do not use cleaning product or chemical product

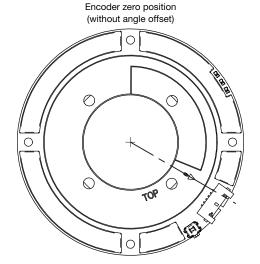

Environmental protection: conformal coating or potting on request for use in heavy-duty environments (metallic particles, oils, greases, salt spray, moisture, corrosion...)



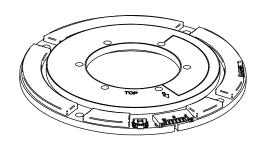
SENSOR DIMENSIONS CASE 1

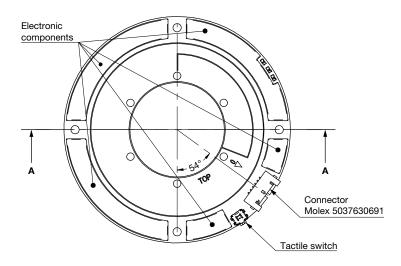


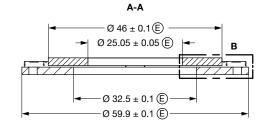


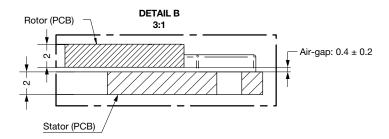


FASTENING POINTS CASE 1

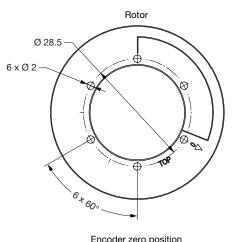








SENSOR DIMENSIONS CASE 2



FASTENING POINTS CASE 2

Encoder zero position (without angle offset)

MOUNTING CONDITIONS

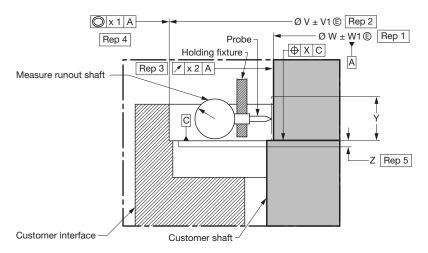
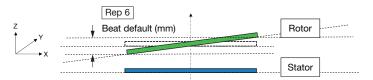



Fig. 1 - Mounting Detail

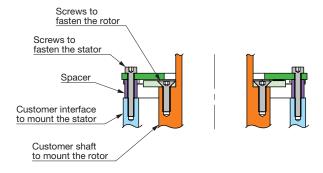
Rotor axis and stator axis are the same but the reference surfaces are not parallel

Fig. 2 - Beat

	RECOMMENDED DIMENSIONS AND TOLERANCES OF CUSTOMER INTERFACES TO USE THE SELF-CALIBRATION							
Rep 1	Customer shaft diameter for centering of the rotor (see Fig.1)	Diameter Ø 25 g6 (25 mm - 0.007 mm - 0.020 mm)						
Rep 2	Customer interface diameter for centering of the stator (see Fig.1)	Diameter Ø 60 H7 (60 mm + 0.030 mm - 0.000 mm)						
Rep 3	Diameter runout of the customer shaft for the rotor centering (included gap between customer shaft and inner rotor diameter) (see Fig.1)	< 0.120 mm						
Rep 4	Misalignment: concentricity of the stator centering diameter versus shaft centering diameter (included tolerances of customer holder and stator interface) (see Fig.1)	< 0.250 mm						
Rep 5	Position of the stator reference upper surface versus rotor reference bottom surface (see Fig.1) (air-gap: the condition of previous line avoids to measure the air-gap)	0.4 mm ± 0.2 mm						
Rep 6	Total beat included in the air-gap between ref. C (rotor) and ref. D (stator) (see Fig.2)	< 0.2 mm						

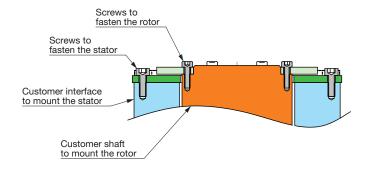
Note

• Values at room temperature



MOUNTING AND ELECTRICAL CONNECTION PROCEDURE

1. Observe precautions for handling electrostatic sensitive devices.


Case 1: Rotor Below to the Stator

- 2. Mount the rotor with recommended screws: M2 according to ISO 10642 (stainless steel A4 with recommended torque = 0.3 Nm ± 10 %) on the customer interface according to recommended mounting conditions. It is recommended to threadlocker on screws threads in function of environmental and use conditions. Its marking "TOP" shall be on the opposite side of the stator.
- 3. Mount the stator with recommended screws: M2 according to ISO 4762 (stainless steel A4 with recommended torque = $0.3 \text{ Nm} \pm 10 \text{ \%}$) on the customer interface according to recommended mounting conditions. It is recommended to threadlocker on screws threads in function of environmental and use conditions. The electronic components side of the stator shall be in front of the rotor.

Case 2: Stator Below to the Rotor

- 2. Mount the stator with recommended screws: M2 according to ISO 4762 (stainless steel A4 with recommended torque = 0.3 Nm ± 10 %) on the customer interface according to recommended mounting conditions. It is recommended to threadlocker on screws threads in function of environmental and use conditions. The electronic components side of the stator shall be in front of the rotor.
- 3. Mount the rotor with recommended screws: M1.6 according to ISO 4762 (stainless steel A4 with recommended torque = 0.1 Nm ± 10 %) on the customer interface according to recommended mounting conditions. It is recommended to threadlocker on screws threads in function of environmental and use conditions. Its marking "TOP" shall be on the opposite side of the stator; the word "TOP" can be read after mounting!
- 4. Plug the "wires user connector" in the encoder according to Fig. 4 and "Encoder pinout" (see "BiSS-C Compatible Connector" table).

COMMUNICATION INTERFACES

Three protocols are possible: SSI protocol, BiSS-C protocol, or SPI protocol.

SSI and BiSS-C signals comply with the RS-422 standard, employing Low Voltage Differential Signal (LVDS). To ensure robust EMC immunity, it is highly recommended to use twisted pair wire:

- BiSS-C: MA+ twisted with MA- / SLO+ twisted with SLO-
- SSI: CLK+ twisted with CLK- / DATA+ twisted with DATA-

Power supply signal (VCC, GND) does not need to be twisted pair.

The typical impedance of signal lines is 120 Ω . The requirement for termination resistors depends on the total length of the communication bus and the communication speed employed.

CONNECTOR TYPES:

Output connector mounted on the RAIK060: Molex 5037630691

Customer connector equipped of wires gauge 28 to plug:

- female connector Molex 503764-0601
- contacts Molex 503765-0098

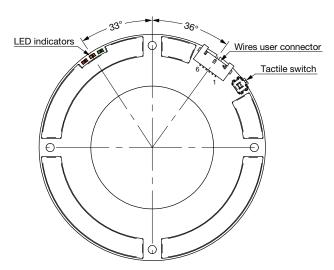
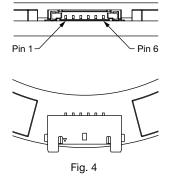



Fig. 3 - User Connector

CONNE	CONNECTOR PINOUT						
PIN NO.	BiSS-C	SSI	DESCRIPTION				
1	VCC	VCC	Power supply input				
2	MA+	CLK+	Positive clock input				
3	MA-	CLK-	Negative clock output				
4	SLO-	DATA-	Negative data output				
5	SLO+	DATA+	Positive data output				
6	GND	GND	Ground				

SELF-CALIBRATION PROCEDURE

GENERAL

After each sensor assembly or mechanical mounting change, a self-calibration must be performed to ensure that the sensor reaches its maximum performance. Self-calibration consists of two steps:

• Step 1: automatic control of the airgap (distance between the lower part of the rotor and the upper part of the stator). If the airgap is out of range, it is not possible to move on to the next step. During this step, angle position is still available from interface communication; the accuracy is reduced to 13 bits (instead of 18 bits).

LED INDICATORS	DESCRIPTION	RECOMMENDED ACTION
FAST BLINKING	Valid airgap. The airgap is in the correct range (0.4 mm \pm 0.2 mm).	Go to the self-calibration Step 2.
FAST BLINKING	Airgap is too low (< 0.2 mm).	Increase the distance between the rotor and stator.
FAST BLINKING	Airgap is too high (> 0.6 mm) or missing rotor.	Check the presence of the rotor and decrease the airgap between the rotor and stator.

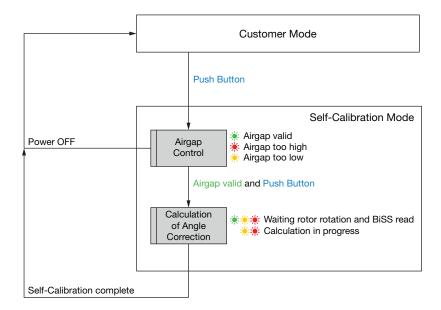
• Step 2: calculation of the angle correction table. During this step, the rotor must rotate at a speed between 100 rpm and 500 rpm and the communication master must provide clocks on the line to scan the angle data.

LED INDICATORS	DESCRIPTION	RECOMMENDED ACTION	
FAST BLINKING	Waiting for rotor rotation and clock on communication interface. If no rotation is detected after 30 seconds, the sensor automatically return to "Customer Mode".	Start motor rotation (100 rpm to 500 rpm) and provide clocks on communication interface.	
FAST BLINKING	Computation and recording of the self-calibration parameters (typically 2 seconds at 100 rpm). The sensor automatically return to "Customer Mode" after calibration is complete.	Keep motor rotation to a fix speed (100 rpm to 500 rpm).	

There are two methods of initiating this procedure:

- Using Push-Button
- Using BiSS-C commands

These two methods are described below.

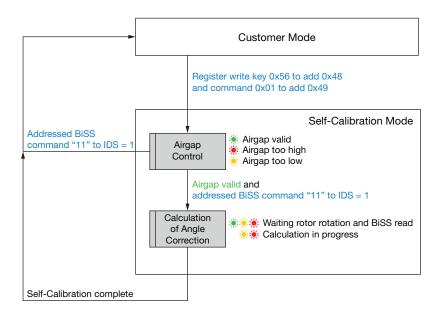


USING PUSH-BUTTON

The self-calibration can be launched using the mechanical push-button on the sensor.

Important: use a soft non-metallic tool (wood, plastic, ...) to press the button to not damage the sensor with ElectroStatic Discharges.

- 1. Press the Push-Button to enter the Self-Calibration Mode (the sensor will restart in Self-Calibration Mode).
- 2. In the self-calibration **Step 1** (Airgap Control), the green LED should blink fastly if airgap is valid. If orange or red LED are blinking, the sensor detects an incorrect airgap. Refer to the "Self-Calibration Procedure" section for details.
- 3. When airgap is valid, press the push button to go to **Step 2** (Correction Calculation). At this step, the only way to return in customer mode is to reboot the sensor.
- 4. In the self-calibration **Step 2** (Correction Calculation), the sensor start calculates only if the rotor is in rotation and the BiSS master send clocks to read data.
- 5. When the calculation is complete, the sensor return automatically in Customer Mode and the LED stop blinking.
 - a. A fix green LED indicates a valid calibration.
 - b. A fix orange LED indicates a valid calibration, with a power-off motion warning (multiturn value change during self-calibration procedure).
 - c. A fix red LED indicates that a calibration error.



USING BISS-C COMMANDS

The self-calibration can be launched using BiSS-C commands:

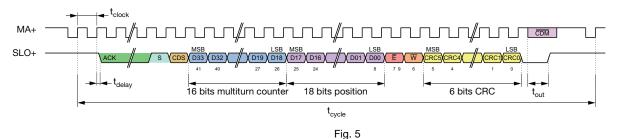
- 1. Unlock the command by writing key code 0x56 to address 0x48.
- Write command code 0x01 to address 0x49 to enter the Self-Calibration Mode (the sensor will restart in Self-Calibration Mode).
- 3. In the self-calibration **Step 1** (Airgap Control), the green LED should blink fastly if airgap is valid. If orange or red LED are blinking, the sensor detects an incorrect airgap. Refer to the "Self-Calibration Procedure" section for details.
- 4. When airgap is valid, there are two possibilities:
 - a. Return in Customer Mode: write addressed BiSS command "10" to IDS = 1.
 - b. Start calculation of angle correction table: write addressed BiSS command "11" to IDS = 1.
- 5. In the self-calibration **Step 2** (Correction Calculation), the sensor start calculates only if the rotor is in rotation and the BiSS master send clocks to read data.
- 6. When the calculation is complete, the sensor return automatically in Customer Mode and the LED stop blinking.
 - a. A fix green LED indicates a valid calibration.
 - b. A fix orange LED indicates a valid calibration, with a power-off motion warning (multiturn value change during self-calibration procedure).
 - c. A fix red LED indicates that a calibration error occurs (need to restart the self-calibration procedure).

VARIANT MULTI-TURNS COUNTER

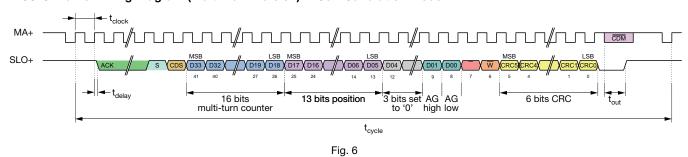
First Possible Option: Counting of Turns Without Battery Backup Connector and Memorization of Last Position Before Power-Off!

In normal operation, when the power is on, the counting of the turns is made in both directions (clockwise and anticlockwise). The counter value is sent in the output frame in two's complement. The maximum value of the counter is +32 767, the minimum is -32 768: once the counter has reached the maximum value (+32 767), the next counter value is automatically set to -32 768. Once the counter has reached the minimum value (-32 768), the next value is set to +32 767.

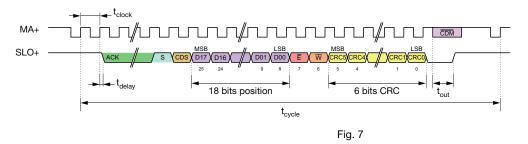
Please note that no counting operations are performed during power-off. When the power is turn off, the last position before power cutting (multi-turn counter and position value) is stored in a non-volatile memory. This allows the encoder to accept a movement of up to $\pm 90^{\circ}$ during power off, which is then calculated and released as soon as the power comes back. Upon power-on, if the angle variation exceeds $\pm 90^{\circ}$, the frame warning flag is set. This warning is reset at the next power-on or after 50 frames have been read on the communication port. The orange LED is "ON" when the warning is active.

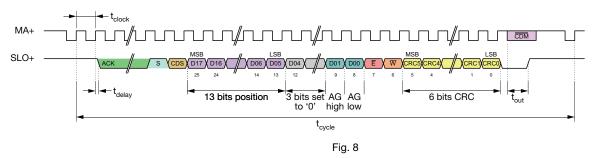

The number of non-volatile memory write-in cycles is unlimited.

The multi-turn counter is reset when the sensor performs a self-calibration.



BISS-C OUTPUT FORMAT


BiSS-C Frame Timing Diagram (Multi-Turn Version)


BiSS-C Frame Timing Diagram (Multi-Turn Version) in Self-Calibration Mode

BiSS-C Frame Timing Diagram (Single-Turn Version)

BiSS-C Frame Timing Diagram (Single-Turn Version) in Self-Calibration Mode

Note

 The total number of clock period after the CDS bit can be higher than the number of data bits, depending on propagation delays and processing timing. Tests must be carried out depending on the specific installation

Vishay MCB

BISS-C COMPATIBLE PARAMETERS						
PARAMETER	INFORMATION					
BiSS-C compatible configuration	Point to point (multi-slave not supported)					
Clock and data differential interface	RS422 according to the EIA-RS422					
Acknowledgment (ACK) duration	10 x t_{clock} for 100 kHz \leq $t_{clock} \leq$ 2.5 MHz or 4.2 μs typ. for 2.5 kHz $<$ $t_{clock} \leq$ 10 MHz					
Start (S)	1 bit always to "1"					
Control data slave (CDS)	1 bit					
Multiturn counter data (D33 to D18)	16 bits two's complement binary code (-32 768 to +32 767)					
Position data (D17 to D00)	18 bits binary code (0 to 262 143)					
Error bit (E)	1 bit (active low)					
Warning bit (W)	1 bit (active low)					
Cyclic redundancy check data (CRC5 to CRC0)	CRC polynomial $X6 + X1 + X0 = 0 \times 43$ - CRC bit length 6 bits; inverted; CRC start value = "0"					
Inverted control data master data (/CDM)	Generated by master on clock signal					
Clock frequency (f _{clock} = 1/t _{clock})	≤ 10 MHz					
Request rate (f _{cycle} = 1/t _{cycle})	\leq 33 kHz (t _{req} = 30 µs) ⁽¹⁾					
Propagation delay (t _{delay})	20 ns to 50 ns					
BiSS-C compatible timeout (t _{out})	15 µs					

Note

⁽¹⁾ With 10 MHz master clock frequency and multi-turn version

www.vishay.com

STATUS BIT		STATUS	INCORNATION	ACTION	LED INDICATOR		
E W			INFORMATION	ACTION	GREEN	ORANGE	RED
1	1	Normal operation	Frame and datas are valid with full accuracy / resolution	No action required			
1	0	Power-off motion warning	This warning occurs at power up if the sensor has detected an excessive displacement (> ± 90°) during power-off; this warning is reset at the next power-on or after 50 frames have been read on the communication port; the orange LED is "on" when the warning is active	Take decision according to the warning			
0	1	Self-calibration error	This error occurs if self-calibration is not completed correctly	The self-calibration shall be restarted			
1	1	Airgap valid (only in self-calibration mode, STEP 1)	Valid Airgap; the airgap is in the correct range (0.4 mm ± 0.2 mm); the two LSB of the position indicates the "airgap valid" state: D01 = low / D00 = low	Go to the self-calibration STEP 2	-)		
0	1	Airgap too low (only in self-calibration mode, STEP 1)	Airgap is too low (< 0.2 mm); the two LSB of the position indicates the "airgap too low" state: D01 = low / D00 = high	Increase the distance between the rotor and stator			
0	1	Airgap too high (only in self-calibration mode, STEP 1)	Airgap is too high (> 0.6 mm) or the rotor is missing; the two LSB of the position indicates the "airgap too high" state: D01 = high / D00 = low	Check the presence of the rotor and / or reduce the distance between the rotor and stator			
0	1	Waiting rotor rotation and communication read (only in self-calibration mode, STEP 2)	Waiting for rotor rotation and clock on communication interface; if no rotation is detected after 30 s, the sensor automatically return to "Customer Mode"	Start motor rotation (from 100 to 1000 rpm) and provide clocks on communication interface			->-
0	1	Angle correction calculation in progress (only in self-calibration mode, STEP 2)	Computation and recording of the self-calibration parameters (typically 2 s at 100 rpm); the sensor automatically return to "Customer Mode" after calibration is complete	Keep motor rotation speed to a fix value		->	

Note

 MANDATORY: a self-calibration shall be performed after the initial mounting and after each change of mechanical assembly of the encoder

BISS-C COMPATIBLE CONNECTOR						
PIN NO.	NAME	DESCRIPTION	OPTIONAL: WIRE EQUIPED CONNECTOR (P/N: TBD)			
1	VCC	Power supply input	Red			
2	MA+	Positive clock input	Orange			
3	MA-	Negative clock input	Yellow			
4	SLO-	Negative data output	White			
5	SLO+	Positive data output	Green			
6	GND	Ground	Black			

SSI OUTPUT FORMAT

SSI Frame Timing Diagram (Multi-Turn Version)

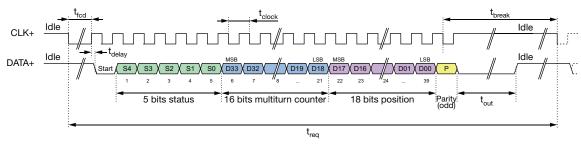
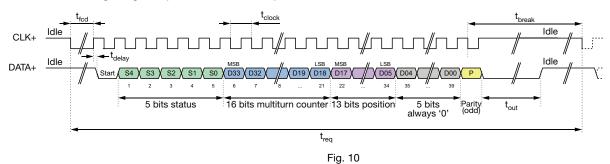
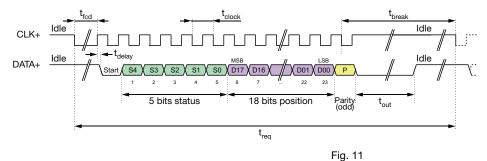




Fig. 9

SSI Frame Timing Diagram (Multi-Turn Version) in Self-Calibration Mode

SSI Frame Timing Diagram (Single-Turn Version)

SSI Frame Timing Diagram (Single-Turn Version) in Self-Calibration Mode

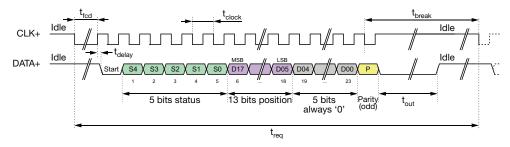


Fig. 12

Vishay MCB

SSI COMPATIBLE PARAMETERS						
PARAMETER	INFORMATION					
PARAMETER	MIN.	MAX.				
SSI configuration	SLAVE mode only					
Clock and data differential interface	RS422 according to the EIA-RS422					
Multiturn counter data (D33 to D18)	16 bits two's complement binary code (-32 768 to +32 767)					
Position data (D17 to D00)	18 bits binary code (0 to 262 143)					
Parity bit	Odd parity (does not include the start bit)					
First clock delay period (t _{fcd}) ⁽¹⁾	4.2 µs	14 µs				
Propagation delay (t _{delay}) (2)	20 ns	50 ns				
Transfer time-out period - monoflop time (tout)	15 µs					
Time period between two consecutive clock sequences (t _{break})	20 μs	-				
Master clock frequency (f _{clk} = 1/t _{clock})	100 kHz	3 MHz				
Master request frequency (f _{req} = 1/t _{req})	-	33 kHz (t _{req} = 30 μs) ⁽³⁾				

Notes

⁽¹⁾ Position acquisition is synchronized with the first falling edge of CLK. The first clock delay period is required for data acquisition, calculation, and storage in the communication buffer

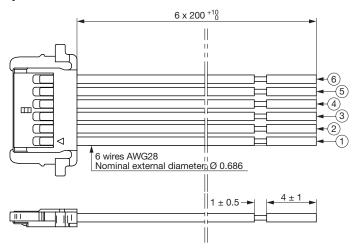
⁽²⁾ Measured with ACCSRAIKWIRESOB073 cord (20 cm) at 25 °C ambient temperature

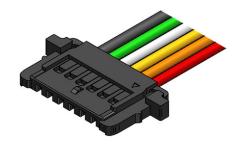
⁽³⁾ With 10 MHz master clock frequency and multi-turn frame

www.vishay.com

Vishay MCB

S	SSI CUSTOMER MODE									
STATUS BIT		STATUS	INORMATION	ACTION	LED INDICATOR					
S4	S3	S2	S1	S0	GIATOO	STATUS INORMATION ACTION	ACTION	GREEN	ORANGE	RED
0	0	0	0	0	Normal operation	Frame and datas are valid with full accuracy / resolution	No action required			
0	0	0	0	1	Power-off motion warning	This warning occurs at power up if the sensor has detected an excessive displacement (> ± 90°) during power-off; this warning is reset at the next power-on or after 50 frames have been read on the communication port; the orange LED is "on" when the warning is active	Take decision according to the warning			
0	0	0	1	0	Self-calibration error	This error occurs if self-calibration is not completed correctly	The self-calibration shall be restarted			
1	1	0	0	0	Airgap valid (only in self-calibration mode, STEP 1)	Valid Airgap; the airgap is in the correct range (0.4 mm ± 0.2 mm)	Go to the self-calibration STEP 2	-)-(-		
1	1	0	0	1	Airgap too low (only in self-calibration mode, STEP 1)	Airgap is too low (< 0.2 mm)	Increase the distance between the rotor and stator			
1	1	0	1	0	Airgap too high (only in self-calibration mode, STEP 1)	Airgap is too high (> 0.6 mm) or the rotor is missing	Check the presence of the rotor and / or reduce the distance between the rotor and stator			
1	1	1	0	0	Waiting rotor rotation and communication read (only in self-calibration mode, STEP 2)	Waiting for rotor rotation and clock on communication interface; if no rotation is detected after 30 s, the sensor automatically return to "Customer Mode"	Start motor rotation (from 100 to 1000 rpm) and provide clocks on communication interface	-)	->	
1	1	1	0	1	Angle correction calculation in progress (only in self-calibration mode, STEP 2)	Computation and recording of the self-calibration parameters (typically 2 s at 100 rpm); the sensor automatically return to "Customer Mode" after calibration is complete	Keep motor rotation speed to a fix value		->	***
1		1 Other		1	progress (only in self-calibration	sensor automatically return to "Customer Mode" after calibration is complete				


Note


 MANDATORY: a self-calibration shall be performed after the initial mounting and after each change of mechanical assembly of the encoder

ACCESSORIES ON REQUEST

EXTERNAL CONNECTOR EQUIPPED OF WIRES TO OBTAIN A WIRES OUTPUT (ACCSRAIKWIRESOB073)

Note

• General tolerancing according to ISO 8015

Legal Disclaimer Notice

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and / or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Hyperlinks included in this datasheet may direct users to third-party websites. These links are provided as a convenience and for informational purposes only. Inclusion of these hyperlinks does not constitute an endorsement or an approval by Vishay of any of the products, services or opinions of the corporation, organization or individual associated with the third-party website. Vishay disclaims any and all liability and bears no responsibility for the accuracy, legality or content of the third-party website or for that of subsequent links.

Vishay products are not designed for use in life-saving or life-sustaining applications or any application in which the failure of the Vishay product could result in personal injury or death unless specifically qualified in writing by Vishay. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

© 2024 VISHAY INTERTECHNOLOGY, INC. ALL RIGHTS RESERVED