ANALOG
DEVICES

TMC8100

General Description

The TMC8100 is a dedicated serial protocol converter
IC, especially for absolute encoder bus protocols. It
operates as a bus controller for these protocols and as
a peripheral with either a serial peripheral interface (SPI)
or universal asynchronous receiver-transmitter (UART)
interface connection to the attached
microcontroller/motion controller delivering the extracted
and adjusted encoder position information.

It integrates a programmable high performance serial
communication engine for synchronous and
asynchronous data up-to 16Mb/s. In addition to a clock
generator, several counter/timer units, a programmable
CRC generator and direct 1/0s for connecting bus
transceivers, standard SPI, 2x UART, and I2C interfaces
are available.

Applications

e Industrial Manufacturing
¢ Robots/CoBots
e Automated Guided Vehicle (AGV)

Simplified Block Diagram

Universal Encoder Bus Controller

Benefits and Features

e Synchronous serial bus protocols supported,
example, SSI, SPI, BiSS C, EnDat 2.x

e Asynchronous serial bus protocols supported,
example, Nikon A-format®

e Support for incremental A/B/Z encoder interface

e High speed 25MHz SPI system interface for
configuration, control, and position

¢ High speed 2x UART 16Mbit/s system interface for

configuration, control, and position

Crystal oscillator or external clock with PLL

Up to 128MHz internal system clock

2.5V to 5V single supply

-40°C to +125°C operating temperature range

TQFN24, 4mm x 4mm

+2.68V..+5V

"

1

LbO RS422/RS485

1
; £

COMMUNICATION DIRECT OUT
ENGINE N

SERIAL DIRECT_IN @
RS422
SRAM

- ABSOLUTE
ENCODER

ABIZ B
DECODER

0 0SCHPLL | TMC8100
- = SPI
o SPI BUFFER
Bl - 64 x 32
MOTION ORr
CONTROLLER ~ UMt UART
- > o
EXAMPLE,
MICROCONTROLLER,
FPGA ETC. OPTIONAL 10
GPIO
2 2
EEPROM I '
(CONTROLLER)

- ABIZ
Z ENCODER

OPTIONAL

COMPARE
\J

I

Y DECODER REFERENCE SWITCH/
ENCODER LATCH INPUT

1

Ordering Information appears at end of data sheet.

19-101867B; Rev 0; 4/24

© 2024 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

file:///C:/Users/MRamesh2/AppData/Local/Temp/tmp6739.tmp%23OrderingInformation

Universal Encoder Bus Controller TMC8100

TABLE OF CONTENTS

(=T 01T = I D =TTy o) () 1
F Y o] o] [{ez= 11 [o] o 1= TSP UPTT T OPPPPPPPR 1
=T o) =T To ==Y 0 =Y SRR 1
ADSOlUte MaXimUM RATINGS ...coeiiiiiiiieee ettt e e e e et e e e e e e s sttt e e e e e e e s s nsbbeeeeaeeesansbeeeeeaeessaansbbaeeeaeeesannsbbeeneaenens 7
= T3 €= To L= [a1 {0 4 1= 1o o I PR 8
ooy Loz I O g T =Tt =T] o PR 9
TIMING DIBGIAMS ...ttt e e e e et e e st e e e e bt e e e e s s et e e e s e et e e sas e e e e e e e s et e e sass e e e e an e e e e e areeeennre e e e nnreeens 11
LTI @7 T 11 T8 =1 (o] o = PSR P 12
I L= Ty o (o] g T PSR 13
FUNCHONAI DIAGIAMScoieeeie ettt ettt e ekt e e et e e e e s st et e e e s e e e e e s et e e e aar et e e s s ne e e e sanae e e snr e e e e nnneeensanes 15
[D]=] e= Y=Y B ot Tod o] o] o I PP PPRPR PP 16
TSy G I A o] 11 (=T (1] SRR 16
Program MEMOIY BUSccoiiiiiiiiii e ettt s ettt e e e e sttt e e e e e s e st taeeeeaeee s s nbbaeeeeaeesaassbaeeeeaeesaannsteneeaeeessannssennnaaeennn 16
L@ 1Y I = o i [o =T [SRR 17
(07 g Ol = ToTo) 1 =T o I d (o] (o] o PP RTRT PR 18

ST o I = ToT0 Y53 =T o B0 d 0] (o o o RSP 18

[0 = = T = U SR 19

L 01T Y=Y S T o] o SR 20

(R CET =Y A= g o O o T2 GO O 20
=TT TR 20

L0 oo G SRR 20
(0733 = T O 1o =1 (o] PO RR VPR 22
(€1 (@ 2= 1o To Il 11 5] = @ I |7 1 N SRR 22
LT @ 1V = SR 22
DIRECT_IN/DIRECT_OUT IMELIIX «.teeeiueeesieeeiteeeeteeesie e st e ateeasteeasseeeameeeaeeeasseeeaaseeamseeamseeaseeeaseeeanseeanseeanseeanseeesnses 23
Serial ComMMUNICAtION ENQGINEcooiiiiiiii ettt e bt e e e bt e e s st e e sn e e e s abe e e e s aarneeenan 24
OVBIVIBW ...ttt ettt ettt e e e e e ettt et e e e e e e s e abteeeeeee e e e e aa e et eeeee e e e e nnebaeeeeee e e e nnb bt eeeeaeeeeannbbbeeeeeeesaannbeeeeeeeeeaannes 24
(oo o S TUTo] ol a0 I F=T o L= T SRR 24

RS T=1 o) O 10T o1 (=T I 3T S 24
Cyclic Redundancy CheCK (CROC).......coi ittt ettt e et e e s bt e e rb e e s e e e e snreeens 25
Universal Asynchronous Receiver-Transmitter (UART)oi it 26

L Y= T S 26
=TT =T (0 =T OO PP UPTT PRI 26
Functional DeSCHIPLiON ..o 26
Serial Peripheral INterface (SP1).... ..o e e e e e e e s st e e e e e e e s s e st b e e e e e e e e s s ansbreeeas 28

L Y= T SR 28
=TT ==L (0 =T PP PPTT PRI 28

www.analog.com Analog Devices | 2

Universal Encoder Bus Controller TMC8100

Functional DesCription ... 28
L2 ettt 1ottt ettt et et a e he b e et et eheebeebe et eAeebeebe b esteheebeebe b eseeteebe b et eAeebeebe et eneereebeebe s eneebearestens 29
L@ Y= T SRR 29
Y =TT ==L (0 (=T PO PP UTTT PRI 30
Functional DeSCription ... 30
LN =T = g TetoTe [T) =T o =T PO SR P PRI 32
L@ Y= T SRR 32
Y =TT I =T 0 (=T TP UTRT PR 32
[T g Teiu[o] g F= 1IN =T Tor T [o [SRR 32
x1 Code Incremental ENCOAEr INPULcoiiiiiiiiiiiie et e e e e s et e e e e e e s s nbbee e e e e e e s sannbrreeeeaeeean 33
@ O7oTe [[To1 =Y 0 o 1=Y o1 e= 1 =t g oo To [T ol 1 0T o 1V | P 33
x4 Code, A/B Incremental ENCOAEr INPULoiiiiiiiiiieee e e e e s e e e e e e s e e e e aaeeas 34
CW and CCW INCremental INPULooiii i e e e s e e e e e e s st e e e e e e e s sassbreeeeaeessasstsaeeeaeesannees 34
PULSE/DIR INCremMENTal INDULeeiiiieiiiiiiee e ee ettt e e e e s st e e e e e s s sttt e e e e e e e s s anssbeeeeeaeessanssbaneeeeeeesannnrnnees 34
Y o] o= o T[T PPPPTP 35
L©70 721114 13 T [SRR 35
L@ Y= T SRR 35
Lo Te =T o T (oY A 0 o o 1 o SRR 35
[=To FAS] (o141 01 N @ =Y =Y (o] oI USRS 36
Set/Clear/Move INAIVIAUAT BItSiiiiieeeee ettt e e e et e e e et e e e st e e e e anteeeesnneeeeeanseeaeaneeeens 37
Arithmetic and LOGIC OPEIatioNS........c..iiiiiiie e ettt e ettt e e e st e e e e e e s e et eeeeeessasatbaeeeaeesssansssaneeaeessannsesnnneaaeeas 38
Compare and TSt OPEIAIONSoiiiiiiiiiiiiiiee et e e e e e e e e e e s s st e e e aeeesasnseaeeeeaeesaassbseeeeaeessanssssnneeaensannnnes 38
]2 1 @] o= = [o -SSP 39
JAJC (Jump Always/Jump CONItIONAIY)eoiriiiiiieie bbb 41
JFA/JFC (Jump Fast Always/Jump Fast Conditionally)c.cooiiiiiiiiiiiee et e e ree e e e 42
(07 I (@7 11 IS TT o] o 10] =) USSP 43
RSUB (Return from SUDFOULINE)coiiiiii ettt et s e enre e s 45
REP (Repeat/Initialize HardWare LOOD)coouueiiiiiee ettt ettt e e s snre e s 46
WAITO/WAIT1 (Wait with Program EXECULION)ccieeiiiiiiiiieie e ccties et e e e st e e e e e e s s e e e e e e e s s nnnnaraeeaaeeeas 47
WAITOSF/WAIT1SF (Wait with Program EXECULION)uuiiiiiiiiiiiiiiiee et e e e e et e e e e e e s s snnarneeaaeeeas 48
N[O e (N [N @] o T=T = o] o) O OO T PO PSP PTP PP PPPN 50
HALT (Stop Program EXECULION)cooiiiiiiiiiie ittt ettt ettt et e e s bt e st e e s nr e e s snreee s 51
LD (Load Data from IMmediate AdArESS)ciieeiiiiiiiiiiie et e e e e e et e e e e e s e st e e e e e e e s s snsraeeeeaeeesannsrnnees 52
ST (Store Data at IMmediate AdAreSS).......coi ittt e et a e et e e e e aeee e e s aneeeeeeneneeeanseeeeaaneeeens 53
LDl (Load IMmeEdiate DAta)eeeiiiiiiiiiiiiiee ettt ee et e e e e e sttt e e e e e s s sa bbbt e e e e e e s s anb b b e ee e e e e e e e nbree e e e e e e e e anrrreees 54
LDR (Load Data from RegIStEr AQAIESS)cuiiiiiiiiiiiiiiiee e ettt e e ettt ee e e e e s sttt e e e e s s an bbb e e e e aeesaanbbaeeeeaeessansereeeas 55
STR (Store Data at RegiSter AQAIESS)ciiiiiiiieeiiiii ettt et e et e e e st e e e e aee e e e ameee e e s aneeeeeeneneeeamseeeeaaneneens 56
LDS (Load Data from SyStem REGISTET) ... it e et e e e s tee e e e e e e e e enreeeeaaneeeens 57

www.analog.com Analog Devices | 3

Universal Encoder Bus Controller TMC8100

STS (Store Data in System REGISIEI)cooieeiieiiie e e e e e e s s e e e e e e s s snabreeeaeeesannnnes 58
] = I 1=y = Te 153 =T =1) PRSP PEPRR 60
(O I (0 1Y T =T 1S3 =Y =1 SRS 61
SFSET (Set System ReGISTEr Bit)oiiiiiiiieiiii ettt e e e et e e e e enee e e e snee e e e amreeeeaneeeens 62
SFCLR (Clear System ReGISIEI Bit)........coii it et e e e e e s s e e e e e e e s sanabreeeeeeessnnnees 64
L@V = Ol (Y o)V = 1 (o TN =1 0) RS 66
MOVBT (MOVE Bit t0 Bit 7). eeeeieiiiee ettt ettt ettt e ettt e e ettt e e sttt e e e amtee e e e ameeeeeaneeeeeannneeeeanseeaeaaneeeens 67
MOVCRC (MOVE Bit t0 CRC URILoiiiiiiiieiiie et ee et e ettt e e ettt e e e st e e e e snte e e e s anteeaesneeeessnsaeeeeanseeeesneeeens 68
MOVNCRC (Move Inverted Bit 0 CRC UNit).......cciiiiiiie et e e e s e e e e e s rae e e e e e e e s s nnreeees 69
MOVF (Move Flag to ReGISIEr Bit)......coiiuiiiiiiie et e e e e s e e e e e e s s sns e e e e e e e s e nnsrnnees 70
MOVNF (Move Inverted Flag to Register Bit)cooiiiiiiiiiiii e 71
AND (BitWiS@ LOGICAI ANG).... ettt b et h e h e s et e e bt e bt e eh et e e e b e e na bt e e bt e nr e enre e 72
OR (BIfWISE LOGICAI OF) ...veiiiieeiiiiieiiie e e ettt e e sttt e e e e s st e e e e e e s s s taaeeeaeeesassbeaeeeeaaesaanssbseeeeaeessanssssnneeaanssannses 73
XOR (Bitwise LOGICal EXCIUSIVE OF)uuiiiiiiiiiiiiiiiiiet ettt s ettt e e e e e e st e e e e e e s st aeeeaaeessasnbbaeeeeaeessanssarneeaaeenan 74
INOT (BItWISE INVEISION) ...ttt ettt ettt b et a e s et e et e e b et e eb et e sa b e e e b et e abe e e sbb e e nabeenab et e aneeennne s 75
REV (REVEISE Bit OFUEI) ...ttt ettt eh ettt b et h e e h e e s e bt e et et e ebe e e sh e e sa b e e et e e e nnee e nane s 76
F B N (o = To 15 (=Y) ISP 77
10]S S0 o] i = Lo =[] (=] =) RSP 78
INC (INCremMENt REGISTET) ...ttt h ettt e bbbt e ea e st e ettt e ab e e nnbe e saneeaa 79
DEC (DeCremMENTt REGISTEI) eeiiiiiitie ittt ettt b et h et e a et r e e et e eb et e sbb e st e e st e e e b e e nane s 80
COMP LT (Compare Registers fOr LESS Than).........ccuuiiiiiie ittt e e st e e e e e e s st e e e e e e s s snabeaeeeeeesaannes 81
COMP LE (Compare Registers for Less Or EQUAI)uuiiiiiiiiiiiiiiiee ettt e e e e et e e e e e e e nnnnes 82
COMP EQ (Compare Registers fOr EQUAI)couiiiiiiiiii ettt 83
COMP NE (Compare Registers for NOt EQUAI)..........coiiiiiiiiiiiec e 84
LI SRS LI QL= 98 =10 o) PR 85
LI =S I L= 190> o T i SRR 86
SFTESTO (Test System Register Bit fOr 0)........cooiiiiiiiiiiiee e e 87
SFTEST1 (Test System RegisSter Bit fOr 1)ovo e 88
SHLO WAITOSF/WAIT1SF (Wait and Shift Left OUL)oooiieiieeee e 89
SHLI WAITOSF/WAIT1SF (Wait and Shift Left IN).....ooooiiiiee e 91
SHRO WAITOSF/WAIT1SF (Wait and Shift Right OUL)cc.uiiiiiie e 93
SHRI WAITOSF/WAIT1SF (Wait and Shift RigGht IN).......uoiiiie e 95
Lo 1S3 G g 1 =T o SRRSO 96
QLI o) Loz= I o] o) [Tz= o T 2 T o U £ 134
(@4 [Ty o [a1] o 1T 11 To] o ISP PPRRPN 135

www.analog.com Analog Devices | 4

Universal Encoder Bus Controller TMC8100

LIST OF FIGURES

(1o 1] =T RS B T 1T o I =T = o o SRR 11
Figure 2. TMCB8100 Pin ASSIGNIMENTcoiii ittt e et e e e e e e s sttt et e e e s s s st et ereaeessaassbaaeeaaeessannsbeeeeeaeeesannnrenees 12
[T [N L T =1 (o1t Q1 =T | = o PP PPRTP PP 15
[T [0 I =] (oYt S 1 =T | = o PP PPRP P PPPI 16
Lo UL =R T L 11V =TT} o= o Y SRR 17
Figure 6. UARTO Bootloader Example: “Get Bootloader Version” Command 0x55 0x00 and Reply 0xb5....................... 18
Figure 7. SPI Bootloader Example: “Get Bootloader Version” Command and Reply 0xb5, 0x00, 0x00, 0x00................. 19
Lo U= T 01 o T I Y- R OSSR 20
Figure 9. Clock Configuration REGISTEISuuiiiiiieii it e e e e e et e e e s s s bt ae e e e e e e s s snsbaeeeeaeeesannsreeees 21
Figure 10. Basic Structure of GPIO Pin CONIOl.........coiiiiiiiiiie et e e e e s s st e e e e e s s snnbaeeeeaeeesannnrraees 22
Figure 11. Basic Structure of DIRECT_IN (Left) and DIRECT_OUT (Right) Pin Controlcccccccveiiiiciiiieenie e, 23
Figure 12. Serial Communication Engine Block Diagram and Instruction Pipeline..........ccccccoviiiiiiiiie i, 24
[T [0 T R TR0 Vo o I =1 o o3 QI = To =1 o SRS 27
[To [=T B ST e = [Yo QI =T [= [o SRR 29
FIgure 15. 12C BIOCK DIBGIAIM.......c..cuiitirieietieteetesteseestetesteseeseesessessesseseasessesseseesessessesseseesessesseseseasessessessesessessesseneasessessenens 31
Figure 16. A/B/N Encoder Interface BIOCK DIiagram.........coiiiiiiiiiiiieiiee ettt ettt 33
Figure 17. SSI Encoder Application CirCuUit EXAmMPIEoii ittt e e stee e e e sntee e e sneee e s anneeeeanes 134
Figure 18. A/B/Z Incremental Encoder Application EXamPIEoouiiiiiiiiii ettt e e eneee e 134

www.analog.com Analog Devices | 5

Universal Encoder Bus Controller TMC8100

LIST OF TABLES

Table 1. 07N S Ol =ToTe] (o= To [T g @7e] 4418 =10 o [PRTN 18
Table 2. 5] o I = TeTe] i T=To [T g @] o100 =1 (o [N 19
Table 3. Data Bus Address Range ASSIGNMENT..........ooii i e e e e e e e reee s 20

www.analog.com Analog Devices | 6

Universal Encoder Bus Controller

Absolute Maximum Ratings

VCCIO -trteimteie ettt -0.3V to +6V
RESETN to GND.......cooviiiiiiiiieee. -0.3V to Vccio to + 0.3V
SPIt0 GND.....cooiiiiiiiieeeee e -0.3V to Vccio to + 0.3V
GPIO to GNDooeiiiiieiiiieeieeeee -0.3V to Vccio to + 0.3V
DIRECT_IN/OUT to GND.................. -0.3V to Vccio to + 0.3V
Continuous Power Dissipation (Multilayer Board) (Ta = +70°C,
derate 25.60 mW/°C above +70°C.)c.ccccueeuneen. 2051.30mwW

TMC8100

Continuous Power Dissipation (Single Layer Board) (Ta =

+70°C, derate 16.9 mW/°C above +70°C.)............ 1355.90mW
Operating Temperature Range -40°C to +125°C
Junction Temperatureccccooeciiiiiieeeiiiee e +150°C
Soldering Temperature (reflow)..........ccccocoveviiiniines +260°C
Storage Temperature Rangecccc...... -565°C to +150°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or
any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect

device reliability.

www.analog.com

Analog Devices | 7

Universal Encoder Bus Controller TMC8100

Package Information

TQFN24 4x4

Package Code T2444+3C+1
Outline Number 21-0139
Land Pattern Number 90-0022
Thermal Resistance, Single Layer Board:

Junction-to-Ambient (6,a) 68°C/W
Junction-to-Case Thermal Resistance (8.c) 11°C/W
Thermal Resistance, Four Layer Board:

Junction-to-Ambient (6,a) 60°C/W
Junction-to-Case Thermal Resistance (8.c) 11°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note
that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix
character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-
layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-
tutorial.

www.analog.com Analog Devices | 8

https://www.analog.com/media/en/package-pcb-resources/package/pkg_pdf/tqfn-cu/21-0139.pdf
https://pdfserv.maximintegrated.com/land_patterns/90-0022.PDF
https://www.analog.com/en/design-center/packaging-quality-symbols-footprints/package-index.html
https://www.analog.com/en/index.html
https://www.analog.com/en/index.html

Universal Encoder Bus Controller

Electrical Characteristics
(Vcclo = +2.25V to +5.5V, TA = -40°C to +125°C, unless otherwise noted., Typical values are at Voo = +3.3V, and TA = +25°C,
unless otherwise noted. Note 1)

TMC8100

PARAMETER SYMBOL | CONDITIONS MIN TYP MAX UNITS
DC ELECTRICAL CHARACTERISTICS/Operating Voltage Range
Vccio Supply Voltage 295 55 Vv
Range

Rising 1.6 1.78 2
Vccio UVLO Threshold VCCIO_UV - \Y
Falling 14 1.57 1.735

DC ELECTRICAL CHARACTERISTICS/Current Consumption
Total Vecio Quiescent | 10y6e10 | viegio = +3.3V, RESETN low 100 uA
Current Consumption
Total Vccp Current I\VCCIO Vccio = +3.3V, EXT_CLK = 1MHz, PLL 22 mA
Consumption Output = 128MHz
DC ELECTRICAL CHARACTERISTICS/Data In Mode
Resistive Pull-up
(RESETN, SPI, GPIO, RPU Internal 60 100 140 kQ
DIRECT _IN)
Resistive Pull-down
(SPI, GPIO, RPD Internal 60 100 140 kQ
DIRECT _IN)
Rising Threshold
(RESETN, SPI, GPIO, DIH 70 %Vcclo
DIRECT _IN)
Falling Threshold
(RESETN, SPI, GPIO, DIL 30 %Vcclo
DIRECT _IN)
Hysteresis (RESETN, o
SPI, GPIO, DIRECT _IN) DI_HYS 14 %Vecio
Logic Input Leakage
Current (SPI, GPIO, ILEAK PU/PD disabled -1 +1 MA
DIRECT _IN)
DC ELECTRICAL CHARACTERISTICS/Data Out Mode
Output Low Voltage
(SPI, GPIO, DOL | = 5mA Note 3 0.4 \Y
DIRECT_OUT)
Output High Voltage
(SPI, GPIO, DOH = -5mA Note 3 VCOCLO il Vv
DIRECT_OUT))
DC ELECTRICAL CHARACTERISTICS/Linear Regulator
1Vv8 LDO Output _ . _
Voltage V1V8 Ciroap = 2.2uF, min. Vccio = 2.25V 1.90 \Y
1V8 LDO Current Limit 11V8_SH 1V8 shorted to GND 75 126 275 mA
AC ELECTRICAL CHARACTERISTICS/Data In/Out Mode
Propagation Delay
Mismatch tDIMM 7 ns
(DIRECT_IN/OUT)
Maximum Frequency _
(DIRECT OUT) fMAX_DOUT | Vccio = +3V 40 MHz

AC ELECTRICAL CHARACTERISTICS/Clock

www.analog.com

Analog Devices | 9

Universal Encoder Bus Controller

TMC8100

(Vccio = +2.25V to +5.5V, TA = -40°C to +125°C, unless otherwise noted., Typical values are at Voo = +3.3V, and TA = +25°C,
unless otherwise noted. Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Internal Oscillator ICLK 15 MHz
Frequency
External Oscillator ECLK 1 32 MHz
Frequency Range
Internal PLL Output PLL CLK 75, 100, MHz
Frequency - 128
AC ELECTRICAL CHARACTERISTICS/Quartz Oscillator

8, 16,
Oscillator Frequency fxraL 24, 25, MHz
32
Recommended Load
Capacitance of the CL 9 pF
Crystal
Crystal Driving current | Vccio = +3V .. +5.5V, 12 mA
Note 2 XTAL with CL = 9 pF, fxra. = 32MHz '
Oscillator
Transconductance Om Viﬁ'g[;gvlg 5.8V, 1.8 mA/N
Note 2 Wi =9p
Start-up Time tsu V?C'O =+3V..+5.5V, 2.5 ms
with CL =9 pF
AC ELECTRICAL CHARACTERISTICS/SPI Figure 1
Vccio = +3V .. +5.5V 25
SPI Clock Frequency fSCLK MHz
Vcclo = +2.25V .. +3V 15
Vcelo = +3V .. +5.5V 40
SCLK Clock Period tCH+CL ns
Vceio = +2.25 .. +3V 66
SCLK Pulse Width High tCH Vcelo = +2.25 .. +5.5V 12 ns
SCLK Pulse Width Low tCL Vcelo = +2.25 .. +5.5V 12 ns
Vcecio = +3V ... +5.5V 25
CSN Fall to SDO Delay tCSDO ns
Vcelo = +2.25V .. +3V 45
4x
CSN High Pulse _
Duration Nofe 2 tCSNPW Vccio = +2.25V .. +5.5V PLLK_CL
CSN Hold Time tCSH Vcelo = +2.25V .. +5.5V 6 ns
SDI Setup Time tDS Vccio = +2.25V .. +5.5V 4 ns
SDI Hold Time tDH Vcelo = +2.25V .. +5.5V 4 ns
SDO Output Data DO Vccio = +3V .. +5.5V, CL = 30pF 6 34 "
Propagation Delay Vccio = +2.25V .. +3V, CL = 30pF 6 60
ESD AND EMC TOLERANCE
Eigpmtecm’” (Al Human Body Model +2 KV

Note 1: Al devices are 100% production tested at TA = +25°C. Specifications over temperature are guaranteed by design and

characterization.

Note 2: Guaranteed by design

Note 3: All currents into the device are positive. All currents out of the device are negative.

www.analog.com

Analog Devices | 10

Universal Encoder Bus Controller TMC8100

Timing Diagrams

/CS \ oo /‘:
' H_tCH_H §<— tesH —»E
i o, — i ! '
— s 1,
1= tpy
so1 X RXKKwse)
—csod e —tpo —»«

spo XXX MSB X ves X B X

Figure 1. SPI Timing Diagram

www.analog.com Analog Devices | 11

Universal Encoder Bus Controller

Pin Configurations
TQFN

Package is TQFN24 4mm x 4mm with 0.5mm pitch. (T2444+3C).

TMC8100

GP102/12C_SDAUART!_TXD/HOME

GPI03/12C_SCLMJART1_RXD/DECODER_OUT | >

GPIO4/UARTO_TXD/SPI_DATA_AVAILABLEHOME | <o |

GPIO5/UARTO_RXD/COMPARE_OUT/DECODER_OUT | =

GPIOB/SPI_DATA_AVAILABLE/COMPARE_OUT/DECODER_OUT] o |

-
EﬁI
X
-
EI 8|
[SEES) S =
.88 2 :
£ 38 5 3 9
TOP VIEW 5 2 2 9o ¥ ¥
= O O O a a
8] 117} 116} 1151 {14} |13]
Voo 19 2]
=531 N
sPispi|21] | TMCBI00ATG+ | [qg]|
sLspo|22) | EP=GND | 9
SPLSCLK[231 . P08
[A s o
SPICSN | 24 7
if2iiaifaiis) el
o
Q
| | | g

DIRECT_IN2ENC_A
| DiRECT_IN3ENC B
DIRECT_OUTO/DIRECT_CLK_OUT TQFN
4mm x 4mm
| DIRECT OUTH/DIRECT CLK_OUT

i ENC_Z/DIRECT_OUT2/DIRECT_CLK_OUT

HOME/MDIRECT_OUT3/DIRECT_CLK_OUT

Figure 2. TMC8100 Pin Assignment

www.analog.com

Analog Devices | 12

Universal Encoder Bus Controller

Pin Descriptions

TMC8100

REF
PIN NAME FUNCTION SUPPLY Type
PMIO
19 Vccio Supply input for internal LDO and I/O pins. Connect pins 19 and 6 externally. VCCIO Power
18 VDOD1V8 1V8 output of internal linear regulator. Connect 2.2uF low ESR ceramic capacitor VCCIO Power
to GND externally.
6 Vccio Supply Input for I/O pins. Connect pins 19 and 6 externally. VCCIO Power
15 Connect to GND.
GND
EP Exposed pad — connect to GND. Power
SYSTEM
20 RESETN Act.lve-low, external reset |nput..The device remains in reset while this pin is in its VCCIO Dipud
active state. Internal pull-up resistor.
DIRECTIO
14 DIRECT_I| | Serial englne'dlrect input 0 (DIRECT_INQ) with programmabile internal pull-up or VCCIO Dipud
NO pull-down resistor - power-up: pull-up resistor enabled
13 DIRECT_I | Serial engme'dlrect input 1 (DIRECT_IN1.) with programmable internal pull-up or VCCIO Dipud
N1 pull-down resistor - power-up: pull-up resistor enabled.
DIRECT | Serial engine direct input 2 (DIRECT_IN2) and A/B/Z encoder interface channel A
12 — | input (ENC_A) with programmable internal pull-up or pull-down resistor - power-up: VCCIO Dlpud
N2/ENC_A .
- pull-up resistor enabled.
DIRECT | Serial engine direct input 3 (DIRECT_IN3) and A/B/Z encoder interface channel B
11 — | input (ENC_B) with programmable internal pull-up or pull-down resistor - power-up: VCCIO Dlpud
N3/ENC_B .
- pull-up resistor enabled.
DIRECT_O
10 UTO/DIRE | Serial engine direct output 0 (DIRECT_OUTO) or serial engine direct clock output VCCIO DO
CT_CLK_O | (DIRECT_CLK_OUT) - power-up: DIRECT_OUTO output selected.
uTt
9 DIRECT_O | Protocol engine direct output 1 (DIRECT_OUT1) or protocol engine direct clock VCCIO DO
UT1 output (DIRECT_CLK_OUT) - power-up: DIRECT_OUT1 output selected.
A/B/Z encoder interface channel Z input (ENC_Z) with programmable internal pull-
ENC_Z/DI or pull-down resistor or protocol engine direct output 2 (DIRECT_OUT2)
8 RECT ou | UPOrPu resistor or profoco’ engine direct outpu - VCCIO | DIOpud
T2 or protocol engine direct clock output (DIRECT_CLK_OUT) - power-up: ENC_Z
input with pull-up resistor enabled.
A/B/Z encoder interface home switch input (HOME) with programmable internal
7 HOME/DIR | pull-up or pull-down resistor or protocol engine direct output 3 (DIRECT_OUT3) or VCCIO DIObud
ECT_OUT3 | protocol engine direct clock output (DIRECT_CLK_OUT) - power-up: HOME input P
with pull-up resistor enabled.
GPIO
21 SPI_SDI SP! serial data input (SPI_SDI). with programmable internal pull-up or pull-down VCCIO Dlpud
resistor - power-up: pull-up resistor enabled.
29 SPI_SDO SPI serial data gutput (SPI_SDO) with trlsta.te and programmable internal pull-up VCCIO DOpud
or pull-down resistor - power-up: pull-up resistor enabled.
23 SPI_SCLK SP! clock input (SPI_SCLK) Wl.th programmable internal pull-up or pull-down VCCIO Dipud
resistor - power-up: pull-up resistor enabled.
24 SPI_CSN SP! chip select input (SPI_CSN) with programmable internal pull-up or pull-down VCCIO DIOpud
resistor - power-up: pull-up resistor enabled.
General purpose digital input or output 0 (GPIO0) with programmable internal pull-
GPIO0/OS up or pull-down resistor or external clock signal in (CLK_EXT) or crystal oscillator
17 C IN/CLK_ | WPOTP ¢ signatin (LRt rysa VCCIO | ADIOpud
EXT input (OSC_IN) - power-up: GPIOO0 configured as input with pull-up resistor
enabled.

www.analog.com

Analog Devices | 13

Universal Encoder Bus Controller

TMC8100

GPIO1/0S

16 C_ouT

General purpose digital input or output 1 (GPIO1) with programmable internal pull-
up or pull-down resistor or crystal oscillator output (OSC_OUT) - power-up: GPIO1
configured as input with pull-up resistor enabled.

VCCIO

ADIOpud

GPI102/12C

_SDA/UAR

T1_TXD/H
OME

General purpose digital input or output 2 (GP102) with programmable internal pull-
up or pull-down resistor or 12C serial data input/output (12C_SDA) or UART1
transmit data output (UART1_TXD) or A/B/Z encoder interface home switch input
(HOME) - power-up: GPIO2 configured as input with pull-up resistor enabled.

VCCIO

DIOpud

GPI03/12C
_SCL/UAR
2 T1_RXD/D
ECODER _
ouT

General purpose digital input or output 3 (GPI03) with programmable internal pull-
up or pull-down resistor or 12C clock output (I2C_SCL) or UART1 receive data
input (UART1_RXD) or A/B/Z encoder interface decoder output signal
(DECODER_OUT) - power-up: GPIO3 configured as input with pull-up resistor
enabled.

VCCIO

DIOpud

GPIO4/UA
RTO_TXD/
3 SPI_DATA
_AVAILAB
LE/HOME

General purpose digital input or output (GP104) with programmable internal pull-up
or pull-down resistor or UARTO transmit data output (UARTO_TXD) or SPI transmit
data available signal output (SPI_DATA_AVAILABLE) or A/B/Z encoder interface
home switch input (HOME) - power-up: GPIO4 configured as input with pull-up
resistor enabled.

VCCIO

DIOpud

GPIO5/
UARTO_RX
D/COMPA
RE_OUT/D
ECODER_
ouT

General purpose digital input or output (GP1O5) with programmable internal pull-up
or pull-down resistor or UARTO receive data input (UARTO_RXD) or A/B/Z encoder
interface position compare output (COMPARE_OUT) or A/B/Z encoder interface
decoder output signal (DECODER_OUT) - power-up: GPIO5 configured as input
with pull-up resistor enabled.

VCCIO

DIOpud

GPIO6/SPI

_DATA_AV

AILABLE/C

5 OMPARE._

OUT/DEC

ODER_OU
T

General purpose digital input or output (GP1O6) with programmable internal pull-up
or pull-down resistor or SPI transmit data available (SPI_DATA_AVAILABLE) or
A/B/Z encoder interface position compare output (COMPARE_OUT) or A/B/Z
encoder interface decoder output signal (DECODER_OUT) - power-up: GPIO6
configured as input with pull-up resistor enabled.

VCCIO

DIOpud

www.analog.com

Analog Devices | 14

Universal Encoder B

us Controller

Functional Diagrams

Functional Block Diagram

TMC8100

ENCODER
SUPPLY
s —w| BUCK
0CDC
CLK_EXT —
1.32MHz
opriona)) -
T TMC8100 Veco
B2/ 16MHz/24MHz/ 75100/128MHz ANALOG RS485
25MHa32MHz 4 | CRYSTAL|[INT |{—
(OPTIONAL) D\L 0SC DEVICES
T T % Clk+
= = £
1 il
= SRAM SRAM BOOT-ROM - &
= Hx16 48 - .
Vecio X ClK
T ‘ ‘ — | orectn
I N
Pl (TARGET) CORE
MOTION BUFFER DIRECT_0uT
Pl [l _
CONTROLLER SPLDATA AVALABLE - ‘ PC ‘ REGETER ‘ AU ‘ oo
EXAMPLE, — RS485
MICROCONTROLLER, - { UART . DIRECT_IN
FPGA, ETC. H x CALL cLOCK 3
URT) | E ‘ STACK ‘ GENERATOR | | PRESSCALER ‘ g‘
e 3 & DATA+
& ePo [=
HW E &
oo ‘ L00P ‘ ‘ TIVER ‘ ‘ cRC ‘ g & 100
8 = g
1’c 5 = DATA-
OPTIONAL (CONTROLL
2 ER) ENC_A
EEPROM COUNTER L
L + || Dpecoper | FWTER [ENC_B —
CAPTRE N
ENC_Z
GPIO MATRI ‘
. J
COMPARE_OUT | HOME INPUT DECODER_OUT
|

ABSOLUTE
ENCODER

Figure 3. Block Diagram

www.analog.com

Analog Devices | 15

Universal Encoder Bus Controller TMC8100

Detailed Description

The TMC8100 is a programmable serial bus protocol converter IC targeting different absolute encoder bus protocols. It
operates as a bus controller for these encoders and as a peripheral with either SPI or UART interface for the attached
microcontroller or motion controller delivering the extracted and adjusted encoder position information.

The TMC8100 also supports encoders with standard incremental A/B/Z outputs. The 32-bit encoder position counter
includes a capture/compare unit for generating synchronization signals and capturing the encoder counter value on
external latch signals.

The TMC8100 offloads a general-purpose microcontroller or motion controller from this encoder data signal conversion
task. In contrast to fully hardware-based solutions, it offers a high degree of flexibility for current protocol implementations,
customization, and future protocol extensions.

For initial setup after power-up, a program supporting the specific bus protocol has to be loaded into the TMC8100 through
SPI or UART with the help of the integrated bootloader program. There is also the option to add an external I°C EEPROM
for initial bootstrap supporting standalone operation.

System Architecture

The TMC8100 contains a programmable serial communication engine. The architecture and command set are optimized
to convert synchronous and asynchronous serial data into parallel and vice versa. All instructions are 16-bit wide and
execute within one clock cycle. The general-purpose register set contains eight registers with 8-bit each.

The processor core directly supports four digital inputs (DIRECT_IN) and four digital outputs (DIRECT_OUT) for serial
data input and output. It offers separate program memory and data memory bus interfaces (Harvard architecture).

The program memory bus is connected to an on-chip static random access memory (SRAM) and a bootloader read-only
memory (ROM). Several serial communication peripheral interfaces (SPI, UART, 1°C), the incremental A/B/Z encoder
interface, and a small data SRAM (64x8) are connected to the data memory interface.

> GPIO MEM

A
A

GPIO[6:0]

SRAM
2Kx16

SPI_SDI, SPI_SDO, SPI_SCLK, SPI_CSN

A

ROM
1Kx16

=

SPI H

A A

SPI_DATA_AVAILABLE

UARTO_TXD

A

UARTO

UARTO_RXD > » DIRECT_OUT[30]
SERIAL COMMUNICATION
ENGINE
UARTLTXD - DIRECT_IN30]
URT! M
UART1_RXD >
| |
12C_SDA ~a—— SRAM ENCODER 1 ENC_ABIZ HOME
= 643 TIVER
12C_SCL - » DECODER_OUT, COMPARE_OUT

Figure 4. Block Diagram
Program Memory Bus

An embedded 2Kx16 SRAM memory is available for storing program code along with an embedded 1Kx16 ROM with
bootloader to support the initial bootstrap of the application program after power-up. Both are connected to the program
memory bus. The program memory bus is 16-bit wide, supporting one instruction word fetch per clock cycle. Program
memory access is pipelined with two pipeline stages. Therefore, any program branch usually takes two clock cycles until
the next instruction from the branch target is ready for decode and execution.

The program memory space is organized in banks with the bootloader ROM placed in the bank that is active immediately
after power-up. After loading the application program into the program SRAM, the active bank is switched to the SRAM
under bootloader control to start program execution from the SRAM.

Address Memory Description
0x0000 to 0xO3FF, bank O 1Kx16 ROM with bootloader
0x0000 to OxO7FF, bank 1 2Kx16 program memory (SRAM)

www.analog.com Analog Devices | 16

Universal Encoder Bus Controller TMC8100

ROM Bootloader

After power-up, the bootloader in the ROM is executed first. The bootloader program takes care of the basic initialization
of the system and sets the PLL output frequency to 75MHz with the internal oscillator as clock source. As soon as the
interfaces are initialized, pin GPIOG is configured as output and pulled low as the system is ready now for communication.
Three different bootstrap modes are supported: remote through SPI or UARTO from an external microcontroller or
standalone with an EEPROM (at least 4KB, example, 24L.C32/24L.C64) connected to the I2C interface. During bootstrap,
an application program supporting the desired encoder functionality/communication protocol must be loaded into the
internal program memory (SRAM). As soon as this is successful, memory banks are switched and program execution
starts from the SRAM at address $0000.

The bootstrap mode is detected automatically. In case of SPI and UARTO, the receive interface is listening for incoming
commands and the commands are executed accordingly. For standalone mode, a read attempt through 12C for an external
EEPROM is generated. If this is successful (ACK received), a sequential read to the first two bytes (first instruction word)
starting at address $0000 (two address bytes are transmitted) follow. In case there is an acknowledge (EEPROM
available) and both bytes are not $ff (EEPROM empty/erased check), 4KB of the EEPROM contents is copied to the
internal SRAM automatically.

| | BOOTLOADER | |

Y

INITIALIZE CLOCK: INT_OSC + PLL = 75MHz |

v

| INITIALIZE UARTO_RXD (GPIO5) and SPI |

v

| SET GPIO6 = 0/PP OUT (READY FOR COMMUNICATION) |

v

| ENABLE I2C, UARTO, AND SPI FOR COMMUNICATION | CHECK FOR EXTERNAL 2C EEPROM
24LC32/64 WITH CHIP SELECT BITS ALL ZERO

V

/ 1. INIT I2C INTERFACE
2. SEND $a1, ACK ?
YES |3 READ DUMMY BYTE COPY 4KB
12C ENABLED? SCL AND SDA = 12 4. SEND $a0 BOTH BYTES NOT §ff? FROM EEPROM
5. SEND ADDRESS $0000 TO SRAM
6. SEND $a1
7. READ TWO BYTES *
START
PROGRAM
IN SRAM
(S0 INIT UARTO_TXD

UARTO ENABLED? (UARTO_TXD)

UARTO
DATA RECEIVED?

PROCESS UARTO COMMAND
(+ DISABLE OTHER INTERFACES)

\

SPI
DATA RECEIVED?

PROCESS SPI COMMAND
(+ DISABLE OTHER INTERFACES)

SPIENABLED?

Y

Figure 5. ROM Bootloader

www.analog.com Analog Devices | 17

Universal Encoder Bus Controller TMC8100

UARTO Bootstrap Protocol

For serial communication through UARTO, autobaud is enabled and transmission uses 1 start bit, 8 data bits, and one
stop bit (8n1). The bootstrap protocol supports reading and writing to the internal program memory (SRAM) and reading
and programming an external EEPROM connected through 1°C. A valid command received through UARTO_RXD
(GPI105) from TMC8100 is usually followed by a reply sent out through UARTO_TXD (GPI104).

Table 1. UARTO0 Bootloader Commands

COMMAND REPLY DESCRIPTION
0x55, 0x00 0xb5 Get bootloader version.
0x55, 0x01, <ADDR_L>, <ADDR_H> No reply Write program memory address with lower 8-bit of address first and
then the upper bits (address of 16-bit instruction word).
0x55, 0x02, <DATA_L>, <DATA_H> No reply Write program memory data with lower 8-bit of the instruction word

first and then the upper 8-bit (instruction words are always 16-bit).
The address counter for read/write access to the program memory is
incremented afterwards, automatically.

0x55, 0x03 <DATA_L>, <DATA_H> Read program memory data. Reply provides lower 8-bit of the
instruction word first and then the upper 8-bit.

0x55, 0x04, <BAUD_L>, <BAUD_H> 0x09 Enable I2C interface and set 12C baud rate. The command includes
the lower and upper byte of the 12C baud-rate divider.

0x55, 0x05, <ADDR_L>, <ADDR_H>, 0x09 Write EEPROM - lower 8-bit of the address and upper bits must be

<DATA_L>, <DATA_H> provided same as lower 8-bit of the instruction word and then the

other 8-bit. As the write access to the external EEPROM takes some
time, there is a reply after the write access is finished.

0x55, 0x06, <ADDR_L>, <ADDR_H> <DATA_L>, <DATA_H> Read EEPROM - lower 8-bit and upper bits of the address must be
provided. Reply contains the 8-bit data at the specified EEPROM
address and the 8-bit at the subsequent address (one 16-bit
instruction word).

0x55, 0x07 No reply Start program — stop bootloader program execution and start
program execution from SRAM/address $0000.
0x55, 0x08 $38, $31, $30, $30 Get Chip ID —“8100” as ASCII characters.
0x55, 0x09 $11 Get Chip Revision.
UARTO_RXD 4
S S S S
T T T T
A 0 A 0
R 0x55 p R 0x00 p
T T
~
UARTO_TXD 4% 4

3

TO-Hw

0xb5

— 20> -

Figure 6. UARTO Bootloader Example: “Get Bootloader Version” Command 0x55 0x00 and Reply 0xb5

SPI Bootstrap Protocol

The SPI bootstrap protocol uses 32-bit datagrams with the MSB being transmitted first. All bootloader commands require
one SPI datagram. After transmission, the command gets executed and any reply is placed into the SPI transmit buffer
of the TMC8100. Signal SPI_DATA_AVAILABLE (has to be configured as an alternate function to GPIO6 and output to
be visible externally) is pulled high to indicate new data available. A second SPI transmission is necessary to read out
the reply. As SPI transmissions always include data in both directions, another command may be already included with
this transmission.

The 32-bit SPI command datagram includes a read (high) or write (low) bit (RnW) as MSB, 4-bit for command encoding
(CMD[3:0]), optional 11-bit for address (ADDR[10:0]), and 16-bit for data (DATA[15:0]).

www.analog.com Analog Devices | 18

Universal Encoder Bus Controller

Table 2. SPI Bootloader Comm

ands

TMC8100

COMMAND

REPLY

DESCRIPTION

RnW = 0/1, CMD[3:0] = 0,
ADDRJ[10:0] = 0, DATA[15:0] =0

$b5, $00, $00, $00

Get bootloader version.

RnW = 0, CMD[3:0] = 1,
ADDR[10:0] = address, DATA[15:0] = instruction

No reply

Write program memory data — 16-bit instruction at
specified address.

RnW =1, CMD[3:0] = 1,
ADDR[10:0] = address, DATA[15:0] =0

DATA[15:0] = instruction,
other bits copied from command

Read program memory data — 16-bit instruction
from specified address.

RnW = 0/1, CMD[3:0] = 2,
ADDR[10:0] = 0, DATA[15:0] = 0

No reply

Start program — stop bootloader program
execution and start program execution from
SRAM/address $0000.

RnW = 0/1, CMD[3:0] = 3,
ADDR[10:0] = 0, DATA[15:0] = BAUD

No reply

Enable I12C interface and set 12C baud rate. The
command includes the 12C baud-rate divider.

RnW = 0, CMD[3:0] = 4,
ADDR[10:0] = address, DATA[15:0] = instruction

Copy of command

Write EEPROM - address and 16-bit
datal/instruction word must be provided. As the
write access to the external EEPROM takes some
time, there is a reply after the write access is
finished - copy of the original command.

RnW = 1, CMD[3:0] = 4,
ADDR[10:0] = address, DATA[15:0] =0

DATA[15:0] = instruction,
Other bits copied from command

Read EEPROM — address must be provided.
Reply contains the 8-bit data at the specified
EEPROM address and the 8-bit at the subsequent
address (one 16-bit instruction word).

RnW = 0, CMD[3:0] = 5,
ADDRI[10:0] = xx, DATA[15:0] = yy

RnW = 0, CMD[3:0] = 5,
ADDRI[10:0] = xx, DATA[15:0] =
%%

Reply with copy of command.

RnW = 1, CMD[3:0] = 10,
ADDR[10:0] = xx, DATA[15:0] = yy

RnW = 1, CMD[3:0] = 2,
ADDRI[10:0] = xx, DATA[15:0] =
%%

Reply with copy of command.

RnW = 1, CMD[3:0] = 6,
ADDRI[10:0] = 0, DATA[15:0] = 0

$38, $31, $30, $30

Get Chip ID —“8100” as ASCII character.

RnW = 1, CMD[3:0] = 7,
ADDRI[10:0] = 0, DATA[15:0] = 0

$11, $00, $00, $00

Get Chip Revision.

CSN \

3

Z
R

RnW

Bit31

SPI_DATA_AVAILABLE ’

CMD)
' ,GET VERSION*“ COMMAND % ' ') CMDI] 2] CMD1] CMDIO]
spl —— 1 | o ' o ' o ' o ! o o [)—H NEXT COMMAND
\ ! ! ! W !) n n n n),
RnW CMD[3] ' CMD[2] ' CMD[1] ' cMmD[0] = 7 LSB Bit31
\ 0xb5 0x00 0x00 0x00 reply
r \r r \r u—«—\, r
SDO —(MSB REPLY FROM PREVIOUS COMMAND LSB D—%——(1 \ 0 ’ 1 1 \ 0 ’ 1 ~ 0 ' 1 \ ‘
n n n n g A)
IS 0xb5 >

Bit0

-

]

&
D

Figure 7. SPI Bootloader Example: “Get Bootloader Version” Command and Reply 0xb5, 0x00, 0x00, 0x00

Data Bus

All peripherals including UART (2x), SPI, 1°C, GPIO, and a data memory (64x8) are connected to the data bus. The data
bus supports reading and writing 8-bit data with an 8-bit address (0..255). All read and write accesses take one clock

cycle.

www.analog.com

Analog Devices | 19

Universal Encoder Bus Controller

TMC8100

Table 3. Data Bus Address Range Assignment

ADDRESS PERIPHERAL DESCRIPTION

0x80 to OxBF SRAM 64x8 data memory Data memory with 64 entries for storing intermediate values.

0x60 to 0x78 A/B/Z encoder interface Read/write and configure A/B/Z incremental encoder interface.

0x40 to Ox4E GPIO — GPIO interface and configuration Read/write and configure GPIOO0..6 pins and select alternate pin
functions.

0x30 to 0x34 SPI Read/write and configure SPI.

0x28 to 0x2B 12C Read/write and configure 12C interface.

0x20 to 0x23 DIRECT — DIRECT interface configuration Configure DIRECT_INO..3 and DIRECT_OUTO..3 pin signals and
select alternate functions.

0x18 to Ox1C MEM — program memory write interface Peripheral required for write access to program memory through
the data bus. Supports setting address and writing 16-bit
instructions words to program memory.

0x10 to 0x15 UART1 Read/write and configure UART1 interface.

0x08 to 0xOD UARTO Read/write and configure UARTO interface.

Power Supply

The TMC8100 supports single supply operation between 2.5V and 5V. It includes a linear regulator (LDO) for the core
supply voltage. This regulator is internally connected to the Vccio I/O supply input and requires a 2.2uF ceramic capacitor
at the Vpp1vs output pin for proper operation. The TMC8100 offers two Vccio supply inputs on pins 6 and 19, which must
be connected externally.

Reset and Clock
Reset

The TMCB8100 offers an internal power-on-reset (POR). In addition, there is a dedicated low-active reset input pin. This
pin offers an internal pull-up. It can be used to extend the power-on reset or explicitly reset the device during operation.

Clock

The clock generation offers a high degree of flexibility and supports three different clock source options. After power-up,
the digital circuit always starts on the internal oscillator (15MHz). For higher clock frequencies, an integrated PLL is
available. The PLL requires an input frequency of 1MHz. The pre-diver (RDIV) must be set accordingly. After configuring
the pre-divider (RDIV) and the division factor (PLL_FB_DIV), the PLL can be activated. Supported PLL output frequencies
are 75MHz, 100MHz, and 128MHz. The integrated bootloader program already configures the PLL in combination with
the internal oscillator for 75MHz system frequency.

As an alternative to the integrated oscillator (INT_OSC), an external clock source can be selected (CLK_EXT) or the on-
chip crystal oscillator can be used for a more precise clock source. In both cases, the respective GPIO pins must be
configured through the GPIO matrix. The crystal oscillator requires an external crystal for operation. After configuring the
crystal oscillator, a start-up time is required before the clock signal is stable and can be selected as input for the PLL.

In case the external clock or the crystal oscillator with an external crystal is selected as clock source for the PLL, a clock
loss detection is activated. This uses the internal oscillator as reference. In case a clock loss is detected, a system reset
is initiated and the clock source is switched back to the internal oscillator.

XTAL_CFG

R EXT_NOT_XTAL

| CLK_EXT EXT_NOT_INT

| | ——

| > PLL_OUT SEL

I GPIOO = |osciN MHz - OUT_
KT, - £ > ROV —>‘ PHASE ‘ LooP ,‘ o | . e CLoCK

} S CRYSTAL INT_0SC DETECTOR FILTER | OR 100MHz

} % 0sc 15MHz - OR 75MHz

GPIO1 0SC_0UT /PLL_FB_DIV

! D - - ¥ FB|

|

| ? CLK_OK PLL

T T

I = =

‘ T

I

I

i

Figure 8. Clock Tree
Code example for setting different PLL output frequencies or changing clock source:

www.analog.com Analog Devices | 20

Universal Encoder Bus Controller TMC8100

LDI $03, r0 ; for EXT CLK / XTAL - enable input for GPIO0/GPIOI

ST GPIO IN, r0

LDI $03, r0 ; for EXT CLK / XTAL - disable pull-up for GPIO0/GPIOI
ST GPIO PU, r0

LDI PLL FB CFG, r0

ST CLK ADDR, r0

LDI $36, r0 ,; set pll feedback divider for 75MHz

;LDI $4f, r0 ; set pll feedback divider for 100MHz

;LDI $6b, r0 ; set pll feedback divider for 128MHz

ST CLK DOUT, r0 ; write access to clock control register PLL FB CFG

LDI CLK CTRL SOURCE, rO ; use internal clock

ST CLK_ADDR, r0

;LDI $26, r0 ; use XTAL

;LDI $21, r0 ; use external clock

LDI $00, r0 ,; use internal clock

ST CLK DOUT, rO ,; write access to clock control register CLK CTRL SOURCE

LDI CLK CTRL OPT, r0

ST CLK ADDR, r0

LDI %0100_0000, r0 ,; enable clock control state machine

ST CLK_DOUT, r0 ,; write access to clock control register CLK CTRL OPT

LDI CLK_CTRL PLL CFG, r0

ST CLK_ADDR, r0

LDI %1011 1001, rO ; RDIV = 14 (assuming 15MHz clock), select PLL output, start state machine

; LDI %1011 1101, r0 ; RDIV = 15 (assuming 16MHz clock), select PLL output, start state machine
ST CLK DOUT, rO ,; write access to clock control register CLK CTRL PLL CFG

LDI CLK CTRL_PLL CFG, r0

ST CLK_ADDR, r0 ,; set address for read from clock control register CLK CTRL PLL CFG
NOP

NOP

WAIT FOR PLL LOCK:
LD CLK DIN, r0,; read from clock control register CLK CTRL PLL CFG
NOP
TEST1 $7, 0
JC WAIT FOR PLL LOCK
; continue with 75MHz system clock

The clock configuration offers three user programmable registers used in the example code above accessed with the help
of the CLK_ADDR, CLK_DIN and CLK_DOUT registers:

PLL_FB_CFG
500) | | PLL_FB_DIV |
7 6 5 4 3 2 1 0
CLK_CTRL_SOURCE
504) | | EXT_NOT_INT XTAL_CFG[2:] EXTﬁNOTﬁXTAL|
7 6 5 4 3 2 1 0
CLK_CTRL_PLL_CFG
YY) | COMMIT | RDIV PLL_OUT_SEL |
7 6 5 4 3 2 1 0

Figure 9. Clock Configuration Registers

www.analog.com Analog Devices | 21

Universal Encoder Bus Controller TMC8100

e PLL_FB_DIV: Internal PLL divider for setting PLL multiplication factor.

o EXT_NOT_INT: External clock or crystal oscillator output (= 1) instead of internal oscillator (= 0).
e XTAL_CFGJ2:0]: Crystal oscillator configuration.

o EXT_NOT_XTAL: External clock (= 1) instead of crystal oscillator output (= 0).

e COMMIT: Apply changes to clock block (= 1).

e RDIV: Clock divider for PLL input. PLL input must be 1 MHz.

e PLL OUT_SEL: Select PLL output (= $1) instead of internal oscillator (= $0).

Crystal Oscillator

The crystal oscillator is designed to provide a programmable output current based on the quartz crystal frequency, which
can be either 8MHz, 16MHz, 24MHz, 25MHz, or 32MHz.

The programmable output current is determined by 3-bit (XTAL_CFG) used to set the code assigned to each quartz
crystal frequency, as shown in the following table:

XTAL_CFG CONDITIONS IXTAL_OUT [uA] | fxral[MHz]

1 ESR(1)<250Q and CL(2) = 9pF | 75pA 8MHz

2 ESR>2500 and CL = 9pF 150pA 8MHz

3 ESR<70Q and CL = 9pF 225pA 16MHz

4 ESR<70Q and CL = 9pF 275uA 24MHz to
25MHz

5 ESR<60Q and CL = 9pF 450pA 32MHz

(1) ESR s the equivalent series resistance given by the quartz crystal manufacturer.

(2) CL = 9pF is recommended.

GPIO and DIRECT_IN/OUT

GPIO Matrix

All general purpose 1/Os (GPIO) can be configured individually as digital input or output. After reset, all GPIOs are
configured as inputs with internal pull-up to Vccio. For each GPIO, polarity of input and output can be defined
(GPIO_POLARITY), output can be enabled (GPIO_OUT_EN), and for GP102, type of output (either push-pull or open-
drain (GPIO_OUT_OD)) can be selected. Alternate function can be also configured individually per pin
(GPIO_ALTx_FUNCTION). Note that output/input/polarity and type of output must be set correctly for a certain pin in case
an alternate function is selected (example, open-drain for 1°C signals, output enable for TXD, etc.). Some peripheral units
provide their own output enable signal together with the output signal for the alternate function, which overrides the output
enable setting in the GPIO output enable register (example, 12C).

In case an alternate function is selected, it is still possible to read out the current pin status using the GPIO_IN register.

GPIO_ALTx_FUNCTION
Vccio ‘
T GPIO_POLARITY

ALTERNATE
FUNCTION
INPUT

GPIO_PU

GPIO_IN

GPIOX GPIO_ALTx_FUNCTION

[-—— GPIO_OUT

PROTECTION
DIODES

GPIO_PD
GPI0_OUT_OD

GPIO_OUT_EN

[<¢—— ALTERNATE
FUNCTION
OUTPUT

Figure 10. Basic Structure of GPIO Pin Control

www.analog.com

Analog Devices | 22

Universal Encoder Bus Controller TMC8100

Code example for toggling GPIO:

; set all gpio outputs to zero
LDI %0000 0000, rO
ST GPIO OUT, r0
ST GPIO POLARITY, r0
ST GPIOO ALTO FUNCTION, r0
ST GPIOO ALT1 FUNCTION, r0
; configure all gpio as outputs
LDI %1111 1111, x0
ST GPIO_OUT ENABLE, r0
LDI %0101 0101, rO
LDI %00101010, rl
TOGGLE_GPIO_ OUTPUT:
ST GPIO OUT, r0 ; GPIO6..0 -> "01010101"
ST GPIO OUT, rl ; GPIO6..0 -> "00101010"
JA TOGGLE_GPIO OUTPUT

DIRECT_IN/DIRECT_OUT Matrix

The TMC8100 offers four direct inputs (DIRECT_INO..3) and four direct outputs (DIRECT_OUTO..3), which can be
accessed individually from within the serial communication engine for fast bit manipulation and sampling of the serial data
stream. For each pin, polarity can be programmed individually (DIRECT_POLARITY). As an alternative to setting the
output bits for DIRECT_OUT directly, a clock signal from the internal clock/timer block of the serial protocol engine can
be selected (DIRECT_ALT_FUNCTION).

All DIRECT_IN pins are configured as inputs with internal pull-ups to Vccio after reset. While DIRECT_OUTO and
DIRECT_OUT1 are fixed outputs (push-pull), ENC_Z and HOME inputs are selected instead of DIRECT_OUT2 and
DIRECT_OUTS3 with internal pull-ups after power-up.

Vecio
T

DIRECT_PU
Veeio veelo
DIRECT_POLARITY

: 5 E DIRECT_INx
= DIRECT_OUTx
SERIAL bl
‘U PROTOCOL
ENGINE

IRECT_PD

DIRECT_POLARITY

DIRECT_INx r SERIAL

PROTOCOL
ENGINE

L
i,

DIRECT_OUTx

CLOCK_out

e

= DIRECT_ALT_FUNCTION

PROTECTION
DIODES

PROTECTION
DIODES

2 AAAA

Figure 11. Basic Structure of DIRECT _IN (Left) and DIRECT_OUT (Right) Pin Control
Code example for toggling DIRECT_OUT:

; set all DIRECT OUT to zero

SFCLR WAITOSF NO WAIT, 0, O
SFCLR WAITOSF NO WAIT, 0, 1
SFCLR WAITOSF NO WAIT, 0, 2
SFCLR WAITOSF NO WAIT, O, 3

; select DIRECT OUTO..3 for all 4 direct connections
LDI %0000_0000, rO
ST DIRECT POLARITY, r0
ST DIRECT ALT FUNCTION, r0
TOGGLE_OUTPUT:
; toggle DIRECT OUT(0..3): 0 -> 1 -> 0

www.analog.com Analog Devices | 23

Universal Encoder Bus Controller TMC8100

SFSET WAITOSF NO WAIT,
SFSET WAITOSF NO WAIT,
SFSET WAITOSF NO WAIT,
SFSET WAITOSF NO WAIT,
SFCLR WAITOSF NO WAIT,
SFCLR WAITOSF NO WAIT,
SFCLR WAITOSF NO_WAIT,
SFCLR WAITOSEF NO_WAIT,
JA TOGGLE_OUTPUT

~ 0~ 0~

~

O O O O O O o o
w N B O W N PO

Serial Communication Engine

Overview

The serial communication engine is the core part of the TMC8100. It includes a controller operating on 16-bit instructions
with an 8x8-bit general purpose register set (R0...R7). The command execution pipeline includes two fetch stages and
one decode/execute stage. An additional write back stage offers a bypass to reduce pipeline delays. An 11-bit program
counter (PC) selects the next address from the on-chip program memory.

Also part of the core engine is a timer unit for clock generation and sampling of the incoming data stream. A programmable
CRC unit supports on-the-fly CRC generation while data is being shifted in or out.

SERIAL COMMUNICATION ENGINE

INSTRUCTION INSTRUCTION DECODE TIMERUNIT
BUS [150] ™ FETCH EXECUTION CLOCK /__/__/__/__/__/__/__
SCALER 8BIT
DATA o | PG 11T DECODE | WRITE
BUS [7:0 REGISTER SET
ra 8488 INSTRUCTION 1>> | - FETCH1 | FETCH2 | pxeeyre | Back
INSTRUCTION FIFO DECODE | WRITE
DIRECT_IN3:0] —— SI6BIT EDGECOUNT 8BIT INSTRUCTION 2>> | FETCH1 FETCH2 | EyecuTe BACK
CRCUNIT328IT oecone | v
y L LFSR
DIRECT_OUT[3.0] | (LFSR) TIMER 8BIT INSTRUCTION 35> | FETCHT | FETCH2 | peaie | i
CALL STACK DECODE | WRITE
B11BIT VANCHESTER TIMEOUT 8BIT INSTRUCTION 4>> | FETCH1 | FETCH2 | peore | Back
DECODER

Figure 12. Serial Communication Engine Block Diagram and Instruction Pipeline

In a typical application, incoming serial data is sampled through DIRECT_IN from an attached encoder with on-the-fly
extraction and alignment of encoder values. As soon as all relevant data is received, it is forwarded through one of the
serial interfaces (SPI or UART) to the attached motion controller or microcontroller (store-and-forward). This way, any
processing delays are minimized.

Loop Support in Hardware

When shifting in or out data, the shift operation usually must be repeated several times until all bits are in or out. A loop
can be used to reduce the number of shift operations in the program code. Nevertheless, a loop requires loop cycle
counting, compare, and conditional branch instructions, which introduce significant overhead not just with respect to code
size but also instruction execution time.

To reduce the overhead, hardware loops are supported. During program execution, the last four instructions are always
remembered in an instruction FIFO buffer. In addition, there is a dedicated hardware loop counter (up-to 8x). With the
help of the REP instruction, the loop size (number of instructions) and loop counter limit are specified. The loop starts
immediately after the REP instruction. This hardware loop allows for similar performance as unrolling loops during compile
time while reducing code size to minimum.

Set of Counter/Timer

The serial communication engine contains a number of counter and timer units for all time dependent program execution,
insertion of delay, clock generation, number of clock pulses, and timeout for all commands with variable execution time.

The programmable pre-scaler divides the main system clock by 1...256. The pre-scaler is used by the counter unit and
optional (programmable) for the timer and timeout counters.

www.analog.com Analog Devices | 24

Universal Encoder Bus Controller TMC8100

The integrated 8-bit counter uses the pre-scaler output as clock input. It is an up-counter with automatic wrap-around at
its programmable upper limit (sawtooth). It can be used for clock generation. In this case, the clock output toggles at each
overflow of the counter. The limit value for the counter can be calculated using the following formular:

forescaler
SYSTEM_TIMER_COUNTER_LIMIT = ——— —

foutput
Another 8-bit edge counter is available to limit the number of rising and falling edges the counter generates. The edge
counter is also an up-counter that stops when reaching its upper limit (a limit of zero disables the edge counter). This
way, clock signals with up-to 255 rising and falling edges can be generated (up-to 128 clock cycles with selectable rising
or falling edge at the end). Commands including a wait condition offer the possibility to stop any further program execution
until the counter or edge counter reaching their limits or overflow. There are instructions available for incrementing the
edge counter to compensate, example, for additional processing time required by the external peripheral that receives
the clock signal.

Code example for generating 3x pulses (6 edges) with a frequency of 9.375MHz (75MHz system clock):

LDI $01, rO

ST DIRECT ALT FUNCTION, r0 ; configure DIRECT OUT(0) as clock output

LDI $03, r0

STS r0, SYSTEM TIMER, SYSTEM TIMER COUNTER LIMIT W ; 75MHz / 4 toggle rate
LDI 6, r0O ; number of clock edges

STS r0, SYSTEM TIMER, SYSTEM TIMER PULS COUNTER LIMIT W

LDI 1, r0O ; enable counter

STs r0, SYSTEM TIMER, SYSTEM TIMER CTRL W

In addition to the clock generator, another 8-bit timer is available. This timer also offers a programmable upper limit and
automatically wraps around when reaching this limit while counting up (sawtooth). The timer supports operations where
a programmable amount of time must be waited before, example, data is shifted in or out through
DIRECT_IN/DIRECT_OUT. The timer may also take the output of the pre-scaler as clock input in case longer delays are
required.

Finally, there is a timeout counter. This is another 8-bit up-counter with programmable limit (sawtooth). It must be used
together with a timeout target address register. In case the timeout limit is not zero, the timeout counter is enabled. As
soon as the executed instruction includes a wait condition temporarily halting program execution, this counter starts
counting. If the timeout counter reaches its limit before the wait condition is met and program execution resumed, regular
program execution stops. Instead, program execution continues with the instruction at the address specified in the timeout
target address register.

Description of instructions STS/LDS in the appendix contains more details on setting the timer/counter limit values.
Cyclic Redundancy Check (CRC)

The serial communication engine includes on-the-fly CRC calculation in hardware as an option for the serial bits shifted
in or out through the DIRECT_IN or DIRECT_OUT pins. The generator polynomial and the start value for CRC calculation
can be programmed. The CRC unit uses linear feedback shift register (LFSR) for CRC calculation. Generator polynomials
up to 32-bit are supported.

Example:

Generator polynomial: g=x>@® x> @ x @ 1

The bit sequence for this generator polynomial is 100111. This must be written to the CRC polynomial register.
An optional start value can be written to the CRC start register. Otherwise, the start value is zero.

The resulting shift register in hardware for this polynomial looks like this:

www.analog.com Analog Devices | 25

Universal Encoder Bus Controller TMC8100

DATA IN

For example, if the input data stream is 10010011, the CRC checksum after shifting in these 8-bit/after 8 shifts is 1010.
There are no additional cycles required for CRC checksum calculation.

The result can be read out through the CRC result register.

Note that these registers are part of the core, and therefore special load and store instructions (LDS/STS) must be used.
The data bits itself can be shifted into the CRC unit in parallel with shifting in through DIRECT_IN or shifting out through
DIRECT_OUT using shift-left and shift-right commands. For each shift operation, it can be decided whether the bit shifted
in or out is part of the CRC calculation or not.

Description of instructions STS/LDS in the appendix contains more details on setting the CRC start/polynomial values
and accessing the result.

Universal Asynchronous Receiver-Transmitter (UART)
Overview

The universal asynchronous receiver transmitter (UART) supports full-duplex data exchange with external devices using
industry standard NRZ asynchronous serial data format. The UART supports autobaud (character 0x55) and offers
separate transmit and receive buffers with programmable time-out. Transmission format is fixed 8n1.

Main Features

Full duplex, asynchronous communication

NRZ standard format (mark/space)

Separate configurable signal polarity for transmitter/receiver

Programmable filter for receiver input

Configurable oversampling by a factor 16 or by a factor of 8

Programmable baud rate generator

Auto baud rate detection (character 0x55)

8-bit data word length

One stop bit

Transmit FIFO buffer with up to eight character entries

Receive buffer with programmable length up-to eight characters and programmable timeout (reset buffer contents)
Functional Description

The TMC8100 includes two UART peripheral blocks, UARTO and UART1. For bidirectional connection, two pins are
required for each UART: receive data (UARTx_RXD) and transmit data (UARTx_TXD). In case one or both UARTSs are
used, the GPIO matrix must be programmed accordingly to make the communication pins available externally. The
features of both UARTSs are the same and they operate completely independent of each other. Therefore, the following
functional description covers both UARTS.

The communication format is fixed: one start bit, 8 data bits with least significant bit (LSB) first, no parity, and one stop bit
(8n1). An integrated baud rate generator is available that uses the system clock as input. Either 8x or 16x oversampling
can be selected and there is an optional input filter for the incoming data. The baud rate is the same for the receiver and
transmitter circuit. The baud rate generator register limit value (UARTx_BAUD_L/H) can be calculated using the following
formular:

fPLL_CLK

UARTx_BAUD = —
- bits_per_second x 8

For x16 oversampling, the 8 in the formular must be replaced with 16. Values for common baud rates and system clock
settings are:

www.analog.com Analog Devices | 26

Universal Encoder Bus Controller

TMC8100

feLL cLk = 75MHz, x8 feLL_ck = 100MHz, x8 feLL cLk = 128MHz, x8
9600Dbit/s 976 1301 1666
115200bit/s 81 108 138
1Mbit/s 9 12 15
8Mbit/s 1
16Mbit/s 0

Automatic baud rate detection is supported. In case autobaud is enabled, any further transmission of data through
UARTx_TXD is disabled, and the receiver expects to receive the character 0x55. The baud rate generator starts counting
with the first low-to-high transition after the start bit and stops with the last low-to-high transition at the beginning of the
stop bit. The result is then scaled and used as new baud rate generator limit value. The autobaud bit is reset automatically,
indicating the end of the autobaud mode.

The receiver contains an 8-bit shift register for the incoming serial data and a buffer with max. eight entries. As soon as
a new character is received, the data is copied to the next available receive buffer entry. The number of bytes expected
for one message can be programmed (RX_BUFFER_LENGTH = 1..8 in UARTx_CTRL). As soon as a complete message
according to the programmed message length is received, the RX_FULL flag in the status register (UARTx_STATUS) is
set. The received bytes being part of one message can be read-out first-in first-out afterwards through the bus interface
using register UARTx_BUFFER. After a complete message is read-out, the buffer is ready for receiving the next message.

There is a 16-bit timeout counter available for the receiver that starts counting after the stop bit of a character is received.
It continues counting as long as the receiver line remains idle. Each new character on the receiver line resets this counter.
In case the timeout limit (UARTx_TIMEOUT) is reached before the next character within a message is received, the
receive buffer contents are reset, deleting any non-complete message.

The transmitter contains an eight entry FIFO transmit buffer. Any value written to the transmit buffer (UARTx_BUFFER)
is forwarded to the transmit shift register as soon as the transmit shift register is empty and any previous value in the
FIFO buffer is sent out. Separate flags in the status register indicate full (TX_FULL) and empty (TX_EMPTY) FIFO buffer.

UARTX_STATUS
UARTx_CTRL id—

UARTX_BAUD |« >

AUTOBAUD | | BAUDRATE
CONTROL GENERATOR | | UARTX_TIMEOUT |<—>
- | |
UARTX_RXD » AR |-l—{ RXSHFT | [UARTxBUFFER
RX_DATA
5 I -+ .
= = DATA
3 —=
s = BUS
(@)
o
© UARTX_BUFFER
UARTX_TXD & <X [TXSHIFT TXOATA |
_—[" -
il
UARTX

Figure 13. UART Block Diagram
Code example for UART communication:

LDI %0000 0101, rO
ST GPIOO_ALT1_FUNCTION, rO ; TXD and RXD on GPIO4/5
LDI %0001_0000, rO

ST GPIO OUT ENABLE, r0
LDI %0000 0101, rO0
ST UARTO CTRL, r0

; GPIO4 / TXD output

; x8, no filter, autobaud enabled

www.analog.com Analog Devices | 27

Universal Encoder Bus Controller TMC8100

LDI UARTO STATUS, r2

WAIT1 $0, r2 ; wait for incoming byte

; byte received

LD UARTO_BUFFER, r0 ; load received data into r0

Serial Peripheral Interface (SPI)
Overview

SPI block offers SPI peripheral device functionality and supports standard SPI mode 0. The SPI is one of the available
serial interfaces supported by the bootloader and intended for communication with a motion-controller or microcontroller.
A deep 64x32-bit entry transmit buffer for sending data back to the controller allows for high data rates while minimizing
the interrupt frequency on controller side.

Main Features
The SPI peripheral block supports the following main features:

SPI peripheral device support

SPI mode 0

MSB first

32-bit receive buffer

64x32-bit FIFO transmit buffer

SPI clock up to 25MHz

Functional Description

The SPI bus interface is intended to be connected to a microprocessor or motion controller with an SPI controller interface.
The SPI supports SPI mode 0 (clock polarity = 0 and clock phase = 0). In addition to four SPI signals: serial-data-out
(SDO), serial-data-in (SDI), serial clock (SCLK), and chip select (CSN), an additional signal SPI_DATA_AVAILABLE is
available that indicates new data available in the transmit buffer. Maximum SPI data length for a single transfer supported
in hardware is 32-bit. Data is always shifted in and out MSB first.

For receiving data from the external controller, a single 32-bit buffer is available. During SPI transfer, the serial data from
the SPI controller is shifted in and copied from the shift register to this buffer as soon as the SPI data transfer is completed
with the rising edge of the chip select signal SPI_CSN.

For transmission of data, a FIFO buffer with 64 entries (32-bit each) is available. This way, the serial engine can fetch
encoder counter values at a fixed rate while the host/microcontroller can read them out in bursts, keeping the interrupt
frequency and the overhead low. In case the transmit buffer reaches its capacity fetching, further encoder data by the
serial engine can be stopped (default) or older values can be discarded, keeping always the most recent ones (TX_SKIP
in register SPI_CTRL). This can come into place if the controller requesting the encoder data is not fast enough or not
available from time to time, and the latest data is always more important for system control than any historic values.

The transmit buffer is 32-bit in size and therefore four write accesses through the 8-bit data bus are required to fill it. The
bytes must be written into the buffer most significant byte first (MSB, register SPI_BUFFERS3) and least significant byte
last (LSB, register SPI_BUFFERDO). Following this rule, the control logic is able to detect a new 32-bit value and can
automatically transfer the content of the transmit buffer to the 64 entry FIFO buffer.

The FIFO also contains an output buffer between the FIFO and transmit shift register. As soon as the shift register is
empty or the last SPI transfer is finished, the content of this buffer is transferred to the shift register and the next value for
the buffer is fetched from the FIFO. At the same time, the signal SPI_DATA_AVAILABLE is set to '1". This output signal
can be selected as an alternate function to pin GPIO6 and indicate any attached controller that new data is available and
another SPI transaction should be initiated to read this data.

Flags in the status register (SPI_STATUS) indicate an end of SPI transmission with new data available in the receive
buffer (EOT), currently no SPI transfer on-going (NO_TRANSFER), and transmit buffer full (TX_FULL).

www.analog.com Analog Devices | 28

Universal Encoder Bus Controller TMC8100
(] oATA_AVAILABLE SPLSTATUS >
SPI_DATA_AVAILABLE -
CSN L——
SPI_CSN > »| SPLCRL |
SCLK
SPI_SCLK >
TX_DATA BYTE3 |-
> 2 TX_DATA_BYTE2 |«
& FIFO
< BUFFER
SPLSDO S le TXSHFT e BUFFER 64532 le—| TX_DATA BYTE1 |-
o
(D .
‘ﬂﬂ]— TX_DATA BYTEQ |«
DATA
BUS
RX_DATA BYTE3 |—»
RX_DATA BYTE2 —»
SP1_SDI »| L » RXSHFT [» BUFFER >
RX_DATA BYTE >
RX_DATA BYTEO [—
SPI_BUFFERx
SPI

Figure 14. SPI Block Diagram
Code example for SPI communication:

WAIT FOR CMD:
LD SPI STATUS, r0

NOP
TEST1 $0, r0 ; new SPI datagram received ?
JC SPI_CMD

JA WAIT FOR CMD

SPI CMD:
LD SPI BUFFER 3, r0
LDI $01, rl
CMP NE r0, rl ; compare MSB of datagram with $01
JC WAIT FOR CMD

ST SPI BUFFER 3, r0
LDI $31, r0 ; "1"
ST SPI_BUFFER 2, r0
LDI $30, r0 ; "O"
ST SPI BUFFER 1, r0
ST SPI_BUFFER 0, r0
JA WAIT FOR CMD

LDI $38, r0 ; "8" ; put "8100" into SPI transmit buffer

1’c
Overview

The I1°C block supports host/controller operation. Usually, either an external I°C EEPROM for standalone
operation/bootstrap or additional sensors (example, temperature) are connected here.

www.analog.com

Analog Devices | 29

Universal Encoder Bus Controller TMC8100

Main Features

Host/Controller

Receive shift register

Transmit shift register

Command buffer

Configurable start/stop repeated start stop conditions

7-bit address mode

Standard mode

Functional Description

The TMC8100 contains an I°C host interface. This interface supports 1°C standard mode. The physical interface consists
of the bidirectional serial data line 12C_SDA and the serial clock output I2C_SCL (alternate pin functions to GP1O2 and
GPIO3). Note that these serial interface signals must be selected individually in the GPIO matrix to make them available
externally. Also, open-drain operation instead of push-pull (default) for the SDA output must be activated explicitly in the
GPIO matrix. The pull-ups to Vccio must be added externally for valid signal levels.

An integrated baud rate generator is available, which uses the system clock as input. The limit value for the baud rate
generator (I2C_BAUD_L/H) can be calculated using the following formular:

fPLL_CLK
fI2C_SCL x 4

The I°C interface is optimized to support byte and page read and write operations in combination with an 24LC64
EEPROM or similar. Nevertheless, the 1°C host interface can be used for communication with other peripherals also.

I12C_BAUD =

For control of 1°C host operation, a command register is available. The following I°C commands are supported:

COMMAND LABEL COMMAND CODE DESCRIPTION
12C_CMD_STOP 0x00 Send stop condition.

Send start signal and transmit one byte afterwards (usually command

12 MD_START_TXD_ACK 1
C_CMD_S - _AC 0x0 byte). Sample/check target acknowledge.

12C_CMD_TXD_ACK 0x02 Transmit one byte and check/sample target acknowledge.
12C_CMD_RXD_ACK 0x03 Receive one byte and send acknowledge.
12C_CMD_RXD_NO_ACK 0x04 Receive one byte and send no acknowledge.

In case the last command is executed and there is no new command available, an 1C stop condition is sent automatically.
In case the command does include transmission of a byte, this must be written into the transmit shift register
(12C_BUFFER) prior to command initiation. A byte received is available in the receive shift register I2C_BUFFER at the
end of command execution. The status register indicates successful command execution (CMD_RDY), any acknowledge
bit received (RCV_ACK), and its value (RCV_ACK_VALUE).

www.analog.com Analog Devices | 30

Universal Encoder Bus Controller TMC8100

12C_STATUS

\

CONTROL 12CCMD [

12C_BAUD |-

- BAUDRATE DATA
- CLOCK GENERATOR BUS

[
SDA_IN »| 12CBUFFER
RX_DATA

[
_SDA_OUT I2C_BUFFER |
- TX_DATA |

12C_SCL -=

A
4

GPIO MATRIX

4

12C_SDA

i2c

Figure 15. 12C Block Diagram

Code example for I°C communication:

; send command + write address + data (I2C EEPROM)
LDI $a0, rO0

ST I2C_TX BUFFER, r0

LDI I2C_CMD_START TXD ACK, r0
ST I2C _CMD, rO0

LDI I2C STATUS, r0

WAIT1 $0, rO

; send address high byte
ST I2C_TX BUFFER, r4

LDI I2C_CMD_TXD_ACK, r0
ST I2C_CMD, r0

LDI IZC_STATUS, r0

WAIT1 $0, rO

; send address low byte
ST I2C_TX BUFFER, r3

LDI I2C CMD TXD ACK, r0
ST I2C CMD, rO

LDI I2C STATUS, r0

WAIT1 $0, rO

; send data byte

ST I2C_TX BUFFER, r6

LDI I2C_CMD TXD ACK, 0
ST IZC_CMD, r0

LDI I2C_STATUS, r0

WAIT1 $0, rO

; send stop

LDI I2C_CMD_STOP, r0

ST I2C _CMD, rO

LDI I2C STATUS, r0

WAIT1 $0, xO

www.analog.com Analog Devices | 31

Universal Encoder Bus Controller TMC8100

A/B/Z Encoder Interface
Overview

The TMC8100 offers a timer block with 32-bit position counter with programmable input decoder supporting incremental
(quadrature) encoder signals.

Main Features

32-bit position counter

Programmable input decoder supporting A/B/Z, x1, x2, CW/CCW, STEP/DIR

Decoder output for synchronization of external devices (with programmable pulse length)

Programmable input filter and sampling frequency

Programmable position counter reset on Z-channel and/or HOME switch event (once/always, programmable)
32-bit position capture register

Capture encoder counter value on Z-channel/HOME switch event (once/always)

2x 32-bit compare register for output waveform based on position counter value

Output pulse generation with programmable length (16-bit counter)

Functional Description

The TMC8100 contains a 32-bit counter with quadrature decoder for incremental encoder with A/B channel and optional
Z channel. These encoder inputs are available as alternate functions of the DIRECT_IN pins. The matrix must be
programmed accordingly to use these inputs. The encoder inputs must pass an optional filter with programmable sample
rate before decoding and the main 32-bit encoder counter is incremented or decremented accordingly. The decoder
supports quadrature (x4) decoding for the standard incremental encoder A and B channel signals and several other codes
too (x1, x2, CW/CCW, PULSE/DIR). The encoder counter can be captured and/or reset to its start value depending on a
programmable signal pattern in case of an Z channel event or an external trigger signal. This signal input has its own
optional filter and programmable sample rate and can be used as single trigger source for capturing the encoder counter
value or in combination with the Z channel event. The same trigger options are available for resetting the encoder counter
to its programmable start value. Both capture and reset events can be enabled and accepted continuously or just once.
This can be used for homing with reset and/or capture of encoder value once the home position is reached. Also, more
complex homing operations are supported, example, as soon as the home switch gets activated, the next encoder Z
channel event defines the precise home position (usually more precise than a mechanical home switch). The definition of
a Z channel event is fully programmable (rising or falling edges of one of the A/B or Z channel can be selected while the
other channels are either ignored, low, or high, for full flexibility.

For the 32-bit encoder counter, an upper wraparound limit can be defined. This way cyclic counting, example, adjusted
to one motor turn is supported.

For synchronization of external devices, the encoder counter offers two programmable outputs. The decoder output
(DECODER_OUT) generates one pulse with programmable length for each encoder counter increment or decrement.
The additional compare output signal (COMPARE_OUT) can be configured to generate a high signal of programmable
length in case the compare registers 0 and 1 are less or equal or greater than the encoder counter value.

Input and output polarities of all signals are programmable through the GPIO and DIRECT_IN matrix.

www.analog.com Analog Devices | 32

Universal Encoder Bus Controller TMC8100

TIMER_STATUS >
TIMER_ABZ_DIV -t
TIMER_HOME_DIV -

TIMER_AB_EVENT_CFG -t

] ENG A] TIMER_ZH_EVENT_CFG [«
o x A
ENeA 12 lecs _ o |CAPTIRE . ‘
ENC_B > = — > LAT » TIMER_CAPTURE >
ENC_Z ol o [ENCZ |5 RESET
~ ™5 > = » DECODER > TIVER_COUNTER >
HOME | 2 [HONE > DATA
> = ol UPIDOWN BUS
L] TIVER_START -
TIMER_LIMIT -
TIVER_CTRL -
HOME o ,7 TIMER_DEC_PULSE_LIMIT |
>
z <—» |_ UPDOWN | TIMER COMP PULSE CFG |
DECODER_OUT E le 2P0 _COMP_PULSE -
- < J L
2 - TIMER_COMPO -
o} -—> [*
COMPARE_OUT = -
- S
L] TINER_COMP1 <

TIMER_COMP_PULSE_LIMIT |

A/B/IZ ENCODER INTERFACE

Figure 16. A/B/N Encoder Interface Block Diagram
x1 Code Incremental Encoder Input

With x1 incremental code, the encoder position counter is incremented at the rising edge of channel A in case channel A
is leading and decremented at the falling edge of channel A if channel B is leading.

ENC_A _l—l—l—l_ . —I—I—I—I_

TIMER_COUNTER D< 6 >< 7 7 >< 6 >< 5

x2 Code Incremental Encoder Input

With x2 incremental code, the encoder position counter is incremented at both edges of channel A in case channel A is
leading and decremented at both edges of channel A if channel B is leading.

_ . o _ |

TIMER_COUNTER§< 6 >< 7 >< 8 >< 9 9 >< 8 >< 7 >< 6 >€

ENC_B

www.analog.com Analog Devices | 33

Universal Encoder Bus Controller TMC8100

x4 Code, A/B Incremental Encoder Input

With x4 incremental code, the encoder position counter is incremented at both edges of channel A and both edges of
channel B in case channel A is leading, and decremented at both edges of channel A and both edges of channel B if
channel B is leading. An additional channel N(neutral) or Z(zero) can be used to indicate zero/null position within one
rotation of the encoder. A pulse on this channel can be directly indicating zero position (example, rising or falling edge)
or just qualify a rising or falling edge on channel A or B as null/zero position.

ENC_A _I—I—l—l_ ’ —I—I—I—I—

ENC_B

TIMER_COUNTER 5

Code example for A/B/N incremental encoder:

; capture on z-channel high and channel b rising edge
LDI %0001 0111, rO

ST TIMER AB EVENT CFG, r0

LDI %0011 1001, rO

ST TIMER ZH EVENT CFG, r0

; select x4 code, capture on z-channel

LDI %0010 _0010, rO

ST TIMER_ CTRL, r0

; set length of decode output signal

LDI %0000_0010, rO

ST TIMER DEC PULSE_LIMIT, r0

; set counter limit to max and reset counter
LDI $ff, r0

ST TIMER LIMITO, rO

ST TIMER LIMIT1, rO

ST TIMER LIMIT2, r0

ST TIMER_LIMIT3, r0

; read abz encoder value
LD TIMER_COUNTER3, r3
LD TIMER_COUNTERZ, r2
LD TIMER_COUNTERI, rl
LD TIMER_COUNTERO, r0

CW and CCW Incremental Input

With this decoder configuration, different signals are used for counting up/clock-wise (cw) counting and counting
down/counter-clock-wise (ccw) counting of the encoder position counter.

PULSE/DIR Incremental Input

With this configuration, different signals are used for counting up/down and for direction control. The encoder position
counter either counts up or counts downwards with each pulse/step depending on polarity of the direction input.

www.analog.com Analog Devices | 34

Universal Encoder Bus Controller TMC8100

Appendix
Commands

The protocol engine inside the TMC8100 contains a programmable state machine. The architecture and command set
are optimized for the specific purpose of converting serial data into parallel and vice versa. This way, synchronous and
asynchronous bit-streams are supported with up-to 16 Mbit/s (with 128 MHz core clock frequency and eight times
oversampling). The protocol engine offloads the motion controller or main general-purpose microcontroller from this
conversion task, and in contrast to fully hardware-based solutions, offers a high degree of flexibility for current protocol
implementations, customization, and future protocol extensions.

The protocol engine accepts a set of 16-bit wide commands while operating on 8-bit data. The command execution
pipeline includes two fetch stages and one decode/execute stage. An additional write-back stage offers a bypass to
reduce pipeline delays. A 12-bit program counter selects the next address from the 2048 x 16 on-chip program memory.
For program branches, conditional and unconditional jumps are supported. While most instructions are executed in one
clock cycle, branch instructions usually require three cycles as the command pipeline must be refilled. Nevertheless, to
be able to use the otherwise empty slots after a taken branch, delayed jumps are supported. For delayed jumps, the two
instructions after the jump are always executed before continuing at the jump target address. A hardware stack with eight
entries supports nested subroutines with call/return instructions. Also, for small command loops with known number of
cycles, hardware loopbacks with integrated instruction cache are available for loop unrolling without any instruction
overhead or pipeline delay.

The load/store architecture operates on 8x 8-bit general-purpose registers. In addition, there are a number of flag registers
and system registers available for accessing several timers/counters and the CRC unit integrated into the core. For the
main purpose of serial/parallel data conversion, several shift and bit tests and manipulate commands are available that
can be linked to timer/clock events to synchronize command processing to the serial bit stream.

To ensure highly deterministic program execution times, each instruction contains a conditional execution flag (instruction
basically requires the same time whether executed or not) and there are no interrupts. Nevertheless, in combination with
the core timer, block timeouts are supported while processing the data stream.

Overview

Program Flow Control

COMMAND SYNTAX DESCRIPTION

JA/JC JA <addr> Jump always (JA) or jump conditionally (JC) to immediate program memory

JC <addr> address.

In case the jump is taken, two additional idle cycles are inserted after this instruction
before the first instruction at the target address is executed.

JFA/JFC JFA <addr> Jump (fast) to immediate program memory address (without inserting idle cycles).
JFC <addr> Always execute the two instructions immediately after this instruction before the next

instruction or the first instruction at the jump target address is executed (without idle
cycles).

CALL CALL <addr> Jump to immediate address, remember address of next instruction on return
address stack.

RSUB RSUB Return from sub-routine (jump back to address on top of return address stack).

REP REP <loops>, <instr> Hardware loop consisting of <instr> subsequent instructions (<instr> = 1...4

instructions supported). Loop is executed <loops> + 1 time without jump back
overhead (no additional cycles) using instruction loop cache (<loops>=0...7 - 0...7
jump backs/1..8 loop execution supported in hardware).

WAITO WAITO <bit>, <reg> Stop program execution until <bit> of register at peripheral address <reg> is zero.

WAIT1 WAIT1 <bit>, <reg> Stop program execution until <bit> of register at peripheral address <reg> is one.

WAITOSF WAITOSF <wait_flag>, <wait_ctrl> Stop program execution until <wait_flag> is zero, then perform action according to
<wait_ctrl>.

WAIT1SF WAIT1SF <wait_flag>, <wait_ctrl> Stop program execution until <wait_flag> is one, then perform action according to
<wait_ctrl>.

NOP NOP No operation.

www.analog.com Analog Devices | 35

Universal Encoder Bus Controller TMC8100
| HALT | HALT | Stop program counter (do not use during regular program flow).
<addr> immediate 11-bit address value 0...2047
<bit> bit within one byte 0...7
<reg> any general purpose register 0...7
<wait_flag> DESCRIPTION
0 DIRECT_IN[O]
1 DIRECT_IN[1]
2 DIRECT_IN[2]
3 DIRECT_IN[3]
4 Overflow counter
5 Pulse counter has reached pulse counter limit
6 Overflow timer
7 No wait
<wait_ctrl> DESCRIPTION
0 No action
1 Start timer
2 Stop timer
3 No action
4 If DIRECT IN[0] is 0/1 increment pulse counter limit
5 If DIRECT _IN[1] is 0/1 increment pulse counter limit
6 If DIRECT _IN[2] is 0/1 increment pulse counter limit
7 If DIRECT _IN[3] is 0/1 increment pulse counter limit
Load/Store/Move Operations
COMMAND SYNTAX DESCRIPTION
LD LD <addr>, <reg> Read from data memory/peripheral address <addr> and load into register
<reg>.
ST ST <addr>, <reg> Store register contents <reg> at data memory/peripheral address <addr>.
LDI LDI <data>, <reg> Load <data> value into register.
LDR LDR <regy>, <regz> Load value from data memory/peripheral at address provided in <regy> and
store value in register <regz>.
STR STR <regy>, <regz> Store register <regz> value at data memory/peripheral address given in
register <regy>.
LDS LDS <system_unit>, <system_reg_read>, Store contents of <system_reg> part of <system_unit> in <reg>.
<reg>
STS STS <reg>, <system_unit>, Store contents of <reg> in <system_reg> part of <system_unit>.
<system_reg_write>

<addr> immediate (part of the instruction word) 8-bit data memory/peripheral address 0...255

<data> immediate (part of the instruction word) 8-bit data 0...255
<reg>, <regy>, <regz> any general purpose register 0...7

<system_unit> <system_reg_read> DESCRIPTION

0: Core 0 Program source
Bit 0 — 0: ROM bootloader

Bit 0 — 1: SRAM program memory

1: Timer 1 Counter value

2 Pulse counter value

3 Timer value

4 Timeout counter value
2: CRC 0 CRC result [7:0]

www.analog.com

Analog Devices | 36

Universal Encoder Bus Controller

TMC8100

CRC result [15:8]

CRC result [23:16]

CRC result [31:24]

<system_unit>

<system_reg_write>

DESCRIPTION

0: Core

0

Select program source
Bit 0 — 0: ROM bootloader
Bit 0 — 1: SRAM program memory

Bit 0 — DIRECT _IN[3:0] input filter enable
Bit 2, 1 — DIRECT_IN[3:0] filter sample scaler (/1, /8, /64, /512)
Bit 3 — Select Manchester decoder

Timeout jump target address [7:0]

Timeout jump target address[10:8]

Manchester decoder sample window low [4:0]

Manchester decoder sample window high [4:0]

1: Timer

Pre-scaler limit

Counter limit

Pulse counter limit

Timer limit

Timeout counter limit

QB WIN = (OO |d|Ww|N

Bit 0 — Counter enable
Bit 1 — Timer enable
Bit 2 — Select pre-scaler for timer

~

Timer limit (without resetting timer)

2:CRC

Circular buffer for writing 32-bit CRC start value beginning with the LSB (CRC start
value[7:0])

Circular buffer for writing 32-bit CRC polynomial beginning with the LSB (CRC
polynomial[7:0])

Bit 0 — CRC polynomial[32]

Bit 1 — CRC out in reverse order

When writing to this register the write buffer pointer for the 32-bit CRC start value and 32-bit
CRC polynomial value is reset to the first entry/LSB.

Set/Clear/Move Individual Bits

COMMAND SYNTAX INSTRUCTION FORMAT
SET SET <bit>, <regy>, <regz> Copy contents of <regy> to <regz> and set <bit> to ‘1’.
CLR CLR <bit>, <regy>, <regz> Copy contents of <regy> to <regz> and clear <bit> to ‘0.
SFSET SFSET WAITOSF <wait_flag>, <flag_reg_out>, <bit> | Write ‘1’ to <bit> of <flag_reg_out> as soon as <wait_flag>
condition is ‘0.
SFSET WAIT1SF <wait_flag>, <flag_reg_out>, <bit> | Write ‘1’ to <bit> of <flag_reg_out> as soon as <wait_flag>
condition is ‘1.
SFCLR SFCLR WAITOSF <wait_flag>, <flag_reg_out>, <bit> | Write ‘0’ to <bit> of <flag_reg_out> as soon as <wait_flag>
condition is ‘0’.
SFCLR WAIT1SF <wait_flag>, <flag_reg_out>, <bit> | Write ‘0’ to <bit> of <flag_reg_out> as soon as <wait_flag>
condition is ‘1°.
MOVBO MOVBO <bit>, <regy>, <regz> Overwrite bit 0 of <regz> with <bit> of <regy>.
MOVB7 MOVBY7 <bit>, <regy>, <regz> Qverwrite bit 7 of <regz> with <bit> of <regy>.
MOVCRC MOVCRC <bit>, <regz> Move <bit> of <regz> to serial input of CRC unit.
MOVNCRC MOVNCRC <bit>, <regz> Move inverted <bit> of <regz> to serial input of CRC unit.
MOVF MOVF <bit>, <regz> Overwrite <bit> of <regz> with flag status.
MOVNF MOVNF <bit>, <regz> Overwrite <bit> of <regz> with inverted flag status.

<bit>: bit within register byte 0...7

<regy>, <regz>: any general purpose register 0...7

www.analog.com

Analog Devices | 37

Universal Encoder Bus Controller

<wait_flag>

DESCRIPTION

DIRECT_IN[0]

DIRECT_IN[1]

DIRECT_IN[2]

DIRECT_IN[3]

Overflow flag counter

Overflow flag timer

Overflow flag pulse counter

~N (OO~ (WIN |- |O

No wait

<flag_reg_out>

DESCRIPTION

Bit 0 — DIRECT_OUTI[0]
Bit 1 — DIRECT_OUT[1]
Bit 2 — DIRECT_OUT[2]
Bit 3 — DIRECT_OUTI[3]
Bit 4 — DIRECT_OUT[0] + CRC unit serial in
Bit 5 — DIRECT_OUT[1] + CRC unit serial in
Bit 6 — DIRECT_OUT[2] + CRC unit serial in
Bit 7 — DIRECT_OUTI[3] + CRC unit serial in

Bit 0 — DIRECT_OUTI0] enable (push-pull)
Bit 1 — DIRECT_OUTI[1] enable (push-pull)
Bit 2 — DIRECT_OUTI[2] enable (push-pull)
Bit 3 — DIRECT_OUT][3] enable (push-pull)

TMC8100

2 Bit 0 — CRC unit

3 Bit 0 — counter enable
Bit 1 — timer enable
Bit 2 — timeout counter enable

4 Bit 0 — counter reset
Bit 1 — timer reset
Bit 2 timeout counter reset

Arithmetic and Logic Operations

COMMAND SYNTAX DESCRIPTION
AND AND <regx>, <regy>, <regz> Store result of <regx> and (bitwise) <regy> in <regz>.
OR OR <regx>, <regy>, <regz> Store result of <regx> or (bitwise) <regy> in <regz>.
XOR XOR <regx>, <regy>, <regz> Store result of <regx> exclusive or (bitwise) <regy> in <regz>.
NOT NOT <regy>, <regz> Store inverted (bitwise) value of <regy> in <regz>.
REV REV <regy>, <regz> Reverse bits in <regy> and store result in <regz>.
ADD ADD <regx>, <regy>, <regz> Add <regx> to <regy> and store result in <regz>.
SUB SUB <regx>, <regy>, <regz> Substract <regy> from <regx> and store result in <regz>.
INC INC <regy>, <regz> Increment <regy> and store result in <regz>.
DEC DEC <regy>, <regz> Decrement <regy> and store result in <regz>.

Compare and Test Operations

COMMAND SYNTAX DESCRIPTION
COMP LT COMP LT <regy>, <regz> If <regy> is less than <regz>, the flag is set — otherwise cleared.
COMP LE COMP LE <regy>, <regz> If <regy> is less than or equal to <regz>, the flag is set — otherwise
cleared.
COMP EQ COMP EQ <regy>, <regz> If <regy> is equal to <regz>, the flag is set — otherwise cleared.
COMP NE COMP NE <regy>, <regz> If <regy> is not equal to <regz>, the flag is set — otherwise cleared.
TESTO TESTO <bit>, <reg> If <bit> of <reg> is ‘0’, the flag is set — otherwise cleared.

www.analog.com

Analog Devices | 38

Universal Encoder Bus Controller

TMC8100

TEST1 TEST1 <bit>, <reg> If <bit> of <reg> is ‘1’, the flag is set — otherwise cleared.
SFTESTO SFTESTO <flag_reg_in>, <bit> If <bit> of <flag_reg_in> is ‘0’, the flag is set — otherwise cleared.
SFTEST1 SFTEST1 <flag_reg_in>, <bit> If <bit> of <flag_reg_in> is ‘1’, the flag is set — otherwise cleared.

<regx>, <regy>, <regz>: any general purpose register

<bit>: bit within byte 0...7

<flag_reg_in>

DESCRIPTION

0 Bit 0 — DIRECT_IN[0]
Bit 1 — DIRECT_IN[1]
Bit 2 — DIRECT_IN[2]
Bit 3 — DIRECT_IN[3]

1 Bit 0 — clock generator output
Bit 1 — set to one in case pulse counter has reached limit value

Shift Operations

COMMAND SYNTAX INSTRUCTION FORMAT
SHLO SHLO WAITOSF <wait_flag>, <out_flag>, Shift <reg> left one bit as soon as
<reg> <wait_flag> is ‘0’ and output MSB to
<out_flag>.
SHLO WAIT1SF <wait_flag>, <out_flag>, Shift <reg> left one bit as soon as
<reg> <wait_flag> is ‘1’ and output MSB to
<out_flag>.
SHLI SHLI WAITOSF <wait_flag>, <reg>, Shift <reg> left one bit as soon as
<in_flag> <wait_flag> is ,0’ with LSB from <in_flag>.
SHLI WAIT1SF <wait_flag>, <reg>, Shift <reg> left one bit as soon as
<in_flag> <wait_flag> is ,1° with LSB from <in_flag>.
SHRO SHRO WAITOSF <wait_flag>, <reg>, Shift <reg> right one bit as soon as
<out_flag> <wait_flag> is ‘0’ and output LSB to
<out_flag>.
SHRO WAIT1SF <wait_flag>, <reg>, Shift <reg> right one bit as soon as
<out_flag> <wait_flag> is ‘1’ and output LSB to
<out_flag>.
SHRI SHRI WAITOSF <wait_flag>, <in_flag>, Shift <reg> right one bit as soon as

<reg>

<wait_flag> is ,0’ with MSB from <in_flag>.

<reg>

SHRI WAIT1SF <wait_flag>, <in_flag>,

Shift <reg> right one bit as soon as
<wait_flag> is ,1° with MSB from <in_flag>.

<reg>: any general purpose register 0...7

<wait_flag> DESCRIPTION

DIRECT_IN[0]

DIRECT _IN[1]

DIRECT IN[2]

DIRECT _IN[3]

Overflow counter

Overflow pulse counter

Overflow timer

N[O g |bh W N (= O

No wait

<out_flag>

DESCRIPTION

DIRECT_OUTI0]

DIRECT_OUT[1]

DIRECT_OUT[2]

DIRECT_OUT[3]

AW I|IN|= O

DIRECT_OUT[0] and CRC unit serial in

www.analog.com

Analog Devices | 39

Universal

Encoder Bus Controller

5 DIRECT_OUT][1] and CRC unit serial in
6 DIRECT_OUT][2] and CRC unit serial in
7 DIRECT_OUT][3] and CRC unit serial in
<in_flag> DESCRIPTION

0 DIRECT_INJ[O]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_INJ[3]

4 DIRECT _IN[0] and CRC unit serial in
5 DIRECT IN[1] and CRC unit serial in
6 DIRECT IN[2] and CRC unit serial in
7 DIRECT IN[3] and CRC unit serial in

www.analog.com

TMC8100

Analog Devices | 40

Universal Encoder Bus Controller TMC8100

JA/JC (Jump Always/Jump Conditionally)
Operation:

Jump always (JA) or jump conditionally (JC) to immediate program memory address. The immediate address is always
the address of an instruction word (16-bit) in program memory (either bootloader ROM or program memory SRAM).
Execution of the instruction itself requires one clock cycle. In case the jump is taken, there is an additional pipeline delay
of two clock cycles before the instruction at the specified jump target program memory address is executed.

Assembler Syntax:

JA <addr>

JC <addr>

<addr>: program memory address (jump target) 0..2047

Instruction Format:

C 1 0 0 0 addr[10:0]
15 0

c: condition flag
o 0: Always execute jump instruction/jump always (JA)
e 1: Execute jump instruction in case flag is "1'/jump conditionally (JC)

addr[10:0] immediate address of jump target instruction. Specifies any instruction within 2Kx16 (4KB) program memory
area 0...2047.

Example:

CLK DIN = $4a

WAIT FOR PLL:
LD CLK DIN, r0
NOP
TEST1 $7, r0
JC WAIT FOR PLL

In this example, the jump back to the start of the loop takes place in case the TEST1 instruction immediately before the
JC instruction is successful and the flag bit is set. The assembler supports symbolic names for jump addresses and
calculates the address automatically (in this case "WAIT_FOR_PLL"). Note the "' behind the placeholder for the address
- indicating that the current program memory address is assigned to this placeholder instead of a value.

www.analog.com Analog Devices | 41

Universal Encoder Bus Controller TMC8100

JFA/JFC (Jump Fast Always/Jump Fast Conditionally)
Operation:

Jump fast always (JFA) and jump fast conditional (JFC) to immediate program memory address. The immediate address
is always the address of an instruction word (16-bit) in program memory (either bootloader ROM or program memory
SRAM). Execution of the instruction itself requires one clock cycle. The next two instructions located immediately after
the jump instruction in the program code are always executed (whether the jump is taken or not). This way, no additional
wait cycles are necessary in case the jump is taken.

Assembler Syntax:

JFA <addr>

JFC <addr>

<addr>: program memory address (jump target) 0..2047

Instruction Format:

C 1 0 0 1 addr[10:0]
15 0

C: condition flag
e 0: Always execute jump instruction/jump fast always (JFA)
o 1: Execute jump instruction in case flag is '1'/jump fast conditionally (JFC)

addr[10:0] immediate address of jump target instruction. Specifies any instruction within 2Kx16 (4KB) program memory
area 0...2047.

Example:

GPIO _OUT = $40

WAIT:
LDI %0101 0101, r0
ST GPIO OUT, r0
JFA WAIT
LDI %1010 1010, r0
ST GPIO OUT, r0

In this example, the jump back to the start of the loop always takes place. The two instructions after the JFA WAIT
command at the end of the example code snippet are executed before the first instruction at the start of the loop is
executed again. The code sequence results in toggling of the GPI10O outputs (01010101 — 10101010 — 01010101 — ...).
The assembler supports symbolic names for jump addresses and calculates the address automatically (in this case
"WAIT"). Note the "' behind the placeholder for the address - indicating that the current program memory address is
assigned to this placeholder instead of an explicitly assigned value.

www.analog.com Analog Devices | 42

Universal Encoder Bus Controller TMC8100

CALL (Call Subroutine)
Operation:

Branch to subroutine. The immediate address is always the address of an instruction word (16-bit) in the program memory
(either bootloader ROM or program memory SRAM). Execution of the instruction itself requires one clock cycle. For the
unconditional CALL command, the next two instructions located immediately after the CALL instruction in the program
code are always executed before the program jump takes place. This way, no additional wait cycles are necessary. For
the conditional CCALL instruction, there is an additional delay of two clock cycles automatically inserted before the
instruction at the specified branch target program memory address is executed. In case the branch is taken, the return
address (the address of the instruction immediately after the CALL instruction) is stored on a return stack. The dedicated
return stack avoids any additional clock cycles required otherwise for memory access to store the return address. The
return stack offers a maximum of eight entries. This limits the number of nested branches to subroutines (call of another
subroutine within a subroutine) to 8.

Assembler Syntax:

CALL <addr>

CCALL <addr>

<addr>: program memory address (start of subroutine) 0...2047

Instruction Format:

C 1 0 1 0 addr[10:0]

15 0

C: condition flag
e 0: Always execute call instruction/branch to subroutine (CALL)
e 1: Execute call instruction/branch to subroutine in case flag is '"1'/(CCALL)

addr[10:0] immediate address of branch target instruction. Specifies any instruction within 2Kx16 (4KB) program memory
area 0...2047.

Example:
GPIO OUT = $40 ; 0100_0000
GPIO IN = $40

CALL TOGGLE_ GPIO
NOP
NOP

TOGGLE_GPIO:
LD GPIO_IN, r0
LDI S$ff, rl
RSUB
XOR r0, rl, xO
ST GPIO OUT, r0

In this example, the program branch/call of the subroutine TOGGLE_GPIO always takes place. The two NOP instructions
immediately following the CALL instruction in program code are executed before the first instruction of the subroutine LD
GPIO_IN, r0 is executed. At the end of the subroutine, the RSUB command initiates a jump back to the calling routine.
The two instructions after the RSUB command (XOR ...) are still executed before the first NOP instruction immediately
following the CALL instruction in the main function is executed.

www.analog.com Analog Devices | 43

Universal Encoder Bus Controller TMC8100

The assembler supports symbolic names for jump addresses and calculates the address automatically (in this case
"TOGGLE_GPIO"). Note the "' behind the placeholder for the address - indicating that the current program memory
address is assigned to this placeholder instead of an explicitly assigned value.

www.analog.com Analog Devices | 44

Universal Encoder Bus Controller TMC8100

RSUB (Return from Subroutine)
Operation:

Return from subroutine. This command does not require any parameter. Instead, the branch target address is taken from
the top of the hardware return stack. Execution of the instruction itself requires one clock cycle. For the unconditional
RSUB command, the next two instructions located immediately after the RSUB instruction in the program code are
executed before the instruction at the branch target address is executed. This way, no additional wait cycles are necessary
for the jump back. For the conditional RSUB instruction, two idle clock cycles are inserted automatically before the
instruction at the branch target is executed.

Assembler Syntax:
RSUB
CRSUB

Instruction Format:

c|fo0]J]OfO]JOfO]JO]O]O 1{0|]0]j]O0O|O0O]O0fO

15 0

C: condition flag
e 0: Always execute instruction/return from subroutine (RSUB)

e 1: Execute instruction/branch back from subroutine to calling function in case flag is '"1'/(CRSUB)

Example:
GPIO OUT = $40 ; 0100 _0000
GPIO_IN = $40

CALL TOGGLE_GPIO
NOP
NOP

TOGGLE_GPIO:
LD GPIO_IN, r0
LDI S$ff, rl
RSUB
XOR r0, rl, rO
ST GPIO OUT, r0

In this example, the program branch/call of the subroutine TOGGLE_GPIO always takes place. The two NOP instructions
immediately following the CALL instruction in program code are executed before the first instruction of the subroutine LD
GPIO_IN, r0 is executed. At the end of the subroutine, the RSUB command initiates a jump back to the calling routine.
The two instructions after the RSUB command (XOR ...) still are executed before the first NOP instruction immediately
following the CALL instruction in the main function is executed.

The assembler supports symbolic names for jump addresses and calculates the address automatically (in this case
"TOGGLE_GPIO"). Note the "' behind the placeholder for the address - indicating that the current program memory
address is assigned to this placeholder instead of an explicitly assigned value.

www.analog.com Analog Devices | 45

Universal Encoder Bus Controller TMC8100

REP (Repeat/Initialize Hardware Loop)
Operation:

Initialize hardware loop. This command supports loop unrolling in hardware at program execution time to eliminate the
additional clock cycles for loop counting and jump back for repeated execution of loop instructions. Traditional loop
unrolling at compile time typically increases program length significantly. With loop unrolling in hardware, just the
additional command for initialization (REP) is required. Execution of this command takes one clock cycle. The loop starts
immediately after this instruction.

During regular program execution, all instructions executed are remembered using a first-in first-out (FIFO) buffer with
four entries. This buffer is used for repeated execution of instructions during loop unrolling. Instructions are seamlessly
fetched from the FIFO buffer after the loop is executed for the first time avoiding additional clock cycles/overhead for jump
back and instruction fetching. There is a hardware counter available that limits the number of loops being executed. A
hardware loop may contain up to four instructions (1...4) and supports up-to eight times (1...8) loop execution.

Assembler Syntax:

REP <loops>, <instr>

CREP <loops>, <instr>

<loops>: Loop is repeatedly executed <loops> times (<loops> = 1..8x loop execution).

<instr>: Loop consists of <instr> subsequent instructions (<instr> = 1..4 instructions supported).

Instruction Format:

C 0 0 0 0 0 0 0 1 1 loops[2:0] instr[2:0]

15 0

loops[2:0]: 1..8 loops are encoded as 0...7
instr{2:0]: 1..4 instructions are encoded as 0...3
C: condition flag
e 0: Always execute instruction/initialize hardware loop (REP)
o 1: Execute instruction/initialize hardware loop in case flag is '1'/(CREP)

Example:

;7 <wait flag>
WAIT OVERFLOW_TIMER = 6

; <in_flag>
FLAG IN1 CRC = 5

REP 4, 1

; wait for timer overflow and shift in data

SHRI WAIT1SF WAIT OVERFLOW TIMER, FLAG71N17CRC, r3
REP 8, 1

; wait for timer overflow and shift in data

SHRI WAIT1SF WAIT OVERFLOW_TIMER, FLAG_INI_CRC, rd

In this example, the first SHRI command (shift data bits in) is repeated four times and the second SHRI command eight
times. In both cases, just one command is repeatedly executed. Short loops benefit more from hardware loop unrolling
as the overhead in software required otherwise for counting loops and jumping back dominates loop execution time.

www.analog.com Analog Devices | 46

Universal Encoder Bus Controller TMC8100

WAITO/WAIT1 (Wait with Program Execution)
Operation:

Wait with further program execution until register bit (example, status flag) of peripheral register connected to data bus
has changed to zero (WAITO) or one (WAIT1). In case the specified bit is already zero/one, execution of the instruction
takes just one clock cycle. Otherwise, the specified register is read during each clock cycle and checked for the status of
the bit within this register. As soon as the bit has changed, program execution continues. This instruction can be used to
synchronize program execution to external signals, serial data received, or timer events.

Assembler Syntax:

WAITO <bit>, <reg>

CWAITO <bit>, <reg>

WAIT1 <bit>, <reg>

CWAIT1 <bit>, <reg>

<bit>: bit within byte that is monitored (0...7)

<reg>: register (0...7) with address of peripheral register (0...255)
Instruction Format WAITO:

c 0 0]0 0]0 0 1 0 0 reg[2:0] bit[2:0]

15 0

Instruction Format WAIT1:

c 0 0]0 0]0 0 1 0 1 reg[2:0] bit[2:0]

15 0

c: condition flag
e 0: Always execute instruction/wait

e 1: Execute instruction/wait in case flag is '1'/(CWAITO0/1)

Example:
UARTOiBUFFER = $08
UARTOisTATUS = $0b

LDI UARTO STATUS, r2
WAIT1 $0, r2
LD UARTO BUFFER, rl

In this example, the address of the UARTO status register (UARTO_STATUS) is loaded into register r2. Program execution
waits until bit 0 of the status register gets one (byte received). Immediately afterwards, data byte received is read out from
the UARTO receive buffer register (UARTO_BUFFER).

www.analog.com Analog Devices | 47

Universal Encoder Bus Controller TMC8100

WAITOSF/WAIT1SF (Wait with Program Execution)
Operation:

Wait with further program execution until selected system flag <wait_flag> has turned to zero (WAITO) or one (WAIT1).
In case the specified system flag is already zero/one, execution of the instruction takes just one clock cycle. Otherwise,
the specified flag is read during each clock cycle and status/value is checked. As soon as the flag has changed, the
specified action <wait_ctrl> is initiated and program execution continues without any further delay. This instruction can be
used to synchronize program execution to external signals or timer events.

Assembler Syntax:

WAITOSF <wait_flag>, <wait_ctrl>
CWAITOSF <wait_flag>, <wait_ctrl>
WAIT1SF <wait_flag>, <wait_ctrl>
CWAIT1SF <wait_flag>, <wait_ctrl>

<wait_flag> DESCRIPTION

DIRECT _IN[O]

DIRECT _IN[1]

DIRECT _IN[2]

DIRECT _IN[3]

Overflow counter

Pulse counter has reached pulse counter limit
Overflow timer

No wait

N[O g |w|IN |- O

<wait_ctrl> DESCRIPTION

No action

Start timer

Stop timer

No action

If DIRECT_IN[O] is 0/1 increment pulse counter limit
If DIRECT _IN[1] is 0/1 increment pulse counter limit
If DIRECT _IN[2] is 0/1 increment pulse counter limit
If DIRECT _IN[3] is 0/1 increment pulse counter limit

N[O O WN (= |O

Instruction Format (WAITOSF):

C 0 0 0 0 0 0 1 1 0 |wait_flag[2:0] | wait_ctrl[2:0]
15 0

Instruction Format (WAIT1SF):

C 0 0 0 0 0 0 1 1 1 |wait_flag[2:0] | wait_ctrl[2:0]

15 0

C: condition flag
¢ 0: Always execute instruction/wait
o 1: Execute instruction/wait in case flag is '1'/(CWAITOSF/CWAIT1SF)

Example:

;7 <wait flag>
WAIT _INO = 0
WAIT IN1 = 1

www.analog.com Analog Devices | 48

Universal Encoder Bus Controller TMC8100

WAIT IN2 = 2
WAIT IN3 = 3
WAIT OVERFLOW COUNTER
WAIT OVERFLOW PULSE =
WAIT OVERFLOW TIMER =
NO WAIT = 7

Il
i

o U

; <wait ctrl>
WAIT NO ACTION = 0
WAIT START TIMER = 1
WAIT STOP TIMER = 2
WAIT INO INC_PULSE =
WAIT IN1 INC PULSE
WAIT IN2 INC PULSE
WAIT71N37INC7PULSE

< o 0o

WAITOSF WAIT IN1, WAIT START TIMER

Wait for rising edge (0 — 1) on DIRECT_IN[1] (WAIT_IN1) and then start timer (WAIT_START_TIMER).

www.analog.com Analog Devices | 49

Universal Encoder Bus Controller TMC8100

NOP (No Operation)
Operation:

No operation. This command does not require any parameter and executes in one clock cycle. Note: NOP and the
conditionally executed CNOP instruction have the same effect on program execution.

Assembler Syntax:
NOP
CNOP

Instruction Format:

cfo0ojofojofojojojojofojofojofo]o
15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute instruction in case flag is '"1'/(CNOP)

Example:

STATUS = $4c

LD STATUS, r0
NOP
TEST1 $2, r0

In this example, the contents of a peripheral status register are copied into register r0. As this requires one additional
clock cycle, a NOP instruction is inserted before the register contents are available and can be tested with the TEST1
instruction.

www.analog.com Analog Devices | 50

Universal Encoder Bus Controller TMC8100

HALT (Stop Program Execution)
Operation:

This instruction is automatically inserted into the instruction pipeline in case the execution stage is waiting for some event.
The execution of this instruction takes one clock cycle but in contrast to the NOP instruction, the program counter is not
incremented. Therefore, this instruction should not be used within regular program code.

Assembler Syntax:
HALT
CHALT

Instruction Format:

c|fo0O]J]O0O|O]JOfO]O0O]O 1]0(0]j]O0OfO0O]JO0O|O0]O
15 0

c: condition flag
¢ 0: Always execute instruction

e 1: Execute instruction in case flag is '1'/(CHALT)

www.analog.com Analog Devices | 51

Universal Encoder Bus Controller TMC8100

LD (Load Data from Immediate Address)
Operation:

Load value from data memory or peripheral register through data bus into processor register. The data memory/peripheral
register address is part of the instruction word. Any processor register can be selected as target register. The execution
of this instruction takes one clock cycle. Note that the selected value is not immediately available after execution of this
command. It requires one more clock cycle before the value is available in the processor register for further processing
due to the data memory pipeline.

Assembler Syntax:

LD <addr>, <reg>

CLD <addr>, <reg>

<addr>: data memory/peripheral register address 0...255
<reg>: target register 0...7

Instruction Format:

C 1 1 0 0 addr[7:0] reg[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute LD instruction in case flag is '1'/load conditionally (CLD)

addr[7:0] immediate data memory/peripheral register address. Specifies any location within 256 byte data memory area
0...255.

Example:

STATUS = $4c

LD STATUS, r0
NOP
TEST1 $2, r0

In this example, the contents of the system status register are loaded into processor register 0. A NOP instruction is
inserted immediately afterwards before the contents of the register 0 is accessed and tested.

Example:

i gpio
GPIOO_ALTI_FUNCTION = $44
GPIO_OUT_ENABLE = $45

LD GPIOO_ALTI_FUNCTION, r0
LD GPIO OUT ENABLE, rl

SET $0, r0, r0

CLR $5, rl, ril

ST GPIOO0 ALT1 FUNCTION, r0
ST GPIO OUT ENABLE, rl

In this second example, the content of GPIOO0 alternate function register is loaded into register 0 and the contents of the
GPIO output enable register into register 1 before both registers are modified. Note that both registers are loaded with
one clock cycle delay before the new contents of the registers are accessed. By rearranging instructions, it is possible to
fill the gap with a "useful"/required instruction instead of inserting a NOP.

www.analog.com Analog Devices | 52

Universal Encoder Bus Controller TMC8100

ST (Store Data at Inmediate Address)
Operation:

Store register value at data memory location or peripheral register. The data memory/peripheral register address is part
of the instruction word. Any processor register can be selected as source register. The execution of this instruction takes
one clock cycle.

Assembler Syntax:

ST <addr>, <reg>

CST <addr>, <reg>

<addr>: data memory/peripheral register address 0...255 of target
<reg>: source register 0...7

Instruction Format:

C 1 1 0 1 addr[7:0] reg[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute ST instruction in case flag is '1'/load conditionally (CST)

addr[7:0] immediate data memory/peripheral register address. Specifies any location within 256 byte data memory area
0...255.

Example:

; gpio
GPIOO0 ALT1 FUNCTION = $44
GPIO_OUT_ENABLE = $45

LD GPIOO_ALTl_FUNCTION, r0
LD GPIO_OUT_ENABLE, rl

SET $0, r0, rO

CLR $5, rl1, rl

ST GPIOO ALT1 FUNCTION, r0
ST GPIO OUT ENABLE, rl

In this example, the contents of GPIO0 alternate function register are loaded into register 0 and the contents of the GPIO
output enable register into register 1 before both registers are modified. Both registers are loaded with one clock cycle
delay before the new contents of the registers are accessed. By rearranging instructions, it is possible to fill the gap with
a "useful"/required instruction instead of inserting a NOP. At the end of the example, both registers rO and r1 are copied
to peripheral register locations (r0 — GPIO_ALT1_FUNCTION, r1 — GPIO_OUT_ENABLE).

www.analog.com Analog Devices | 53

Universal Encoder Bus Controller TMC8100

LDI (Load Immediate Data)
Operation:

Load immediate 8-bit value (part of the instruction) into processor register. Any processor register can be selected as
target register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the value is
immediately available for further processing in the next clock cycle/with the next instruction.

Assembler Syntax:

LDI <data>, <reg>

CLDI <data>, <reg>

<data>: immediate data value 0...255 (part of the instruction word)
<reg>: processor target register 0...7

Instruction Format:

C 1 1 1 0 data[7:0] reg[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute LDl instruction in case flag is '1'/load conditionally (CLDI)
data[7:0] immediate data value 0...255.
reg[2:0] processor register
Example:

UARTO_CTRL = $0b

; 8x sampling, filter, autobaud enable, message size = 0
LDI %0000 0101, rl
ST UARTO_CTRL, rl

In this example, the peripheral control register of UARTO is initialized with a constant value.

www.analog.com Analog Devices | 54

Universal Encoder Bus Controller TMC8100

LDR (Load Data from Register Address)
Operation:

Load value from data memory/peripheral register at address taken from processor register into target register. Any
general-purpose processor register can be selected as register with address value and as target register. The execution
of this instruction takes one clock cycle. Note that the data transfer from data memory to processor register takes another
clock cycle due to the data memory access pipeline. Therefore, the value from data memory/peripheral register is
available with one cycle delay in the target register for further processing.

Assembler Syntax:

LDR <regy>, <regz>

CLDR <regy>, <regz>

<regy>: general purpose register with data memory address location 0...7
<regz>: general purpose target register 0...7

Instruction Format:

C 0 0 0 1 0 0 0 0 1 regy[7:0] regz[2:0]
15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute LDR instruction in case flag is '1'/load conditionally (CLDR)

Example:

DATA MEM BASE = SCO ; data memory start address

LDI DATA MEM BASE, r3

LDR r3, rO0

LDI $02, rl

ADD r0, rl, r2
In this example, the start address of the data memory is stored in register r3. With the next LDR instruction, the value
stored at this address is loaded into register r0. A constant value ($02) is then loaded into register r1, filling in also the
additional cycle required until the value from memory is available in the register set for further processing. Finally, the
constant value and the value loaded from data memory are added and the result is stored in register r2.

www.analog.com Analog Devices | 55

Universal Encoder Bus Controller TMC8100

STR (Store Data at Register Address)
Operation:

Store contents of processor register in data memory or peripheral register at address given in another processor register.
Any general-purpose processor register can be selected as source register and address register. The execution of this
instruction takes one clock cycle. Note that the data transfer from the processor to data memory or peripheral block takes
another clock cycle due to the data memory access pipeline.

Assembler Syntax:

STR <regy>, <regz>

CSTR <regy>, <regz>

<regy>: general purpose register 0...7 with data memory or peripheral register address (0...255)
<regz>: general purpose register 0...7 with source data value

Instruction Format:

C 0 0 0 1 0 0 1 0 1 regy[7:0] regz[2:0]
15 0

c: condition flag

¢ 0: Always execute instruction

e 1: Execute LDR instruction in case flag is '1'/load conditionally (CLDR)
Example:

DATA MEM BASE = SCO ; data memory start address

LDI DATA MEM BASE, r0
LDI $05, rl
STR r0, rl

In this example, the start address of the data memory is stored in register r0 and a constant value ($05) into register r1.
With the final STR command, this constant value in register r1 is stored in the data memory block (with the address taken
from processor register r0).

www.analog.com Analog Devices | 56

Universal Encoder Bus Controller TMC8100

LDS (Load Data from System Register)
Operation:

Load value from system register into processor register. Any readable system unit register is supported as source register.
Any general-purpose processor register can be selected as target.

Assembler Syntax:

LDS <system_unit>, <system_reg>, <reg>

CLDS <system_unit>, <system_reg>, <reg>
<system_unit>: system unit 0...7

<system_reg>: system register 0...7 in system unit selected

<reg>: general purpose processor register 0...7

<system_unit> <system_reg> DESCRIPTION
0: Core Unit 0 Program memory selected for execution
Bit 0 — 0: ROM bootloader
Bit 0 — 1: SRAM program memory

CRC result [15:8]
CRC result [23:16]
CRC result [31:24]

1: Timer Unit 1 Counter value

2 Pulse counter value

3 Timer value

4 Timeout counter value
2: CRC Unit 0 CRC result [7:0]

1

2

3

Instruction Format:

[¢ 0 0 1 1 1 0 | system_unit[2:0] | system_reg[2:0] reg[2:0]

15 0

c: condition flag
e 0: Always execute instruction
o 1: Execute STS instruction in case flag is '1'/load conditionally (CSTS)

Example:

; system unit
SYSTEM CRC = $2

; system crc unit
SYSTEM CRC_RESULTO_R = $0

LDS SYSTEM CRC, SYSTEM CRC_RESULTO R, r0

In this example, the result from the CRC calculation in system register SYSTEM_CRC_RESULTO of the CRC unit is
loaded into the general-purpose processor register r0.

www.analog.com Analog Devices | 57

Universal Encoder Bus Controller

STS (Store Data in System Register)
Operation:

TMC8100

Store value from processor register in system register. Any general-purpose processor register can be used as source
register. Any writable system register is supported as target.

Assembler Syntax:

STS <reg>, <system_unit>, <system_reg>

CSTS <reg>, <system_unit>, <system_reg>

<reg>: general purpose processor register 0...7

<system_unit>: system unit 0...7

<system_reg>: system register 0...7 in selected system unit

<system_unit> | <system_reg>

DESCRIPTION

0: Core 0

Select program memory for execution.
Bit[0] - 0: ROM bootloader
Bit[0] - 1: SRAM program memory

1 Bit 0: DIRECT_IN[3:0] input filter enable
Bit 2,1: DIRECT_IN[3:0] filter sample scaler (/1, /8, /64, /512)
Bit 3: Select manchester decoder

Timeout jump target address [7:0]

Timeout jump target address [10:8]

Manchester decoder sample window low [4:0]

Manchester decoder sample window high [4:0]

1: Timer

Pre-scaler limit

Counter limit (reset counter)

Pulse counter limit (reset pulse counter)

Timer limit (reset timer)

Timeout counter limit (reset timeout counter)

albh|w|IN |0 |~ |WIN

Bit 0: Counter enable (0: reset counter)
Bit 1: Timer enable (0: reset timer)
Bit 2: Select pre-scaler for timer

Timer limit (without resetting timer)

2: CRC

Circular buffer for writing 32-bit CRC start value: 1st write: CRC start value [7:0] ...

Circular buffer for writing 32-bit CRC polynomial: 1st write: CRC polynomial[7:0] ...

N |=|O |

Bit 0: CRC polynomial[32]

Bit 1: Reverse CRC result[31:0]
When writing to this register, the write buffer pointer for the 32-bit CRC start value and 32-bit CRC
polynomial value is reset to the first entry - to CRC start value [7:0]/CRC polynomial [7:0].

Instruction Format:

c 0 0 1 1 1 1

reg[2:0]

system_unit[2:0]

system_reg[20]

15

0

c: condition flag

¢ 0: Always execute instruction

e 1: Execute STS instruction in case flag is '1'/load conditionally (CSTS)

Example:

; system register
SYSTEM TIMER = S1

www.analog.com

Analog Devices | 58

Universal Encoder Bus Controller TMC8100

; system timer unit
SYSTEM TIMER CTRL W = $5

LDI 1, r0O ; enable counter
STS r0, SYSTEM TIMER, SYSTEM TIMER CTRL W

With the first instruction, a constant value is loaded into the general-purpose processor register r0. With the second
instruction, this value is then stored in the timer control register SYSTEM_TIMER_CTRL_W of the system timer unit
SYSTEM_TIMER.

www.analog.com Analog Devices | 59

Universal Encoder Bus Controller

SET (Set Register Bit)
Operation:

TMC8100

Set selected bit 0...7 (one bit) of source register value to '1' and store result in destination register. Any general-purpose
register can be selected as source and destination register. The contents of the destination register are overwritten while
the content of the source register remains untouched. The execution of this instruction takes one clock cycle. Due to the
write-back stage, the modified target register can be already used as source for the next instruction during the next clock

cycle.

Assembler Syntax:

SET <bit>, <regy>, <regz>
CSET <bit>, <regy>, <regz>
<bit>: bit within register 0...7

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

c| O 1]1]0[(0]0{(0O

bit[2:0]

regy[2:0]

regz[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute SET instruction in case flag is '1'/load conditionally (CSET)

Example:

SET $2, r0, r3

In this example, bit 2 of processor register r0 is set to '1' and the result is written back to register r3.

www.analog.com

Analog Devices | 60

Universal Encoder Bus Controller

CLR (Clear Register Bit)
Operation:

TMC8100

Clear selected bit 0...7 (one bit) of source register value to '0' and store result in destination register. Any general-purpose
register can be selected as source and destination register. The contents of the destination register are overwritten while
the contents of the source register remain untouched. The execution of this instruction takes one clock cycle. Due to the
write-back stage, the modified target register can be used already as source for the next instruction during the next clock

cycle.

Assembler Syntax:

CLR <bit>, <regy>, <regz>

CCLR <bit>, <regy>, <regz>

<bit>: bit within register 0...7

<regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 1 0 0 0 1 bit[2:0]

regy[2:0]

regz[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute CLR instruction in case flag is '1/load conditionally (CCLR)

Example:

CLR $3, r0, r0

In this example, bit 3 of the content of general-purpose processor register r0 is cleared/set to '0' and the result is written

back into register r0, overwriting the contents of r0.

www.analog.com

Analog Devices | 61

Universal Encoder Bus Controller

SFSET (Set System Register Bit)

Operation:

TMC8100

Wait with further program execution until selected system flag has turned to zero (WAITOSF) or one (WAIT1SF). In case
the specified wait flag is already zero/one, execution of the instruction takes just one clock cycle. Otherwise, the specified
wait flag is read during each clock cycle and status/value is checked. As soon as the flag has changed, the specified bit
<bit> within the specified system flag register <flag_reg> is set to '1' and program execution continues. This instruction
can be used to synchronize flag modification and further program execution to external signals or timer events.

Assembler Syntax:
SFSET WAITOSF <wait_flag>, <flag_reg>, <bit>
CSFSET WAITOSF <wait_flag>, <flag_reg>, <bit>
SFSET WAIT1SF <wait_flag>, <flag_reg>, <bit>
CSFSET WAIT1SF <wait_flag>, <flag_reg>, <bit>

<wait_flag>: bit within register 0...7

<flag_reg>: system flag register 0...7

<bit>: bit within system register 0...7

<wait_flag>

DESCRIPTION

DIRECT_IN[0]

DIRECT _IN[1]

DIRECT_IN[2]

DIRECT_IN[3]

Overflow counter

Overflow timer

Overflow pulse counter

N (OO WN (= |O

No wait

<flag_reg>

DESCRIPTION

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

DIRECT_OUT(0]
DIRECT_OUT[1]
DIRECT_OUT[2]
DIRECT_OUT[3]
DIRECT_OUT[0] + CRC unit in
DIRECT_OUT[1] + CRC unit in
DIRECT_OUT[2] + CRC unit in
DIRECT_OUT[3] + CRC unit in

Bit 0:
Bit 1:
Bit 2:
Bit 3:

DIRECT_OUT[0] enable
DIRECT_OUT[1] enable
DIRECT_OUT[2] enable
DIRECT_OUTI[3] enable

Bit 0:

CRC unit

Bit 0:
Bit 1:
Bit 2:

counter enable
timer enable
timeout counter enable

Bit O:
Bit 1:
Bit 2:

counter reset
timer reset
timeout counter reset

www.analog.com

Analog Devices | 62

Universal Encoder Bus Controller

Instruction Format (SFSET WAITOSF):

TMC8100

c|o|1]1f1]0]O bit[2:0] wait_flag[2:0] flag_reg[2:0]

15 0
Instruction Format (SFSET WAIT1SF):

[0 1 1 1 0 1 bit[2:0] wait_flag[2:0] flag_reg[2:0]

15 0

c: condition flag

e 0: Always execute instruction

o 1: Execute SFSET instruction in case flag is '1'/set conditionally (CSFSET)

Example:

SFSET WAITOSF NO WAIT, O, 1

In this example, DIRECT_OUT[1] is set to '1'

www.analog.com

Analog Devices | 63

Universal Encoder Bus Controller

SFCLR (Clear System Register Bit)

Operation:

TMC8100

Wait with further program execution until selected system flag has turned to zero (WAITOSF) or one (WAIT1SF). In case
the specified wait flag is already zero/one, execution of the instruction takes just one clock cycle. Otherwise, the specified
wait flag is read during each clock cycle and status/value is checked. As soon as the flag has changed, the specified bit
<bit> within the specified system flag register <flag_reg> is cleared to '0' and program execution continues. This instruction
can be used to synchronize flag modification and further program execution to external signals or timer events.

Assembler Syntax:

SFCLR WAITOSF <wait_flag>, <flag_reg>, <bit>
CSFCLR WAITOSF <wait_flag>, <flag_reg>, <bit>
SFCLR WAIT1SF <wait_flag>, <flag_reg>, <bit>
CSFCLR WAIT1SF <wait_flag>, <flag_reg>, <bit>

<wait_flag>: bit within register 0...7

<flag_reg>: system flag register 0...7

<bit>: bit within system register 0...7

<wait_flag>

DESCRIPTION

DIRECT_IN[0]

DIRECT _IN[1]

DIRECT _IN[2]

DIRECT _IN[3]

Overflow counter

Overflow timer

Overflow pulse counter

N (OO WN (= |O

No wait

<flag_reg>

DESCRIPTION

0

Bit 0:
Bit 1:
Bit 2:
Bit 3:
Bit 4:
Bit 5:
Bit 6:
Bit 7:

DIRECT_OUT[0]
DIRECT_OUT[1]
DIRECT_OUT[2]
DIRECT_OUT[3]
DIRECT_OUT[0] + CRC unit in
DIRECT_OUT[1] + CRC unit in
DIRECT_OUT[2] + CRC unit in
DIRECT_OUT[3] + CRC unitin

Bit 0:
Bit 1:
Bit 2:
Bit 3:

DIRECT_OUTI[0] enable
DIRECT_OUTI[1] enable
DIRECT_OUTI[2] enable
DIRECT_OUTJ[3] enable

Bit 0:

CRC unit

Bit 0:
Bit 1:
Bit 2:

counter enable
timer enable
timeout counter enable

Bit O:
Bit 1:
Bit 2:

counter reset
timer reset
timeout counter reset

www.analog.com

Analog Devices | 64

Universal Encoder Bus Controller

Instruction Format (SFCLR WAITOSF):

TMC8100

[¢ 0 1 1 1 1 0 bit[2:0] wait_flag[2:0] flag_out[2:0]

15 0

Instruction Format (SFCLR WAIT1SF):

[¢ 0 1 1 1 1 1 bit[2:0] wait_flag[2:0] flag_out[2:0]

15 0

c: condition flag

e 0: Always execute instruction

e 1: Execute SFCLR instruction in case flag is '1'/clear conditionally (CSFCLR)
Example:

SFCLR WAITOSF NO WAIT, O, 1

In this example, DIRECT_OUT[1] is cleared to '0'

www.analog.com

Analog Devices | 65

Universal Encoder Bus Controller

MOVBO0 (Move Bit to Bit 0)

Operation:

TMC8100

The selected bit of the processor source register is copied to bit 0 (LSB) of the selected processor destination register.
The source register remains untouched while for the destination register just bit 0 may be toggled. Any general-purpose
register can be selected as source and destination register. The execution of this instruction takes one clock cycle. Due
to the write-back stage, the modified destination register can be already used as source for the next instruction during the

next clock cycle.

Assembler Syntax:
MOVBO <bit>, <regy>, <regz>
CMOVBO <bit>, <regy>, <regz>

<bit>: bit within processor source register 0...7

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

[0 1

0

bit[2:0]

regy[2:0]

regz[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute MOVBO instruction in case flag is '1'/move bit conditionally (CMOVBO)

Example:

MOVBO 2, r0, rl

In this example, bit 2 of processor register r0 overwrites bit 0 (LSB) of processor register r1.

www.analog.com

Analog Devices | 66

Universal Encoder Bus Controller

MOVBY7 (Move Bit to Bit 7)

Operation:

TMC8100

The selected bit of the processor source register is copied to bit 7 (MSB) of the selected processor destination register.
The source register remains untouched while for the destination register just bit 7 may be toggled. Any general-purpose
register can be selected as source and destination register. The execution of this instruction takes one clock cycle. Due
to the write-back stage, the modified destination register can be already used as source for the next instruction during the
next clock cycle.

Assembler Syntax:

MOVBY7 <bit>, <regy>, <regz>
CMOVBY7 <bit>, <regy>, <regz>

<bit>: bit within processor source register 0...7

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

[0

1

0

bit[2:0]

regy[2:0]

regz[2:0]

15

c: condition flag
¢ 0: Always execute instruction

e 1: Execute MOVB?Y instruction in case flag is "1'/move bit conditionally (CMOVB7)

Example:

MOVB7 2,

r0,

rl

In this example, bit 2 of processor register rO overwrites bit 7 (MSB) of processor register r1.

www.analog.com

Analog Devices | 67

Universal Encoder Bus Controller TMC8100

MOVCRC (Move Bit to CRC Unit
Operation:

The selected bit of the processor source register is copied to the serial input stream of the CRC unit for CRC checksum
calculation. The source register remains untouched. Any general-purpose register can be selected as source register.
The execution of this instruction takes one clock cycle.

Assembler Syntax:

MOVCRC <bit>, <reg>

CMOVCRC <bit>, <reg>

<bit>: bit within processor source register 0...7
<reg>: processor register 0...7

Instruction Format:

c 0 0 0 0 1 1 1 1 0 bit[2:0] reg[2:0]

15 0

c: condition flag

¢ 0: Always execute instruction

e 1: Execute MOVCRC instruction in case flag is '1'/move bit conditionally (CMOVCRC)
Example:

LDI %0000 0100, r0O ; sync code
MOVCRC 0, r0
MOVCRC 1, r0
MOVCRC 2, r0

In this example, bit 0, bit 1, and bit 2 are copied to the serial input stream of the CRC unit for CRC checksum calculation
(one after the other).

www.analog.com Analog Devices | 68

Universal Encoder Bus Controller TMC8100

MOVNCRC (Move Inverted Bit to CRC Unit)
Operation:

The selected bit of the processor source register is inverted and then copied to the serial input stream of the CRC unit for
CRC checksum calculation. The source register remains untouched. Any general-purpose register can be selected as
source register. The execution of this instruction takes one clock cycle.

Assembler Syntax:

MOVNCRC <bit>, <reg>

CMOVNCRC <bit>, <reg>

<bit>: bit within processor source register 0...7
<reg>: processor register 0...7

Instruction Format:

c 0 0 0 0 1 1 1 1 1 bit[2:0] reg[2:0]

15 0

c: condition flag

¢ 0: Always execute instruction

e 1: Execute MOVNCRC instruction in case flag is '"1'/move bit conditionally (CMOVNCRC)
Example:

MOVNCRC 0, r0

In this example, bit 0 of processor register r0 is copied to the serial input stream of the CRC unit for CRC checksum
calculation.

www.analog.com Analog Devices | 69

Universal Encoder Bus Controller

MOVF (Move Flag to Register Bit)
Operation:

TMC8100

The status flag is copied to the specified bit of the destination register. The flag itself remains untouched. The destination
register contents also remains untouched apart from the bit specified that may toggle. The execution of this instruction
takes one clock cycle. Due to the write-back stage, the modified destination register can be already used as source for

the next instruction during the next clock cycle.
Assembler Syntax:

MOVF <bit>, <reg>

CMOVF <bit>, <reg>

<bit>: bit within processor destination register 0...7
<reg>: processor destination register 0...7

Instruction Format:

[¢ 0 0 0 0 1 1 0 1 0 bit[2:0]

reg[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute MOVF instruction in case flag is '1'/move bit conditionally (CMOVF)

Example:

COMP EQ r0, rl
MOVE 2, r2

In this example, processor registers r0 and r1 are compared. In case contents of r0 and r1 are equal, the status flag is

set. The status bit is then copied to bit 2 of the destination register r2.

www.analog.com

Analog Devices | 70

Universal Encoder Bus Controller

MOVNF (Move Inverted Flag to Register Bit)
Operation:

TMC8100

The inverted value of the status flag is copied to the specified bit of the destination register. The flag itself remains
untouched. The destination register contents also remains untouched apart from the bit specified that may toggle. The
execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be
already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

MOVNF <bit>, <reg>

CMOVNF <bit>, <reg>

<bit>: bit within processor destination register 0...7
<reg>: processor destination register 0...7

Instruction Format:

c|0]jO0O]O0O]O0]1 1101 1

bit[2:0]

reg[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute MOVNEF instruction in case flag is '1'/move bit conditionally (CMOVNF)

Example:

COMP EQ r0, rl
MOVNF 2, r2

In this example, processor registers r0 and r1 are compared. In case contents of rO and r1 are equal, the status flag is set
to '"1'. The inverted status bit ('0' in case r0 and r1 are equal) is then copied to bit 2 of the destination register r2.

www.analog.com

Analog Devices | 71

Universal Encoder Bus Controller TMC8100

AND (Bitwise Logical And)
Operation:

A logical AND operation is performed bit-by-bit on the corresponding bits of two processor registers and the result is
stored in the destination register. The source registers remain untouched while the destination register contents are
overwritten with the result value. Any general-purpose register can be selected as source and destination register. The
execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be
already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

AND <regx>, <regy>, <regz>

CAND <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 0 1 0 0 0 regx[2:0] regy[2:0] regz[2:0]

15 0

c: condition flag

¢ 0: Always execute instruction

e 1: Execute AND instruction in case flag is '1'/move bit conditionally (CAND)
Example:

LDI %1111 0000, rl
AND r0O, rl, rO

In this example, the lower four bits/nibble of register r0 is set to zero.

www.analog.com Analog Devices | 72

Universal Encoder Bus Controller

OR (Bitwise Logical Or)

Operation:

TMC8100

A logical OR operation is performed bit-by-bit on the corresponding bits of two processor registers and the result is stored
in the destination register. The source registers remain untouched while the destination register contents are overwritten
with the result value. Any general-purpose register can be selected s source and destination register. The execution of
this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be already used
as source for the next instruction during the next clock cycle.

Assembler Syntax:

OR <regx>, <regy>, <regz>

COR <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

c|0]0(1

regx[2:0]

regy[2:0]

regz[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute OR instruction in case flag is '"1'/move bit conditionally (COR)

Example:

LDI %1111 0000, rl
OR r0, rl, rO

In this example, the upper four bits/nibble of register r0 is set to one.

www.analog.com

Analog Devices | 73

Universal Encoder Bus Controller TMC8100

XOR (Bitwise Logical Exclusive Or)
Operation:

A logical exclusive OR operation is performed bit-by-bit on the corresponding bits of two processor registers and the result
is stored in the destination register. The source registers remain untouched while the destination register contents are
overwritten with the result value. Any general-purpose register can be selected as source and destination register. The
execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be
already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

XOR <regx>, <regy>, <regz>

CXOR <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 0 1 0 1 0 regx[2:0] regy[2:0] regz[2:0]

15 0

c: condition flag

¢ 0: Always execute instruction

e 1: Execute XOR instruction in case flag is '1'/move bit conditionally (CXOR)
Example:

LDI %1111 0000, rl
XOR r0, rl, rO0

In this example, the upper four bits/nibble of register r0 is inverted.

www.analog.com Analog Devices | 74

Universal Encoder Bus Controller TMC8100

NOT (Bitwise Inversion)
Operation:

The value of the source register is inverted, and the result stored in the destination register. The source register remains
untouched while the destination register contents are overwritten with the result value. Any general-purpose register can
be selected as source and destination register. The execution of this instruction takes one clock cycle. Due to the write-
back stage, the modified destination register can be already used as source for the next instruction during the next clock
cycle.

Assembler Syntax:

NOT <regy>, <regz>

CNOT <regy>, <regz>

<regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 0 0 0 1 0 0 0 0 regy[2:0] regz[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute NOT instruction in case flag is '1'/move bit conditionally (CNOT)

Example:

LDI $37, rO0
NOT r0, rl

In this example, the value in register r0 ($37) is inverted and the result ($c8) written to destination register r1.

www.analog.com Analog Devices | 75

Universal Encoder Bus Controller TMC8100

REV (Reverse Bit Order)
Operation:

The order of bits from the source register is reversed (bit7 — bit0, bit6 — bit1, ...) and the result stored in the destination
register. The source register remains untouched while the destination register contents are overwritten with the result
value. Any general-purpose register can be selected as source and destination register. The execution of this instruction
takes one clock cycle. Due to the write-back stage, the modified destination register can be already used as source for
the next instruction during the next clock cycle.

Assembler Syntax:

REV <regy>, <regz>

CREV <regy>, <regz>

<regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 0 0 0 1 0 0 0 1 regy[2:0] regz[2:0]

15 0

c: condition flag
e 0: Always execute instruction
e 1: Execute REV instruction in case flag is '1'/reverse bits conditionally (CREV)

Example:

LDI $37, rO0
REV r0, rl

In this example, the bit order of the value in register r0 ($37 = %0011_0111) is reversed and the result ($EC
= %1110_1100) written to destination register r1.

www.analog.com Analog Devices | 76

Universal Encoder Bus Controller TMC8100

ADD (Add Registers)
Operation:

The contents of two registers are added (unsigned), the result is written to the destination register, and the flag is updated
with the overflow/carry bit. The two source registers remain untouched while the contents of the destination register and
the flag are overwritten with the result. Any general-purpose register can be selected as source and destination register.
The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can
be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

ADD <regx>, <regy>, <regz>

CADD <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 0 1 1 0 0 regx[2:0] regy[2:0] regz[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute ADD instruction in case flag is '1'/add conditionally (CADD)

Example:

1DI $42, rl
ADD r0, rl, r2

In this example, $42 is added to the contents of r0 and the result stored in r2.

www.analog.com Analog Devices | 77

Universal Encoder Bus Controller TMC8100

SUB (Subtract Registers)
Operation:

The value of the register listed as second argument is subtracted from the first register value (both unsigned) and the
result is written to the destination register. Standard two's compliment is used for calculation and in case of a negative
result, the status flag is set - otherwise cleared. The two source registers remain untouched while the contents of the
destination register and the flag are overwritten with the result. Any general-purpose register can be selected as source
and destination register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified
destination register can be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

SUB <regx>, <regy>, <regz>

CSUB <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

[¢ 0 0 1 1 0 1 regx[2:0] regy[2:0] regz[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute SUB instruction in case flag is '1'/subtract conditionally (CSUB)

Example:

1DI $42, rl
SUB r0, rl, r2

In this example, $42 is subtracted from the contents of r0 and the result stored in r2.

www.analog.com Analog Devices | 78

Universal Encoder Bus Controller

INC (Increment Register)
Operation:

TMC8100

The value of the register is incremented by one and the result is written to the destination register. In case there is an
overflow, the status flag is set - otherwise cleared. The source register remains untouched while the contents of the
destination register and the flag are overwritten with the result. Any general-purpose register can be selected as source
and destination register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified

destination register can be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

INC <regy>, <regz>

CINC <regy>, <regz>

<regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

c|fojJjofO0O]|JO0Of1]|0O 1

regy[2:0]

regz[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute INC instruction in case flag is '1'/increment conditionally (CSUB)

Example:

INC rl, r2

In this example, register r1 is incremented by one and the result written to register r2.

www.analog.com

Analog Devices | 79

Universal Encoder Bus Controller

DEC (Decrement Register)
Operation:

TMC8100

The value of the register is decremented by one and the result is written to the destination register. In case there is an
underflow, the status flag is set - otherwise cleared. The source register remains untouched while the contents of the
destination register and the flag are overwritten with the result. Any general-purpose register can be selected as source
and destination register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified

destination register can be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

DEC <regy>, <regz>

CDEC <regy>, <regz>

<regy>: processor source register 0...7
<regz>: processor destination register 0...7

Instruction Format:

c|fojJjofO0O]|JO0Of1]|0O 1

regy[2:0]

regz[2:0]

15

c: condition flag

¢ 0: Always execute instruction

e 1: Execute DEC instruction in case flag is '1'/decrement conditionally (CDEC)

Example:

DEC rl, r2

In this example, register r1 is decremented by one and the result written to register r2.

www.analog.com

Analog Devices | 80

Universal Encoder Bus Controller TMC8100

COMP LT (Compare Registers for Less Than)
Operation:

The values of two registers are compared. In case the value of the first parameter register is less than the value of the
second parameter register, the status flag is set - otherwise cleared. The source registers remain untouched and just the
status flag is overwritten with the result. Any general-purpose register can be selected as source register. The execution
of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next
instruction/during the next clock cycle.

Exchanging both registers allow for greater equal comparison.
Assembler Syntax:

COMP LT <regy>, <regz>

CCOMP LT <regy>, <regz>

<regy>, <regz>: processor source registers 0...7

Instruction Format:

[¢ 0 0 0 0 0 1 0 0 0 regy[2:0] regz[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:
1DI $42, rl
COMP LT r0, rl
JC LOOP

In this example, the register contents of r0 are compared to $42. As long as r0 is less than $42, the status flag is set and
the conditional jump JC back to the LOOP label is executed. As soon as r0 is equal or larger than $42, the flag is
cleared/set to zero and the program jump is not executed.

www.analog.com Analog Devices | 81

Universal Encoder Bus Controller TMC8100

COMP LE (Compare Registers for Less or Equal)
Operation:

The values of two registers are compared. In case the value of the first parameter register is less than or equal to the
value of the second parameter register, the status flag is set - otherwise cleared. The source registers remain untouched
and just the status flag is overwritten with the result. Any general-purpose register can be selected as source register.
The execution of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next
instruction/during the next clock cycle.

Exchanging both registers allow for greater than comparison.
Assembler Syntax:

COMP LE <regy>, <regz>

CCOMP LE <regy>, <regz>

<regy>, <regz>: processor source registers 0...7

Instruction Format:

[¢ 0 0 0 0 0 1 0 0 1 regy[2:0] regz[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:
1DI $42, rl
COMP LE r0, rl
JC LOOP

In this example, the register contents of r0 are compared to $42. As long as r0 is less than or equal to $42, the status flag
is set and the conditional jump JC back to the LOOP label is executed. As soon as r0 is greater than $42, the flag is
cleared/set to zero and the program jump is not executed.

www.analog.com Analog Devices | 82

Universal Encoder Bus Controller TMC8100

COMP EQ (Compare Registers for Equal)
Operation:

The values of two registers are compared. In case the value of the first parameter register is equal to the value of the
second parameter register, the status flag is set - otherwise cleared. The source registers remains untouched and just
the status flag is overwritten with the result. Any general-purpose register can be selected as source register. The
execution of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next
instruction/during the next clock cycle.

Assembler Syntax:

COMP EQ <regy>, <regz>

CCOMP EQ <regy>, <regz>

<regy>, <regz>: processor source registers 0...7

Instruction Format:

[¢ 0 0 0 0 0 1 0 1 0 regy[2:0] regz[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:
1DI $42, rl
COMP EQ r0, rl
JC LOOP

In this example, the register contents of r0 are compared to $42. In case r0 is equal to $42, the status flag is set and the
conditional jump JC back to the LOOP label is executed. Otherwise, the flag is cleared/set to zero and program execution
continues without the jump.

www.analog.com Analog Devices | 83

Universal Encoder Bus Controller TMC8100

COMP NE (Compare Registers for Not Equal)
Operation:

The values of two registers are compared. In case the value of the first parameter register is different from the value of
the second parameter register, the status flag is set - otherwise cleared. The source registers remains untouched and
just the status flag is overwritten with the result. Any general-purpose register can be selected as source register. The
execution of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next
instruction/during the next clock cycle.

Assembler Syntax:

COMP NE <regy>, <regz>

CCOMP NE <regy>, <regz>

<regy>, <regz>: processor source registers 0...7

Instruction Format:

[¢ 0 0 0 0 0 1 0 1 1 regy[2:0] regz[2:0]
15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:
1DI $42, rl
COMP NE r0, rl
JC LOOP

In this example, the register contents of r0 are compared to $42. As long as r0 is different from $42, the status flag is set
and the conditional jump JC back to the LOOP label is executed. As soon as r0 is equal to $42, the flag is cleared/set to
zero and program execution continues without the jump.

www.analog.com Analog Devices | 84

Universal Encoder Bus Controller TMC8100

TESTO (Test Bit for 0)
Operation:

Test specified bit of processor register. In case the bit is '0', the status flag is set to '1' - otherwise zero. Any general-
purpose register can be selected as register. The contents of the register remain untouched. The execution of this
instruction takes one clock cycle and the updated status flag is available for evaluation with the next instruction/during the
next clock cycle.

Assembler Syntax:

TESTO <bit>, <reg>

CTESTO <bit>, <reg>

<bit>: bit within processor register 0...7
<reg>: processor source register 0...7

Instruction Format:

[¢ 0 0 0 0 1 1 0 0 0 bit[2:0] reg[2:0]
15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute TEST instruction in case flag is '1'/test bit conditionally (CSET)

Example:

READ LOOP:
INC r5, r5
TESTO $3, r5
JC READ_LOOP

In this example, the contents of register r5 is increased by one and then bit 3 of r5 tested. As long as this bit is still 0, the
conditional jump to label READ_LOOP is executed and loop instruction execution repeated.

www.analog.com Analog Devices | 85

Universal Encoder Bus Controller TMC8100

TEST1 (Test Bit for 1)
Operation:

Test specified bit of processor register. In case the bit is '1', the status flag is set to '1' - otherwise zero. Any general-
purpose register can be selected as register. The contents of the register remain untouched. The execution of this
instruction takes one clock cycle and the updated status flag is available for evaluation with the next instruction/during the
next clock cycle.

Assembler Syntax:

TEST1 <bit>, <reg>

CTEST1 <bit>, <reg>

<bit>: bit within processor register 0...7
<reg>: processor source register 0...7

Instruction Format:

[¢ 0 0 0 0 1 1 0 0 1 bit[2:0] reg[2:0]
15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute TEST instruction in case flag is '1'/test bit conditionally (CSET)

Example:

TEST1 $3, r0

In this example, bit 3 of r0 is tested. In case this bit is ‘1’, the status flag is set.

www.analog.com Analog Devices | 86

Universal Encoder Bus Controller TMC8100

SFTESTO (Test System Register Bit for 0)
Operation:

Test specified bit of system flag register. In case the bit/flag is '0', the status flag is set to '1' - otherwise zero. The contents
of the system flag register remain untouched. The execution of this instruction takes one clock cycle and the updated
status flag is available for evaluation with the next instruction/during the next clock cycle.

Assembler Syntax:

SFTESTO <flag_reg>, <bit>

CSFTESTO <flag_reg>, <bit>

<flag_reg>: system flag register 0...7

<bit>: bit/flag within system flag register 0...7

Instruction Format:

[¢ 0 0 0 0 1 1 1 0 0 flag_reg[2:0] bit[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute SFTEST instruction in case flag is '1'/test bit/flag conditionally (CSFTESTO)

<flag_reg> DESCRIPTION
0 Bit 0: DIRECT_IN[O]
Bit 1: DIRECT_IN[1]
Bit 2: DIRECT_IN[2]
Bit 3: DIRECT_IN[3]
1 Bit O - clock generator output
Bit 1 - pulse counter has reached limit value

Example:

SFTESTO 0, S$1

In this example, the status flag is set in case DIRECT_IN[1] is currently zero.

www.analog.com Analog Devices | 87

Universal Encoder Bus Controller TMC8100

SFTEST1 (Test System Register Bit for 1)
Operation:

Test specified bit of system flag register. In case the bit/flag is '1', the status flag is set to '1' - otherwise zero. The contents
of the system flag register remain untouched. The execution of this instruction takes one clock cycle and the updated
status flag is available for evaluation with the next instruction/during the next clock cycle.

Assembler Syntax:

SFTEST1 <flag_reg>, <bit>

CSFTEST1 <flag_reg>, <bit>

<flag_reg>: system flag register 0...7

<bit>: bit/flag within system flag register 0...7

Instruction Format:

[¢ 0 0 0 0 1 1 1 0 1 flag_reg[2:0] bit[2:0]

15 0

c: condition flag
¢ 0: Always execute instruction
e 1: Execute SFTEST instruction in case flag is '1'/test bit/flag conditionally (CSFTESTO)

<flag_reg> DESCRIPTION

0 Bit 0: DIRECT_IN[O]

Bit 1: DIRECT_IN[1]

Bit 2: DIRECT_IN[2]

Bit 3: DIRECT_IN[3]

1 Bit O - clock generator output

Bit 1 - pulse counter has reached limit value

Example:

SFTEST1 0, S$1

In this example, the status flag is set in case DIRECT_IN[1] is currently one.

www.analog.com Analog Devices | 88

Universal Encoder Bus Controller TMC8100

SHLO WAITOSF/WAIT1SF (Wait and Shift Left Out)
Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to
zero (WAITOSF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes
just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.
As soon as the bit has changed, the specified processor register is shifted to the left by one, the most significant bit of the
register (MSB) is shifted out to the specified system flag (<out_flag>), and program execution continues. At the same
time, the system flag is shifted in as new LSB for the specified processor register. This instruction can be used to
synchronize parallel-to-serial conversion and transmission of serial data to external signals, serial clock/data received, or
internal timer events.

Assembler Syntax:

SHLO WAITOSF <wait_flag>, <out_flag>, <reg>
CSHLO WAITOSF <wait_flag>, <out_flag>, <reg>
SHLO WAIT1SF <wait_flag>, <out_flag>, <reg>
CSHLO WAIT1SF <wait_flag>, <out_flag>, <reg>
<wait_flag>: system wait flag

<out_flag>: output bit/flag

<reg>: processor register (0...7)

Instruction Format SHLO WAITOSF:

[¢ 0 1 0 1 0 0 out_flag[2:0] wait_flag[2:0] reg[2:0]

15 0
Instruction Format SHLO WAIT1SF:

[¢ 0 1 0 1 0 1 out_flag[2:0] wait_flag[2:0] regz[2:0]

15 0

c: condition flag
e 0: Always execute instruction/wait
o 1: Execute instruction/shift left out in case flag is '1'/(CSHLO)

<wait_flag> DESCRIPTION
DIRECT _IN[O]

DIRECT IN[1]

DIRECT _IN[2]

DIRECT _IN[3]

Overflow counter
Overflow pulse counter
Overflow timer

No wait

N[O o |w(|N|= O

<out_flag> DESCRIPTION
DIRECT_OUTI0]

DIRECT OUT[1]

DIRECT OUT[2]

DIRECT OUT[3]
DIRECT_OUT[0] and CRC unit in
DIRECT_OUT[1] and CRC unit in
DIRECT_OUT[2] and CRC unit in

(G| |W [N [= (O

www.analog.com Analog Devices | 89

Universal Encoder Bus Controller

| 7 DIRECT _OUT[3] and CRC unit in
Example:

TMC8100

WAIT OVERFLOW TIMER = 6
FLAG OUTL = 1

LDI %0101 0000, rO
REP 4, 1

SHLO WAIT1SF WAIT OVERFLOW TIMER, r0O, FLAG OUT1

In this example, the upper four bits of pattern %0101_0000 in register r0 are shifted out to DIRECT_OUTI[1] bit-for-bit

each time the system timer overflows and wraps around. The REP instruction initializes the hardware loop and makes
sure the shift instruction SHLO is repeated four times. The shift instruction SHLO itself then synchronizes shifting to the

system timer overflow.

www.analog.com

Analog Devices | 90

Universal Encoder Bus Controller

SHLI WAITOSF/WAIT1SF (Wait and Shift Left In)
Operation:

TMC8100

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to
zero (WAITOSF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes
just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.
As soon as the bit has changed, the specified processor register is shifted to the left by one, the least significant bit of the
register (LSB) is shifted in from the specified system flag (<in_flag>), and program execution continues. The MSB of this
register is dropped. This instruction can be used to synchronize serial-to-parallel conversion and capture incoming serial
data to external signals, serial clock/data received, or internal timer events.

Assembler Syntax:

SHLI WAITOSF <wait_flag>, <reg>, <in_flag>
CSHLI WAITOSF <wait_flag>, <reg>, <in_flag>
SHLI WAIT1SF <wait_flag>, <reg>, <in_flag>
CSHLI WAIT1SF <wait_flag>, <reg>, <in_flag>
<wait_flag>: system wait flag

<reg>: processor register (0...7)

<in_flag>: input bit/flag

Instruction Format SHLI WAITOSF:

[¢ 0 1 0 1 1 0 in_flag[2:0] wait_flag[2:0]

regz[2:0]

15

Instruction Format SHLI WAIT1SF:

[¢ 0 1 0 1 1 1 in_flag[2:0] wait_flag[2:0]

regz[2:0]

15

c: condition flag
e 0: Always execute instruction/wait
e 1: Execute instruction/shift left in in case flag is '"1'/(CSHLI)

<wait_flag> DESCRIPTION
DIRECT _IN[O]

DIRECT IN[1]

DIRECT IN[2]

DIRECT _IN[3]
Overflow counter
Overflow pulse counter
Overflow timer

No wait

N[O o |w|IN|= O

<in_flag> DESCRIPTION
DIRECT _IN[0]

DIRECT _IN[1]

DIRECT _IN[2]

DIRECT _IN[3]

DIRECT_IN[0] and CRC unit in
DIRECT _IN[1] and CRC unit in
DIRECT _IN[2] and CRC unit in
DIRECT _IN[3] and CRC unit in

N[O |Og|sWIN (=

www.analog.com

Analog Devices | 91

Universal Encoder Bus Controller TMC8100

Example:

WAIT OVERFLOW TIMER = 6
FLAG IN1 = 1
REP 8, 1

; wait for timer overflow and shift in DO..D7
SHLI WAIT1SF WAIT OVERFLOW TIMER, r6, FLAG_INl

In this example, 8 bits from DIRECT _IN[1] are shifted into register r6 one after the other each time the system timer wraps
around/overflows. The REP instruction initializes the hardware loop and makes sure the shift instruction SHLI is repeated
eight times. The shift instruction SHLI itself then synchronizes shifting and serial-to-parallel conversion to the system timer

overflow.

www.analog.com Analog Devices | 92

Universal Encoder Bus Controller TMC8100

SHRO WAITOSF/WAIT1SF (Wait and Shift Right Out)
Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to
zero (WAITOSF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes
just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.
As soon as the bit has changed, the specified processor register is shifted to the right by one, the least significant bit of
the register (LSB) is shifted out to the specified system signal/flag (<out_flag>), and program execution continues. At the
same time, the system flag is shifted in as new MSB for the specified processor register. This instruction can be used to
synchronize parallel-to-serial conversion and transmission of serial data to external signals, serial clock/data received, or
internal timer events.

Assembler Syntax:

SHRO WAITOSF <wait_flag>, <reg>, <out_flag>
CSHRO WAITOSF <wait_flag>, <reg>, <out_flag>
SHRO WAIT1SF <wait_flag>, <reg>, <out_flag>
CSHRO WAIT1SF <wait_flag>, <reg>, <out_flag>
<wait_flag>: system wait flag

<reg>: processor register (0...7)

<out_flag>: output bit/flag

Instruction Format SHRO WAITOSF:

[¢ 0 1 1 0 0 0 out_flag[2:0] wait_flag[2:0] regz[2:0]

15 0
Instruction Format SHRO WAIT1SF:

[¢ 0 1 1 0 0 1 out_flag[2:0] wait_flag[2:0] regz[2:0]

15 0

c: condition flag
e 0: Always execute instruction/wait
o 1: Execute instruction/shift left out in case flag is '1'/(CSHLO)

<wait_flag> DESCRIPTION
DIRECT _IN[O]

DIRECT IN[1]

DIRECT _IN[2]

DIRECT _IN[3]

Overflow counter
Overflow pulse counter
Overflow timer

No wait

N[O o |w(|N|= O

<out_flag> DESCRIPTION
DIRECT_OUTI0]

DIRECT OUT[1]

DIRECT OUT[2]

DIRECT OUT[3]
DIRECT_OUT[0] and CRC unit in
DIRECT_OUT[1] and CRC unit in
DIRECT_OUT[2] and CRC unit in

(G| |W [N [= (O

www.analog.com Analog Devices | 93

Universal Encoder Bus Controller

| 7 DIRECT _OUT[3] and CRC unit in
Example:

TMC8100

WAIT OVERFLOW TIMER = 6
FLAG OUTL = 1

LDI %0000 0100, rO
REP 4, 1

SHRO WAIT1SF WAIT OVERFLOW TIMER, r0O, FLAG OUT1

In this example, the lower four bits of pattern %0000_0100 in register r0 are shifted out to DIRECT_OUT[1] bit-by-bit each

time the system timer overflows and wraps around. The REP instruction initializes the hardware loop and makes sure the
shift instruction SHRO is repeated four times. The shift instruction SHRO itself then synchronizes shifting to the system

timer overflow.

www.analog.com

Analog Devices | 94

Universal Encoder Bus Controller TMC8100

SHRI WAITOSF/WAIT1SF (Wait and Shift Right In)
Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to
zero (WAITOSF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes
just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.
As soon as the bit has changed, the specified processor register is shifted to the right by one, the most significant bit of
the register (MSB) is shifted in from the specified system flag (<in_flag>), and program execution continues. The LSB of
this register is dropped. This instruction can be used to synchronize serial-to-parallel conversion and capture incoming
serial data to external signals, serial clock/data received, or internal timer events.

Assembler Syntax:

SHRI WAITOSF <wait_flag>, <in_flag>, <reg>
CSHRI WAITOSF <wait_flag>, <in_flag>, <reg>
SHRI WAIT1SF <wait_flag>, <in_flag>, <reg>
CSHRI WAIT1SF <wait_flag>, <in_flag>, <reg>
<wait_flag>: system wait flag

<in_flag>: input bit/flag

<reg>: processor register (0...7)

Instruction Format SHRI WAITOSF:

[¢ 0 1 1 0 1 0 in_flag[2:0] wait_flag[2:0] regz[2:0]

15 0
Instruction Format SHRI WAIT1SF:

[¢ 0 1 1 0 1 1 in_flag[2:0] wait_flag[2:0] regz[2:0]

15 0

c: condition flag
e 0: Always execute instruction/wait
e 1: Execute instruction/shift left in in case flag is '"1'/(CSHLI)

<wait_flag> DESCRIPTION
DIRECT _IN[0]

DIRECT _IN[1]

DIRECT IN[2]

DIRECT IN[3]

Overflow counter
Overflow pulse counter
Overflow timer

No wait

N[O o |w|IN|= O

<in_flag> DESCRIPTION
DIRECT _IN[0]

DIRECT IN[1]

DIRECT _IN[2]

DIRECT _IN[3]

DIRECT_IN[0] and CRC unit in
DIRECT _IN[1] and CRC unit in
DIRECT _IN[2] and CRC unit in
DIRECT _IN[3] and CRC unit in

N[O |Og|sWIN (=

www.analog.com Analog Devices | 95

Universal Encoder Bus Controller TMC8100

Example:

WAIT OVERFLOW TIMER = 6

FLAG IN1 CRC = 5

REP 8, 1

SHRI WAIT1SF WAIT OVERFLOW TIMER, FLAG IN1 CRC, r0

In this example, 8 bits from DIRECT_IN[1] are shifted into register r0 and the hardware CRC unit one after the other each
time the system timer wraps around/overflows. The REP instruction initializes the hardware loop and makes sure the shift
instruction SHRI is repeated eight times. The shift instruction SHRI itself then synchronizes shifting and serial-to-parallel
conversion to the system timer overflow.

Register Map

Peripherals
ADDR
NAME MSB LSB
ESS
UARTO
0x08 | UARTO BUFFERJ7:0] TX_DATA[7:0]
0x08 | UARTO BUFFERJ7:0] RX_DATA[7:0]
0x09 | UARTO BAUD L[7:0] BAUD_RATE_LIMIT_L[7:0]
O0xO0A | UARTO BAUD H[7:0] - - - - BAUD_RATE_LIMIT_H[3:0]
0x0B | UARTO_CTRL[7:0] - RX_BUFFER_LENGTH[2:0] RX_RESET | AUTOBAUD | NO_FILTER x8
AUTOBAUD_
0x0B | UARTO STATUSI7:0] - - - TIMEOUT TX_EMPTY TX_FULL RX_FULL
ACTIVE
UARTO TIMEOUT L[7:
0x0C ol TIMEOUT_COUNTER_LIMIT_L[7:0]
UARTO TIMEOUT H[7
00D | TIMEOUT_COUNTER_LIMIT_H[7:0]
UART1
0x10 | UART1 _BUFFERI7:0] TX_DATA[7:0]
0x10 | UART1 BUFFERJ7:0] RX_DATA[7:0]
0x11 | UART1 BAUD L[7:0] BAUD_RATE_LIMIT_L[7:0]
0x12 | UART1 BAUD H[7:0] - - - - BAUD_RATE_LIMIT_H[3:0]
0x13 | UART1 _CTRLI7:0] - RX_BUFFER_LENGTH[2:0] RX_RESET | AUTOBAUD | NO_FILTER x8

www.analog.com Analog Devices | 96

Universal Encoder Bus Controller

TMC8100

ADDR
NAME MSB LSB
ESS
AUTOBAUD _
0x13 | UART1_STATUS[7:0] - - - TIMEOUT TX_EMPTY | TX_FULL RX_FULL
ACTIVE
UART1 TIMEOUT L[7:
0x14 a TIMEOUT_COUNTER_LIMIT_L[7:0]
UART1_TIMEOUT H[7
0x15 0 TIMEOUT_COUNTER_LIMIT_H[7:0]
MEM
0x18 | MEM_CTRL[7:0] - - - - ACCESS WRITE ADDR_MODI[1:0]
0x19 | MEM DATA L[7:0] DATA_L[7:0]
0x1A | MEM_DATA H[7:0] DATA_H[7:0]
0x1B | MEM_ADDR_L[7:0] ADDR_L[7:0]
0x1C | MEM_ADDR_HI7:0] - - - - - - ADDR_H[1:0]
DIRECT
DIRECT POLARITY[7: | OUT
0x20 OouUT2 OUT1 ouTo IN3 IN2 IN1 INO
(0]} 3
DIRECT OUT ALT[7:0
0x21] OUT3_ALT[1:0] OUT2_ALT[1:0] OUT1_ALT[1:0] OUTO_ALT[1:0]
HOM
0x22 | DIRECT IN_PUI[7:0] e ENC_Z - - IN3 IN2 IN1 INO
HOM
0x23 | DIRECT IN PDI7:0] e ENC_Z - - IN3 IN2 IN1 INO
12Cc
0x28 | [2C_BUFFER[7:0] TX_DATA[7:0]
0x28 | 12C_BUFFER[7:0] RX_DATA[7:0]
0x29 | 12C_BAUD L[7:0] BAUD_RATE_LIMIT_L[7:0]
0x2A | 12C_BAUD H[7:0] BAUD_RATE_LIMIT_H[7:0]
0x2B | 12C_CMD|7:0] - - - - - COMMANDI2:0]
RCV_ACK
0x2B | 12C_STATUSI7:0] - - - - - RCV_ACK ~ "= | cMD_RDY
VALUE
SPI

www.analog.com

Analog Devices | 97

Universal Encoder Bus Controller TMC8100
ADDR
NAME MSB LSB
ESS
0x30 | SPI BUFFEROI[7:0 TX_DATA_BYTEOQ[7:0]
0x30 | SPI_BUFFERO[7:0] RX_DATA_BYTEO[7:0]
0x31 | SPI_BUFFER1[7:0] TX_DATA_BYTE1[7:0]
0x31 SPI BUFFER1[7:0 RX_DATA_BYTE1[7:0]
0x32 SPI BUFFER2[7:0 RX_DATA_BYTEZ2[7:0]
0x32 SPI BUFFER2[7:0 TX_DATA_BYTEZ2[7:0]
0x33 | SPI BUFFERS3J7:0 TX_DATA_BYTE3J[7:0]
0x33 SPI BUFFER3[7:0 RX_DATA_BYTE3[7:0]
0x34 SPI _CTRL[7:0 - - - - - - TX_RESET TX_SKIP
NO TRANS
0x34 SPI _STATUSI7:0 - - - - — TX _FULL - EOT
- FER
GPIO
0x40 | GPIO INJ[7:0 - GPIO6_IN GPIO5_IN GPIO4_IN GPIO3_IN GPIO2_IN GPIO1_IN GPIOO0_IN
GPI06_0OU GPIO5 OU | GPIO4_OU GPIO2_OU | GPIO1_OU GPIO0_OU
0x40 | GPIO OUTI[7:0 — - - - GPIO3_OUT - - -
T T T T T T
GPI0O6_PO GPI1O5 PO GPIO4 PO | GPIO3 POLA | GPIO2 PO GPI101_PO GPIO0O_PO
0x41 GPIO _POLARITY]7:0] - - _ - - - — -

LARITY LARITY LARITY RITY LARITY LARITY LARITY
0x42 GPIO _OUT ODI[7:0 - - - - - GPIO2_0OD - -
0x43 | GPIO ALTO[7:0] GPIO3_ALT[1:0] GPIO2_ALT[1:0] GPIO1_ALT[1:0] GPIOO_ALT[1:0]
0x44 | GPIO ALT1[7:0] - - GPIO6_ALT[1:0] GPIO5_ALT[1:0] GPIO4_ALT[1:0]

GPIO6_OU | GPIO5_OU | GPIO4_ OU | GPIO3_OUT_ | GPIO2_OU | GPIO1_OU | GPIOO_OU
0x45 GPIO _OUT EN[7:0 -

T_EN T_EN T_EN EN T_EN T_EN T_EN
0x46 | GPIO_PUI7:0] — | GPIO6_PU | GPIO5 PU | GPIO4 PU | GPIO3_PU | GPIO2_PU | GPIO1_PU | GPIOO_PU
0x47 GPIO PD[7:0 - GPIO6_PD GPIO5_PD GPIO4_PD GPIO3_PD GPIO2_PD GPIO1_PD GPIO0_PD

CSN
0x48 | SPI_PU PDI[7:0] op | SCLKPD | SDO_PD SDI_PD CSN_PU SCLK_PU | SDO_PU SDI_PU
0x49 | CLK ADDRI7:0] CLK_ADDR[7:0]
0x4A | CLK DATAI[7:0] CLK_DATA_WRITE[7:0]

www.analog.com

Analog Devices | 98

Universal Encoder Bus Controller TMC8100
ADDR
NAME MSB LSB
ESS
0x4A | CLK DATAJ[7:0 CLK_DATA_READI[7:0]
PIO1_IN Pl IN
0x4C GPIO IN_ENJ7:0 - - - - - GPIOT_IN_ | GPIOO_IN_
EN EN
Ox4E | SILICON REV[7:0 SILICON_REV_DIGITAL[3:0] SILICON_REV_ANALOGI[3:0]
TIMER
0x60 | TIMER LIMITO[7:0 COUNTER_LIMIT_BYTEOQ[7:0]
TIMER _COUNTERO[7:
0x60 al COUNTER_VALUE_BYTEO[7:0]
0x61 TIMER _LIMIT1[7:0 COUNTER_LIMIT_BYTE1[7:0]
TIMER _COUNTERA1[7:
0x61 a COUNTER_VALUE_BYTE1[7:0]
0x62 TIMER _LIMIT2[7:0 COUNTER_LIMIT_BYTEZ2[7:0]
TIMER _COUNTER2|7:
0x62 al COUNTER_VALUE_BYTE2[7:0]
TIMER _COUNTER3|7:
0x63 al COUNTER_VALUE_BYTES3[7:0]
0x64 TIMER STARTOI[7:0 COUNTER_START_BYTEOQ[7:0]
TIMER CAPTUREQ[7:
0x64 al COUNTER_CAPTURE_BYTEO[7:0]
TIMER CAPTURE1][7:
0x65 al COUNTER_CAPTURE_BYTE1[7:0]
0x65 | TIMER START1[7:0 COUNTER_START_BYTE1[7:0]
TIMER CAPTUREZ2[7:
0x66 a COUNTER_CAPTURE_BYTEZ2[7:0]
0x66 TIMER _STARTZ2[7:0 COUNTER_START_BYTE2[7:0]
TIMER CAPTUREZ3J[7:
0x67 a COUNTER_CAPTURE_BYTE3[7:0]
0x67 | TIMER START3[7:0 COUNTER_START_BYTEZ3[7:0]
0x68 | TIMER ABZ DIV[7:0] ABZ_SAMPLE_DIVIDER[7:0]
TIMER _HOME DIV[7:0
0x69 | HOME_SAMPLE_DIVIDER[7:0]

www.analog.com

Analog Devices | 99

Universal Encoder Bus Controller

TMC8100

ADDR
NAME MSB LSB
ESS
TIMER AB EVENT C
0X6A - - ENC_B_CONFIG[2:0] ENC_A_CONFIG[2:0]
FGI7:0]
TIMER HZ EVENT C
0x6B - - HOME_CONFIG[2:0] ENC_Z_CONFIG[2:0]
EG[7:0
CAPTURE CAPTURE RESET_ON
0x6C | TIMER CTRL[7:0 - - - - RESET_Z DEC_MODE[2:0]
ONCE z CE
0x6C | TIMER STATUSI7:0] - - - - - - OVFL Z_EVENT
0x6D | TIMER_COMPO 0[7:0] COMPAREQ_BYTEO[7:0]
O0x6E | TIMER_COMPO_1[7:0] COMPAREQ_BYTE1[7:0]
0x6F | TIMER COMPOQ 2[7:0] COMPAREOQO_BYTEZ2[7:0]
0x70 | TIMER COMPO 3[7:0] COMPAREOQO_BYTE3[7:0]
0x71 TIMER COMP1 0[7:0] COMPARE1_BYTEOQ[7:0]
0x72 | TIMER_COMP1_1[7:0] COMPARE1_BYTEA[7:0]
0x73 | TIMER_COMP1_2[7:0] COMPARE1_BYTE2[7:0]
0x74 | TIMER_COMP1_3[7:0] COMPARE1_BYTE3[7:0]
TIMER COMP_PULSE
0x75 COMP_PULSE_LIMIT_BYTEOQ[7:0]
LIMITO[7:0
TIMER COMP_PULSE
0x76 COMP_PULSE_LIMIT_BYTE1[7:0]
LIMIT1[7:0
TIMER COMP_PULSE
0x77 - - - - - - COMP1_LE | COMPO_LE
CFGI7:0]
TIMER DEC PULSE
0x78 DECODER_PULSE_LIMIT[7:0]
CFG[7:0]
Register Details
UARTO0 BUFFER (0x8)
BIT 7 4 3 2 1 0
Field TX_DATA[7:0]
Reset 0x0

www.analog.com

Analog Devices | 100

Universal Encoder Bus Controller TMC8100

Access Type Write Only
BITFIELD BITS DESCRIPTION
TX_DATA 7:0 Transmit fifo buffer with 8 entries

UARTO0 BUFFER (0x8)

BIT 7 6 5 4 3 2 1 0
Field RX_DATA[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
RX_DATA 7:0 Receive buffer with up-to 8 entries

UARTO0 BAUD L (0x9)

BIT 7 6 5 4 3 2 1 0
Field BAUD_RATE_LIMIT_L[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
BAUD_RATE_LIMIT_L 7:0 Baud rate divider limit value - lower byte

UARTO0 BAUD H (0xA)

BIT 7 6 5 4 3 2 1 0
Field - - - - BAUD_RATE_LIMIT_H[3:0]
Reset - - - - 0x0
Access Type - - - - Write, Read

www.analog.com Analog Devices | 101

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION
BAUD_RATE_LIMIT_H 3:0 Baud rate divider limit value - upper 4 bit
UARTO CTRL (0xB)

BIT 7 6 5 4 3 2 1 0
Field - RX_BUFFER_LENGTH[2:0] RX_RESET AUTOBAUD NO_FILTER x8
Reset - 0x0 0x0 0x0 0x0 0x0
Access Type - Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE
RX_BUFFER_LENGTH 6:4 Set receive buffer length.
RX_RESET 3 Reset receive buffer contents
AUTOBAUD 2 Enable autobaud
NO_FILTER 1 Disable receiver Input Filter
X8 0 Enable x8 oversampling instead of x16 for OXOE x16 oversamp_)ling
receiver and transmitter 0x1: x8 oversampling
UARTO STATUS (0xB)

BIT 7 5 4 3 2 1 0
Field - - TIMEOUT | AUTOBAUD_ACTIVE | TX_EMPTY TX_FULL RX_FULL
Reset - - 0x0 0x0 0x1 0x0 0x0
Access Type - - Read Only Read Only Read Only Read Only Read Only

BITFIELD BITS DESCRIPTION

TIMEOUT 4 Receiver timeout counter limit value reached
AUTOBAUD_ACTIVE 3 Autobaud is active
TX_EMPTY 2 Transmit buffer is empty
TX_FULL 1 Transmit buffer is full
RX_FULL 0 Number of entries in receive buffer reached RX_BUFFER_LENGTH

www.analog.com

Analog Devices | 102

Universal Encoder Bus Controller

UARTO TIMEOUT L (0xC)

TMC8100

BIT 7 6 5 4 3 2 0
Field TIMEOUT_COUNTER_LIMIT_L[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
TIMEOUT_COUNTER_LIMIT_L 7:0 Timeout counter limit value - lower 8-bit.
UARTO0 TIMEOUT H (0xD)
BIT 7 6 5 4 3 2 0
Field TIMEOUT_COUNTER_LIMIT_H[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
TIMEOUT_COUNTER_LIMIT_H 7:0 Timeout counter limit value - upper 8-bit.
UART1 BUFFER (0x10)
BIT 7 6 5 4 3 2 0
Field TX_DATA[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
TX_DATA 7:0 Transmit fifo buffer with 8 entries
UART1 BUFFER (0x10)
BIT 7 6 5 4 3 2 0
Field RX_DATA[7:0]

www.analog.com

Analog Devices | 103

Universal Encoder Bus Controller TMC8100

Reset 0x0
Access Type Read Only

BITFIELD BITS DESCRIPTION
RX_DATA 7:0 Receive buffer with up-to 8 entries

UART1 BAUD L (0x11)

BIT 7 6 5 4 3 2 1 0
Field BAUD_RATE_LIMIT_L[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
BAUD_RATE_LIMIT_L 7:0 Baud rate divider limit value - lower byte

UART1 BAUD H (0x12)

BIT 7 6 5 4 3 2 1 0
Field - - - - BAUD_RATE_LIMIT_H[3:0]
Reset - - - - 0x0
Access Type - - - - Write, Read
BITFIELD BITS DESCRIPTION
BAUD_RATE_LIMIT_H 3:0 Baud rate divider limit value - upper 4 bit

UART1 CTRL (0x13)

BIT 7 6 5 4 3 2 1 0
Field - RX_BUFFER_LENGTH[2:0] RX_RESET | AUTOBAUD | NO_FILTER x8
Reset - 0x0 0x0 0x0 0x0 0x0
Access Type - Write Only Write Only Write Only Write Only Write Only

www.analog.com Analog Devices | 104

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION DECODE
RX_BUFFER_LENGTH 6:4 Set receive buffer length.
RX_RESET 3 Reset receive buffer contents
AUTOBAUD 2 Enable autobaud
NO_FILTER 1 Disable Receiver Input Filter
Switch to x8 oversampling for receiver and 0x0: x16 oversampling
x8 0 transmitter 0x1: x8 oversampling
UART1 STATUS (0x13)

BIT 7 5 4 3 2 1 0
Field - - TIMEOUT | AUTOBAUD_ACTIVE | TX_EMPTY TX_FULL RX_FULL
Reset - - 0x0 0x0 0x1 0x0 0x0
Access Type - - Read Only Read Only Read Only Read Only Read Only

BITFIELD BITS DESCRIPTION
TIMEOUT 4 Receiver timeout counter limit value reached
AUTOBAUD_ACTIVE 3 Autobaud is active
TX_EMPTY 2 Transmit buffer is empty
TX_FULL 1 Transmit buffer is full
RX_FULL 0 Number of entries in receive buffer reached RX_BUFFER_LENGTH
UART1 TIMEOUT L (0x14)
BIT 6 5 4 3 2 1 0
Field TIMEOUT_COUNTER_LIMIT_L[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
TIMEOUT_COUNTER_LIMIT_L 7:0 Timeout counter limit value - lower 8-bit.

www.analog.com

Analog Devices | 105

Universal Encoder Bus Controller

UART1 TIMEOUT H (0x15)

TMC8100

BIT 7 6 5 4 3 2 1 0
Field TIMEOUT_COUNTER_LIMIT_H[7:0]
Reset 0x0
Access Type Write, Read

BITFIELD BITS DESCRIPTION
TIMEOUT_COUNTER_LIMIT_H 7:0 Timeout counter limit value - upper 8-bit.
MEM CTRL (0x18)

BIT 7 6 5 4 3 2 1 0
Field - - - - ACCESS WRITE ADDR_MOD[1:0]
Reset - - - - 0x0 0x0 0x0
Access Type - - - - Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE
ACCESS 3 Program memory read or write access
WRITE 2 Write/not read to program memory
0x0
Modify address counter (after program memory 0x1: (Post) Increment Address Counter
ADDR_MOD 1:0 access) 0x2: (Post) Decrement Address Counter
0x3: (Post) Reset Address Counter
MEM DATA L (0x19)

BIT 7 6 5 4 3 2 1 0
Field DATA_L[7:0]
Reset 0x0
Access Type Write, Read

BITFIELD BITS DESCRIPTION

DATA_L 7:0 Program memory read/write data (lower byte)

www.analog.com

Analog Devices | 106

Universal Encoder Bus Controller

MEM DATA H (0x1A)

TMC8100

BIT 7 6 5 4 3 2 1 0
Field DATA_HI[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
DATA_H 7:0 Program memory read/write data (upper byte)
MEM ADDR L (0x1B)
BIT 7 6 5 4 3 2 1 0
Field ADDR_L[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
ADDR_L 7:0 Program memory address (lower byte)
MEM ADDR H (0x1C)
BIT 7 6 5 4 3 2 1 0
Field - - - - - - ADDR_HI[1:0]
Reset - - - - - - 0x0
Access Type - - - - - - Write Only
BITFIELD BITS DESCRIPTION
ADDR_H 1:0 Program memory address (upper bits)
DIRECT POLARITY (0x20)
BIT 7 6 5 4 3 2 1 0
Field OuT3 OouT2 OuUT1 OuTOo IN3 IN2 IN1 INO

www.analog.com

Analog Devices | 107

Universal Encoder Bus Controller

TMC8100

Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Access Type Write Only Write Only Write Only Write Only Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
. 0x0: non-inverted
OuT3 7 DIRECT_OUTS3 polarity 0x1: inverted
. 0x0: non-inverted
ouT2 6 DIRECT_OUT2 polarity 0x1- inverted
. 0x0: non-inverted
OuUT1 5 DIRECT_OUT1 polarity 0x1: inverted
ouTo 4 DIRECT_OUTO polarity Ox0: non-inverted
IN3 3 DIRECT_IN3 polarity 8§?E i’;‘\’/’;'rit’;‘:je”ed
IN2 2 DIRECT_IN2 polarity
0x0: non-inverted
0x1: inverted
IN1 1 DIRECT_IN1 polarity 8§?f ir:]‘\’/r;'ri{‘e‘ije“ed
INO 0 DIRECT_INO polarity 8§?E i’:]‘f/';'rit’;‘:je”ed
DIRECT OUT ALT (0x21)
BIT 7 6 5 3 2 0
Field OUT3_ALT[1:0] OUT2_ALT[1:0] OUT1_ALT[1:0] OUTO_ALTI[1:0]
Reset 0x2 0x2 0x0 0x0
Access Type Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
0x0: core DIRECT_OUT3
) 0x1: core clock output
OUT3_ALT 7:6 0x2: disable output
0x3
0x0: core DIRECT_OUT2
. 0x1: core clock output
OUTZ_ALT 5:4 0x2: disable output
0x3
0x0: core DIRECT_OUT1
OUT1_ALT 3:2 8;; core clock output
0x3
0x0: core DIRECT_OUTO
OUTO_ALT 1:0 82 core clock output
0x3

www.analog.com

Analog Devices | 108

Universal Encoder Bus Controller

DIRECT IN PU (0x22)

TMC8100

BIT 7 6 5 4 3 2 1 0
Field HOME ENC_Z - - IN3 IN2 IN1 INO
Reset 0x0 0x0 - - 0x0 0x0 0x0 0x0
Access Type Write Only Write Only - - Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
0x0: Enable pull-
HOME 7 Enable or disable pull-up resistor for HOME input 0§1: Disable%tlli%
ENC_Z 6 Enable or disable pull-up resistor for ENC_Z input
0x0: Enable pull-up
0x1: Disable pull-up
Enable or disable pull-up resistor for DIRECT_IN3 0x0: Enable pull-up
IN3 3) .
input 0x1: Disable pull-up
Enable or disable pull-up resistor for DIRECT_IN2 0x0: Enable pull-up
IN2 2))
input 0x1: Disable pull-up
Enable or disable pull-up resistor for DIRECT_IN1 0x0: Enable pull-up
IN1 1))
input 0x1: Disable pull-up
INO 0 Enable or disable pull-up resistor for DIRECT_INO
input 0x0: Enable pull-up
0x1: Disable pull-up
DIRECT IN PD (0x23)
BIT 7 6 5 4 3 2 1 0
Field HOME ENC_Z - - IN3 IN2 IN1 INO
Reset 0x0 0x0 - - 0x0 0x0 0x0 0x0
Access Type Write Only Write Only - - Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
HOME 7 Enable or disable pull-down resistor for HOME input
0x0: Disable pull-down
0x1: Enable pull-down
Enable or disable pull-down resistor for ENC_Z 0x0: Disable pull-down
ENC_Z 6) :
- input 0x1: Enable pull-down
Enable or disable pull-down resistor for 0x0: Disable pull-down
IN3 3)
DIRECT_IN3 input 0x1: Enable pull-down

www.analog.com

Analog Devices | 109

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION DECODE

Enable or disable pull-down resistor for 0x0: Disable pull-down

IN2 2 . .
DIRECT_IN2 input 0x1: Enable pull-down
Enable or disable pull-down resistor for 0x0: Disable pull-down

IN1 1 .
DIRECT_IN1 input 0x1: Enable pull-down
Enable or disable pull-down resistor for 0x0: Disable pull-down

INO 0 . .
DIRECT_INO input 0x1: Enable pull-down

12C BUFFER (0x28)

BIT 7 6 5 4 3 2 1 0
Field TX_DATA[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
TX_DATA 7:0 Transmit data buffer
12C BUFFER (0x28)
BIT 7 6 5 4 3 2 1 0
Field RX_DATA[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
RX_DATA 7:0 Receive data buffer
12C BAUD L (0x29)
BIT 7 6 5 4 3 2 1 0
Field BAUD_RATE_LIMIT_L[7:0]
Reset 0x0
Access Type Write, Read

www.analog.com

Analog Devices | 110

Universal Encoder Bus Controller TMC8100

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_L 7:0 Baud rate divider limit value - lower byte

12C BAUD H (0x2A)

BIT 7 6 5 4 3 2 1 0
Field BAUD_RATE_LIMIT_H[7:0]
Reset 0x0
Access Type Write, Read
BITFIELD BITS DESCRIPTION
BAUD_RATE_LIMIT_H 7:0 Baud rate divider limit value - upper byte

12C_CMD (0x2B)

BIT 7 6 5 4 3 2 1 0
Field - - - - - COMMANDI[2:0]
Reset - - - - - 0x0
Access Type - - - - - Write Only
BITFIELD BITS DESCRIPTION DECODE

0x0: 12C_CMD_STOP

0x1: 12C_CMD_START TXD_ACK
0x2: 12C_CMD_TXD_ACK

0x3: 12C_CMD_RXD_ACK
COMMAND 2:0 12C comand Ox4: |2C_CMD_RXD_NO_ACK
0x5

0x6

0x7

12C STATUS (0x2B)

BIT 7 6 5 4 3 2 1 0
Field - - - - - RCV_ACK | RCV_ACK_VALUE | CMD_RDY
Reset - - - - - 0x0 0x0 0x0
Access Type - - - - - Read Only Read Only Read Only

www.analog.com Analog Devices | 111

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION DECODE
RCV_ACK 2 Either ACK or NACK received
Value of acknowledge received - either ACK or 0x0: ACK received
RCV_ACK_VALUE 1 NACK 0x1: NACK received
CMD_RDY 0 Command processed flag
SPI BUFFERO (0x30)
BIT 7 6 4 3 2 1 0
Field TX_DATA_BYTEOQ[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
TX_DATA_BYTEO 7:0 Transmit buffer LSB [7:0]
SPI BUFFERO (0x30)
BIT 7 6 4 3 2 1 0
Field RX_DATA_BYTEOQ[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
RX_DATA_BYTEO 7:0 Receive buffer LSB [7:0]
SPlI BUFFER1 (0x31)
BIT 7 6 4 3 2 1 0
Field TX_DATA_BYTE1[7:0]
Reset 0x0
Access Type Write Only

www.analog.com

Analog Devices | 112

Universal Encoder Bus Controller TMC8100

BITFIELD BITS DESCRIPTION

TX_DATA_BYTE1 7:0 Transmit buffer [15:8]

SPI BUFFER1 (0x31)

BIT 7 6 5 4 3 2 1 0
Field RX_DATA_BYTE1[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
RX_DATA_BYTE1 7:0 Receive buffer [15:8]

SPI BUFFER2 (0x32)

BIT 7 6 5 4 3 2 1 0
Field RX_DATA_BYTE2[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
RX_DATA_BYTE2 7:0 Receive buffer [23:16]

SPI BUFFER2 (0x32)

BIT 7 6 5 4 3 2 1 0
Field TX_DATA_BYTE2[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
TX_DATA_BYTE2 7:0 Transmit buffer [23:16]

www.analog.com Analog Devices | 113

Universal Encoder Bus Controller TMC8100

SPI BUFFERS3 (0x33)

BIT 7 6 5 4 3 2 1 0
Field TX_DATA_BYTE3[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
TX_DATA_BYTE3 7:0 Transmit buffer MSB [31:24]

SPI BUFFERS3 (0x33)

BIT 7 6 5 4 3 2 1 0
Field RX_DATA_BYTE3[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
RX_DATA_BYTE3 7:0 Receive buffer MSB [31:24]

SPI CTRL (0x34)

BIT 7 6 5 4 3 2 1 0
Field - - - - - - TX_RESET TX_SKIP
Reset - - - - - - 0x0 0x0
Access Type - - - - - - Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
TX_RESET 1 Remove all entries from transmit buffer
Drop oldest entry in transmit buffer and allow 0x0: Suppress write operation in case the transmit buffer
TX SKIP 0 adding data instead of suppressing any write is full
— operation in case there is an overflow of the Oxj: Allow vyrlte operation but drop oldest value in case
. write buffer is full
transmit buffer.

www.analog.com Analog Devices | 114

Universal Encoder Bus Controller

SPI STATUS (0x34)

TMC8100

BIT 6 5 4 3 2 1 0
Field - - - - TX_FULL NO_TRANSFER EOT
Reset - - - - 0x0 0x0 0x0
Access Type - - - - Read Only Read Only Read Only
BITFIELD BITS DESCRIPTION
TX_FULL 2 Transmit buffer is full
NO_TRANSFER 1 No SPI data transfer (chip select high)
EOT 0 End of SPI data transmission
GPIO IN (0x40)
BIT 6 5 4 3 2 1 0
Field GPIO6_IN GPIO5_IN GPIO4_IN GPIO3_IN GPIO2_IN GPIO1_IN GPIOO0_IN
Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Access Type Read Only Read Only Read Only Read Only Read Only Read Only Read Only
BITFIELD BITS DESCRIPTION
GPIO6_IN 6 GPIOB6 input pin value
GPIO5_IN 5 GPIO5 input pin value
GPIO4_IN 4 GPI04 input pin value
GPIO3_IN 3 GPIO3 input pin value
GPIO2_IN 2 GPI02 input pin value
GPIO1_IN 1 GPIO1 input pin value
GPIOO0_IN 0 GPIOO0 input pin value
GPIO OUT (0x40)
BIT 6 5 4 3 2 1 0
Field GPIO6_OUT | GPIO5_OUT | GPIO4_OUT | GPIO3_OUT | GPIO2_OUT | GPIO1_OUT | GPIOO_OUT

www.analog.com

Analog Devices | 115

Universal Encoder Bus Controller

TMC8100

Reset - 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Access Type - Write Only Write Only Write Only Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION
GPIO6_OUT 6 GPIOB6 output value
GPIO5_OUT 5 GPIOS5 output value
GPIO4_OUT 4 GPIO4 output value
GPIO3_OUT 3 GPIO3 output value
GPIO2_OUT 2 GPIO2 output value
GPIO1_OUT 1 GPIO1 output value
GPIO0_OUT 0 GPIOO output pin value
GPIO POLARITY (0x41)
BIT 7 6 5 4 3 2 1 0
Field 3 GPIO6_POLARI | GPIO5_POLARI | GPIO4_POLARI | GPIO3_POLARI | GPIO2_POLARI | GPIO1_POLARI | GPIOO_POLARI
TY TY TY TY TY TY TY
Reset | - 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Acces
s - Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read
Type
BITFIELD BITS DESCRIPTION DECODE
GPIO6_POLARITY 6 GPIO6 input/output polarity
GPIO5_POLARITY 5 GPIOS5 input/output polarity
GPIO4_POLARITY 4 GPI04 input/output polarity
GPIO3_POLARITY 3 GPIO3 input/output polarity
GPIO2_POLARITY 2 GPIO2 input/output polarity
GPIO1_POLARITY 1 GPIO1 input/output polarity
GPIOO_POLARITY 0 GPIOO inputioutput polarity Ox0: non-inverted

www.analog.com

Analog Devices | 116

Universal Encoder Bus Controller

GPIO OUT OD (0x42)

TMC8100

BIT 7 6 5 4 3 2 1 0
Field - - - - - GPIO2_0OD - -
Reset - - - - - 0x0 - -
Access Type - - - - - Write Only - -
BITFIELD BITS DESCRIPTION
GPIO2_0OD 2 GPIO2 output buffer type
0x0: push-pull
0x1: open-drain
GPIO_ALTO (0x43)
BIT 7 6 5 4 3 2 1 0
Field GPIO3_ALTI[1:0] GPIO2_ALTI[1:0] GPIO1_ALT[1:0] GPIO0_ALTI[1:0]
Reset 0x0 0x0 0x0 0x0
Access Type Write, Read Write, Read Write, Read Write, Read
BITFIELD BITS DESCRIPTION
0x0: GPIO3
)) 0x1:12C_SCL
GPIO3_ALT 7:6 GPIO3 alternate function selection 0x2: UART1 RXD
0x3: DECODER_OUT
0x0: GP102
. - . 0x1: 12C_SDA
GPIO2_ALT 5:4 GPIO2 alternate function selection 0x2: UART1_TXD
0x3: HOME
GPIO1_ALT 3:2 GPIO1 alternate function selection 0x0: GPIO1
0x1: XTAL_OUT
0x2
0x3
0x0: GPIO0
. .) 0x1: XTAL_IN
GPIOO_ALT 1:0 GPIOO0 alternate function selection 0x2: EXT_CLK
0x3
GPIO ALT1 (0x44)
BIT 7 6 5 4 3 2 1 0
Field - - GPIO6_ALT[1:0] GPIO5_ALT[1:0] GPIO4_ALT[1:0]

www.analog.com

Analog Devices | 117

Universal Encoder Bus Controller

TMC8100

Reset - - 0x0 0x0 0x0
Access Type - - Write, Read Write, Read Write, Read
BITFIELD BITS DESCRIPTION DECODE
0x0: GPIO6
.) 0x1: SPI_DATA_AVAILABLE
GPIO6_ALT 5:4 GPIO6 alternate function selection 0x2: COMPARE OUT
0x3: DECODER_OUT
0x0: GPIO5
. . . 0x1: UARTO_RXD
GPIO5_ALT 3:2 GPIO5 alternate function selection 0x2: COMPARE_OUT
0x3: DECODER_OUT
0x0: GP104
. . . 0x1: UARTO_TXD
GPIO4_ALT 1:0 GPIO4 alternate function selection 0x2: SPI_DATA_AVAILABLE
0x3: HOME
GPIO _OUT _EN (0x45)
BIT 7 6 5 4 3 2 1 0
Field GPIO6_OUT_E | GPIO5_OUT_E | GPIO4_OUT_E | GPIO3_OUT_E | GPIO2_OUT_E | GPIO1_OUT_E | GPIOO_OUT_E
N N N N N N N
Reset | — 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Acces
T - Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read
s Type
BITFIELD BITS DESCRIPTION DECODE
0x0: disable
GPIO6_OUT_EN 6 GPIO6 output enable 0x1: enable
GPIO5_OUT_EN 5 GPIO5 output enable 0x0: disable
0x1: enable
GPIO4_OUT_EN 4 GPI04 output enable 0x0: disable
0x1: enable
GPIO3_OUT_EN 3 GPIO3 output enable 0x0: disable
0x1: enable
GPIO2_OUT_EN 2 GPIO2 output enable 0x0: disable
0x1: enable
GPIO1_OUT_EN 1 GPIO1 output enable 0x0: disable
0x1: enable
GPIO0_OUT_EN 0 GPIOO output enable 0x0: output disable
0x1: output enable
GPIO PU (0x46)
BIT 7 6 5 4 3 2 1 0
Field - GPIO6_PU GPIO5_PU GPIO4_PU GPIO3_PU GPIO2_PU GPIO1_PU GPIO0_PU

www.analog.com

Analog Devices | 118

Universal Encoder Bus Controller TMC8100

Reset - 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Access Type - Write Only Write Only Write Only Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
. . . 0x0: Pull-up enable
GPIO6_PU 6 GPIO6 internal pull-up resistor disable 0x1: Pull-up disable
GPIO5_PU 5 GPIO5 internal pull-up resistor disable

0x0: Pull-up enable
0x1: Pull-up disable

0x0: Pull-up enable

GPIO4_PU 4 GPI04 internal pull-up resistor disable 0x1: Pull-up disable
GPIO3_PU 3 GPIO3 internal pull-up resistor disable

0x0: Pull-up enable

0x1: Pull-up disable

GPIO2_PU 2 GPIO2 internal pull-up resistor disable 0x0: Pull-up enable

- 0x1: Pull-up disable

. i) . 0x0: Pull-up enable

GPIO1_PU 1 GPIO1 internal pull-up resistor disable 0x1: Pull-up disable

GPIO0_PU 0 GPIOO internal pull-up resistor disable 0x0: Pull-up enable

0x1: Pull-up disable

GPIO PD (0x47)

BIT 7 6 5 4 3 2 1 0
Field - GPIO6_PD GPIO5_PD GPIO4_PD GPIO3_PD GPIO2_PD GPIO1_PD GPIO0_PD
Reset - 0x0 0x0 0x0 0x0 0x0 0x0 0x0
Access Type - Write Only Write Only Write Only Write Only Write Only Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE

) . 0x0: Pull-down disable
GPIO6_PD 6 GPIO6 internal pull-down resistor enable 0x1: Pull-down enable
GPIO5_PD 5 GPIO5 internal pull-down resistor enable

0x0: Pull-down disable
0x1: Pull-down enable

0x0: Pull-down disable

GPIO4_PD 4 GPI04 internal pull-down resistor enable 0x1: Pull-down enable
GPIO3_PD 3 GPIO3 internal pull-down resistor enable
0x0: Pull-down disable
0x1: Pull-down enable
GPIO2_PD 2 GPIO2 internal pull-down resistor enable 0x0: Pull-down disable
0x1: Pull-down enable
GPIO1_PD 1 GPIO1 internal pull-down resistor enable 0x0: Pull-down disable

0x1: Pull-down enable

www.analog.com Analog Devices | 119

Universal Encoder Bus Controller TMC8100

BITFIELD BITS DESCRIPTION DECODE

0x0: Pull-down disable

GPIO0_PD 0 GPIOO0 internal pull-down resistor enable 0x1: Pull-down enable

SPI PU PD (0x48)

BIT 7 6 5 4 3 2 1 0
Field CSN_PD SCLK_PD SDO_PD SDI_PD CSN_PU SCLK_PU SDO_PU SDI_PU
Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type Write Only Write Only Write Only Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE
SPI chip select (CSN) internal pull-down resistor 0x0: Pull-down disable
CSN_PD 7 enable 0x1: Pull-down enable
SCLK_PD 6 SPI serial clock (SCLK) internal pull-down resistor OXOE Pull-down disable
enable 0x1: Pull-down enable
SPI serial data out (SDO) internal pull-down resistor | 0x0: Pull-down disable
SDO_PD 5
- enable 0x1: Pull-down enable
SPI serial data in (SDI) internal pull-down resistor 0x0: Pull-down disable
SDI_PD 4 :
enable 0x1: Pull-down enable
CSN_PU 3 S.PI chip select (CSN) internal pull-up resistor OXOE Pull-up enable
disable 0x1: Pull-up disable
. . i . . 0x0: Pull-up enable
SCLK_PU 2 SPI serial clock internal pull-up resistor disable 0x1: Pull-up disable
SPI serial data out (SDO) internal pull-up resistor
SDO_PU 1)
disable 0x0: Pull-up enable
0x1: Pull-up disable
SDI PU 0 S.PI serial data in (SDI) internal pull-up resistor 0x0: Pull-up enable
- disable 0x1: Pull-up disable
CLK ADDR (0x49)
BIT 7 6 5 4 3 2 1 0
Field CLK_ADDR][7:0]
Reset 0x0
Access Type Write, Read

www.analog.com Analog Devices | 120

Universal Encoder Bus Controller TMC8100

BITFIELD BITS DESCRIPTION

CLK_ADDR 7:0 Register address for clock block access

CLK DATA (0x4A)

BIT 7 6 5 4 3 2 1 0
Field CLK_DATA_WRITE[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
Register data for clock block write access. Writing to this register also triggers clock
CLK_DATA_WRITE 7:0)
block write access.

CLK DATA (0x4A)

BIT 7 6 5 4 3 2 1 0
Field CLK_DATA_READ|7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
CLK_DATA_READ 7:0 Register data from clock block read access

GPIO IN EN (0x4C)

BIT 7 6 5 4 3 2 1 0
Field - - - - - - GPIO1_IN_EN | GPIOO_IN_EN
Reset - - - - - - 0x1 0x1
Access Type - - - - - - Write Only Write Only

www.analog.com Analog Devices | 121

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION DECODE
GPIO1 IN EN 1 Enable GPIO1 digital input. Disable for external 0x0: Disable digital input
- XTAL connection. 0x1: Enable digital input
GPIOO IN EN 0 Enable GPIOQ digital input. Disable for external 0x0: Disable d‘ig_itallinput
- XTAL connection. 0x1: Enable digital input

SILICON REV (0x4E)

BIT 7 6 5 4 3 2 1 0
Field SILICON_REV_DIGITAL[3:0] SILICON_REV_ANALOGJ[3:0]
Reset 0x1 Ox1
Access Type Read Only Read Only
BITFIELD BITS DESCRIPTION
SILICON_REV_DIGITAL 74 Silicon mask revision (digital part)
SILICON_REV_ANALOG 3:0 Silicon mask revision (analog part)
TIMER LIMITO (0x60)
BIT 7 6 5 4 3 2 1 0
Field COUNTER_LIMIT_BYTEO[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COUNTER_LIMIT_BYTEO 7:0 Encoder counter upper wrap-around limit value LSB [7:0]
TIMER COUNTERO (0x60)
BIT 7 6 5 4 3 2 1 0
Field COUNTER_VALUE_BYTEOQ[7:0]
Reset 0x0
Access Type Read Only

www.analog.com

Analog Devices | 122

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION
COUNTER_VALUE_BYTEO 7:0 Encoder counter value LSB [7:0]
TIMER LIMIT1 (0x61)
BIT 7 6 5 4 3 2 0
Field COUNTER_LIMIT_BYTE1[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COUNTER_LIMIT_BYTE1 7:0 Encoder counter upper wrap-around limit value [15:8]
TIMER COUNTER1 (0x61)
BIT 7 6 5 4 3 2 0
Field COUNTER_VALUE_BYTE1[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
COUNTER_VALUE_BYTE1 7:0 Encoder counter value [15:8]
TIMER LIMIT2 (0x62)
BIT 7 6 5 4 3 2 0
Field COUNTER_LIMIT_BYTEZ2[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COUNTER_LIMIT_BYTE2 7:0 Encoder counter upper wrap-around limit value [23:16]

www.analog.com

Analog Devices | 123

Universal Encoder Bus Controller

TIMER COUNTERZ2 (0x62)

TMC8100

BIT 7 6 5 4 3 2 0
Field COUNTER_VALUE_BYTEZ2[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
COUNTER_VALUE_BYTE2 7:0 Encoder counter value [23:16]
TIMER COUNTERS (0x63)
BIT 7 6 5 4 3 2 0
Field COUNTER_VALUE_BYTE3[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
COUNTER_VALUE_BYTE3 7:0 Encoder counter value MSB [31:24]
TIMER STARTO (0x64)
BIT 7 6 5 4 3 2 0
Field COUNTER_START_BYTEOQ[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COUNTER_START_BYTEO 7:0 Encoder counter start value after reset or overflow LSB [7:0]
TIMER CAPTUREO (0x64)
BIT 7 6 5 4 3 2 0
Field COUNTER_CAPTURE_BYTEOQ[7:0]

www.analog.com

Analog Devices | 124

Universal Encoder Bus Controller

TMC8100

Reset 0x0
Access Type Read Only

BITFIELD BITS DESCRIPTION
COUNTER_CAPTURE_BYTEO 7:0 Captured encoder counter value LSB [7:0]

TIMER CAPTURE1 (0x65)

BIT 7 6 5 4 3 2 0
Field COUNTER_CAPTURE_BYTE1[7:0]
Reset 0x0
Access Type Read Only
BITFIELD BITS DESCRIPTION
COUNTER_CAPTURE_BYTE1 7:0 Captured encoder counter value [15:8]
TIMER START1 (0x65)
BIT 7 6 5 4 3 2 0
Field COUNTER_START_BYTE1[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COUNTER_START_BYTE1 7:0 Encoder counter start value after reset or overflow [15:8]
TIMER CAPTURE2 (0x66)
BIT 7 6 5 4 3 2 0
Field COUNTER_CAPTURE_BYTE2[7:0]
Reset 0x0
Access Type Read Only

www.analog.com

Analog Devices | 125

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS

DESCRIPTION

COUNTER_CAPTURE_BYTE2 7:0

Captured encoder counter value [23:16]

TIMER START2 (0x66)

BIT 7 6 4 2 0
Field COUNTER_START_BYTE2[7:0]
Reset 0x0
Access Type Write Only

BITFIELD BITS DESCRIPTION
COUNTER_START_BYTE2 7:0 Encoder counter start value after reset or overflow [23:16]
TIMER CAPTURES3 (0x67)

BIT 7 6 4 2 0
Field COUNTER_CAPTURE_BYTE3[7:0]
Reset 0x0
Access Type Read Only

BITFIELD BITS DESCRIPTION
COUNTER_CAPTURE_BYTE3 7:0 Captured encoder counter value MSB [31:24]
TIMER START3 (0x67)

BIT 7 6 4 2 0
Field COUNTER_START_BYTE3[7:0]
Reset 0x0
Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_START_BYTE3 7:0 Encoder counter start value after reset or overflow MSB [31:24]

www.analog.com

Analog Devices | 126

Universal Encoder Bus Controller

TIMER ABZ DIV (0x68)

TMC8100

BIT 7 6 5 4 3 2 1
Field ABZ_SAMPLE_DIVIDER[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
ABZ_SAMPLE_DIVIDER 7:0 Sample clock divider for ENC_A/B/Z input signals
TIMER HOME DIV (0x69)
BIT 7 6 5 4 3 2 1
Field HOME_SAMPLE_DIVIDER[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
HOME_SAMPLE_DIVIDER 7:0 Sample clock divider for HOME input signal
TIMER AB EVENT CFG (0x6A)
BIT 7 6 5 4 3 2 1
Field - - ENC_B_CONFIG[2:0] ENC_A_CONFIG[2:0]
Reset - - 0x0 0x0
Access Type - - Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
0x0: Encoder B low
0x1: Encoder B high
0x2: Encoder B rising edge
o 0x3: Encoder B falling edge
ENC_B_CONFIG 5:3 Select encoder B channel contribution to Z event Ox4: Encoder B rising and falling edge
0x5: Disable event generation
0x6: Disable event generation
0x7: Ignore encoder B input
0x0: Encoder A low
ENC_A_CONFIG 2:0 Select encoder A channel contribution to Z event 0X1f Encoder A h_|gh
0x2: Encoder A rising edge
0x3: Encoder A falling edge

www.analog.com

Analog Devices | 127

Universal Encoder Bus Controller TMC8100

BITFIELD BITS DESCRIPTION DECODE

0x4: Encoder A rising and falling edge
0x5: Disable event generation

0x6: Disable event generation

0x7: Ignore encoder A input

TIMER HZ EVENT CFG (0x6B)

BIT 7 6 5 4 3 2 1 0
Field - - HOME_CONFIG[2:0] ENC_Z_CONFIG[2:0]
Reset - - 0x0 0x0
Access Type - - Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
0x0: HOME low

0x1: HOME high

0x2: HOME rising edge
0x3: HOME falling edge
HOME_CONFIG 5:3 Select HOME input contribution to Z event 0x4: HOME risingandgfalling edge
0x5: Disable event generation
0x6: Disable event generation
0x7: Ignore HOME input

0x0: Encoder Z low

0x1: Encoder Z high

0x2: Encoder Z rising edge

0x3: Encoder Z falling edge

0x4: Encoder Z rising and falling edge
0x5: Disable event generation

0x6: Disable event generation

0x7: Ignore encoder Z input

ENC_Z_CONFIG 2:0 Select encoder Z channel contribution to Z event

TIMER CTRL (0x6C)

BIT 7 6 5 4 3 2 1 0

Field - CAPTURE_ONCE | CAPTURE_Z | RESET_ONCE | RESET_Z DEC_MODE[2:0]
Reset - 0x0 0x0 0x0 0x0 0x0
Access Type - Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE
CAPTURE_ONCE 6 Capture encoder counter value on Z event once
CAPTURE_Z 5 Capture encoder counter value on Z event
RESET_ONCE 4 Reset encoder counter on Z event once
RESET_Z 3 Reset encoder counter on Z event

www.analog.com Analog Devices | 128

Universal Encoder Bus Controller TMC8100

BITFIELD BITS DESCRIPTION DECODE

0x0: x1 code

0x1: x2 code

0x2: x4 code

. . 0x3: cw/ccw

DEC_MODE 2:0 Select input decoder operation mode Ox4: STEP (rising edge)/DIR
0x5: STEP (both edges)/DIR
0x6

0x7

TIMER STATUS (0x6C)

BIT 7 6 5 4 3 2 1 0
Field - - - - - - OVFL Z_EVENT
Reset - - - - - - 0x0 0x0
Access Type - - - - - - Read Only Read Only
BITFIELD BITS DESCRIPTION
OVFL 1 Encoder counter overflow flag
Z_EVENT 0 Zero channel event channel

TIMER COMPO 0 (0x6D)

BIT 7 6 5 4 3 2 1 0
Field COMPAREOQ_BYTEO0[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPAREO_BYTEO 7:0 Encoder counter compare value 0 LSB [7:0]

TIMER COMPO 1 (0x6E)

BIT 7 6 5 4 3 2 1 0
Field COMPAREOQ_BYTE1[7:0]
Reset 0x0
Access Type Write Only

www.analog.com Analog Devices | 129

Universal Encoder Bus Controller

TMC8100

BITFIELD BITS DESCRIPTION
COMPAREO_BYTE1 7:0 Encoder counter compare value 0 [15:8]
TIMER COMPO 2 (0x6F)
BIT 7 6 5 4 3 2 0
Field COMPAREO_BYTEZ2[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPAREO_BYTE2 7:0 Encoder counter compare value 0 [23:16]
TIMER COMPO 3 (0x70)
BIT 7 6 5 4 3 2 0
Field COMPAREOQO_BYTE3[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPAREO_BYTE3 7:0 Encoder counter compare value 0 MSB [31:24]
TIMER COMP1 0 (0x71)
BIT 7 6 5 4 3 2 0
Field COMPARE1_BYTEOQ[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPARE1_BYTEO 7:0 Encoder counter compare value 1 LSB [7:0]

www.analog.com

Analog Devices | 130

Universal Encoder Bus Controller

TIMER COMP1 1 (0x72)

TMC8100

BIT 7 6 5 4 3 2 0
Field COMPARE1_BYTE1[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPARE1_BYTE1 7:0 Encoder counter compare value 1 [15:8]
TIMER COMP1 2 (0x73)
BIT 7 6 5 4 3 2 0
Field COMPARE1_BYTEZ2[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPARE1_BYTE2 7:0 Encoder counter compare value 1 [23:16]
TIMER COMP1_3 (0x74)
BIT 7 6 5 4 3 2 0
Field COMPARE1_BYTEZ3[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMPARE1_BYTE3 7:0 Encoder counter compare value 1 [31:24]
TIMER COMP PULSE LIMITO (0x75)
BIT 7 6 5 4 3 2 0
Field COMP_PULSE_LIMIT_BYTEOQ[7:0]

www.analog.com

Analog Devices | 131

Universal Encoder Bus Controller

TMC8100

Reset

0x0

Access Type

Write Only

BITFIELD

BITS

DESCRIPTION

COMP_PULSE_LIMIT_BYTEO

7:0

Length of COMPARE_OUT signal in number of system clock cycles + 1 (lower byte)

TIMER COMP PULSE LIMIT1 (0x76)

BIT 7 6 5 3 2 1 0
Field COMP_PULSE_LIMIT_BYTE1[7:0]
Reset 0x0
Access Type Write Only
BITFIELD BITS DESCRIPTION
COMP_PULSE_LIMIT_BYTE1 7:0 Length of COMPARE_OUT signal in number of system clock cycles + 1 (upper byte)
TIMER COMP PULSE CFG (0x77)
BIT 7 6 5 3 2 1 0
Field - - - - - COMP1_LE COMPO_LE
Reset - - - - - 0x0 0x0
Access Type - - - - - Write Only Write Only
BITFIELD BITS DESCRIPTION DECODE
Select compare operation between compare1 and
encoder counter value register. In case the
. . 0x0: Compare1 greater than
COMP1_LE 1 compare operations with compare0 and compare1 0x1: Compare1 less or equal
registers both get valid, the output signal
COMPARE_OUT is activated.
Select compare operation between compare0 and
encoder counter value register. In case the
COMPO_LE 0 compare operations with compare0 and compare1 OXOj CompareQ value greater than
0x1: Compare0 less or equal
registers both get valid, the output signal
COMPARE_OUT is activated.

www.analog.com

Analog Devices | 132

Universal Encoder Bus Controller TMC8100
TIMER DEC PULSE CFG (0x78)
BIT 7 6 4 3 2 0

Field DECODER_PULSE_LIMIT[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION
DECODER_PULSE_LIMIT 7:0 Length of DECODER_OUT signal in number of system clock cycles + 1

www.analog.com

Analog Devices | 133

Universal Encoder Bus Controller

Typical Application Circuits

TMC8100

ENCODER
SUPPLY
v — | BUCK
DCDC
T
OLK_EXT =
1.30MHz
(OPTIONAL) (‘ .) o
TMC81
BMHz/ 16MHz/ PLL 75MHZI100MHZ! 8100 T RS485
24MHZ25MHZ/ | 128MHz ANALOG
(oﬁ%ﬁu D\ —t DEVICES
I I i CLK+
) r{ e LAz
SRAM SRAM z
= BOOT-ROM [
= x16 648 = .
Veco | X ‘ ‘ ‘ CLK:
— I I I DIRECTIN
I CORE L
MOTION DIRECT OUT B
PLDATA AVALABLE K
CONTROLLER SPLDATA, PC REGTER AU
X8 Vecio +5V
EXAMPLE, T RS485
MICROCONTROLLER, ® = DIRECT_IN
FPGA,ETC ES CALL cLock 3
UART g ‘ STACK ‘ ‘GENERATOR PRE-SCALER 2 ABSOLUTE
z 2 o DATA+
2 = = ENCODER
© HW E 5
GPIO LooP TINER CRC 5 a r 100,
8 g
2 g = > DATA-
OPTIONAL (CONTROLL
% ER) ENC_A
EEPROM COUNTER L
- DECODER || FILTER ENC.B —
CAPTLRE
‘ ‘ ENC_Z
GPI0 MATRIX ‘
. J
COMPARE_OUT | HOME INPUT DECODER_OUT
|
Figure 17. SSI Encoder Application Circuit Example
ENCODER
SUPPLY
o —w| BUCK
pcoe
T
CLK_EXT —
1.32MHz
oprionaty [)
o TMC8100
8MHz/16MHz/ 75M:12y51 sk ANALOG
Mz
| -
oM ED\ -+ DEVICES
opmiova) [~
T - “
SRAM SRAM
L EREER
Vecio
— ‘ ‘ ‘ DIRECTIN
5Pl H
sl (TARGET) CORE
MOTION [DIRECT OUT
CONTROLLER SPLDATA AVALABLE ‘ PC ‘ ‘ RE%X'SETER ‘ ‘ AU ‘
EXAMPLE,
MICROCONTROLLER, *® # UART .
FPGA,ETC. = % CALL CLOCK E
’ UART g 2 3
£ ‘ STACK ‘ GENERATOR | | PRE-SCALER i
= 2
° &
& # oPl0 }7 w S Veoo Rrsa22
=
GPIO LOOP TIMER CRC C‘
12 g
%c 5
OPTIONAL
" ‘CONETR'TO"L ENC_A -- INCREMENTAL
EEPROM ! COUNTER ENCODER
+ DECODER (- FILTER ENC B R - AB/Z
CAPTLRE
‘ ‘ ENC_Z
GPIO MATRKX ‘ i;
\ J T
COMPARE_OUT | HOME INPUT DECODER_OUT

Figure 18. A/B/Z Incremental Encoder Application Example

www.analog.com

Analog Devices | 134

Universal Encoder Bus Controller TMC8100
Ordering Information
PART NUMBER TEMP RANGE PIN-PACKAGE

TMC8100ATG+

-40°C to +125°C

24 TQFN 4mm x 4mm

+Denotes lead(Pb)-free/RoHS-compliance.

#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements.

T = Tape and reel.

Y = Side-wettable package.

www.analog.com

Analog Devices | 135

Universal Encoder Bus Controller TMC8100

Revision History

REVISION | REVISION
NUMBER DATE

DESCRIPTION

0

04/24

Release for market intro

w W w

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is
assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may

result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise
DEVI‘ ES under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their

.analog.com

respective owners.

Analog Devices | 136

	General Description
	Applications
	Benefits and Features
	Absolute Maximum Ratings
	Package Information
	Electrical Characteristics
	Timing Diagrams
	Pin Configurations
	Pin Descriptions
	Functional Diagrams
	Detailed Description
	System Architecture
	Program Memory Bus
	ROM Bootloader
	UART0 Bootstrap Protocol
	SPI Bootstrap Protocol

	Data Bus
	Power Supply
	Reset and Clock
	Reset
	Clock
	Crystal Oscillator

	GPIO and DIRECT_IN/OUT
	GPIO Matrix
	DIRECT_IN/DIRECT_OUT Matrix

	Serial Communication Engine
	Overview
	Loop Support in Hardware
	Set of Counter/Timer
	Cyclic Redundancy Check (CRC)

	Universal Asynchronous Receiver-Transmitter (UART)
	Overview
	Main Features
	Functional Description

	Serial Peripheral Interface (SPI)
	Overview
	Main Features
	Functional Description

	I2C
	Overview
	Main Features
	Functional Description

	A/B/Z Encoder Interface
	Overview
	Main Features
	Functional Description
	x1 Code Incremental Encoder Input
	x2 Code Incremental Encoder Input
	x4 Code, A/B Incremental Encoder Input
	CW and CCW Incremental Input
	PULSE/DIR Incremental Input

	Appendix
	Commands
	Overview
	Program Flow Control
	Load/Store/Move Operations
	Set/Clear/Move Individual Bits
	Arithmetic and Logic Operations
	Compare and Test Operations
	Shift Operations
	JA/JC (Jump Always/Jump Conditionally)
	JFA/JFC (Jump Fast Always/Jump Fast Conditionally)
	CALL (Call Subroutine)
	RSUB (Return from Subroutine)
	REP (Repeat/Initialize Hardware Loop)
	WAIT0/WAIT1 (Wait with Program Execution)
	WAIT0SF/WAIT1SF (Wait with Program Execution)
	NOP (No Operation)
	HALT (Stop Program Execution)
	LD (Load Data from Immediate Address)
	ST (Store Data at Immediate Address)
	LDI (Load Immediate Data)
	LDR (Load Data from Register Address)
	STR (Store Data at Register Address)
	LDS (Load Data from System Register)
	STS (Store Data in System Register)
	SET (Set Register Bit)
	CLR (Clear Register Bit)
	SFSET (Set System Register Bit)
	SFCLR (Clear System Register Bit)
	MOVB0 (Move Bit to Bit 0)
	MOVB7 (Move Bit to Bit 7)
	MOVCRC (Move Bit to CRC Unit
	MOVNCRC (Move Inverted Bit to CRC Unit)
	MOVF (Move Flag to Register Bit)
	MOVNF (Move Inverted Flag to Register Bit)
	AND (Bitwise Logical And)
	OR (Bitwise Logical Or)
	XOR (Bitwise Logical Exclusive Or)
	NOT (Bitwise Inversion)
	REV (Reverse Bit Order)
	ADD (Add Registers)
	SUB (Subtract Registers)
	INC (Increment Register)
	DEC (Decrement Register)
	COMP LT (Compare Registers for Less Than)
	COMP LE (Compare Registers for Less or Equal)
	COMP EQ (Compare Registers for Equal)
	COMP NE (Compare Registers for Not Equal)
	TEST0 (Test Bit for 0)
	TEST1 (Test Bit for 1)
	SFTEST0 (Test System Register Bit for 0)
	SFTEST1 (Test System Register Bit for 1)
	SHLO WAIT0SF/WAIT1SF (Wait and Shift Left Out)
	SHLI WAIT0SF/WAIT1SF (Wait and Shift Left In)
	SHRO WAIT0SF/WAIT1SF (Wait and Shift Right Out)
	SHRI WAIT0SF/WAIT1SF (Wait and Shift Right In)

	Register Map
	Typical Application Circuits
	Ordering Information

