

TMC8100

Universal Encoder Bus Controller

 19-101867B; Rev 0; 4/24

© 2024 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners.

General Description

The TMC8100 is a dedicated serial protocol converter

IC, especially for absolute encoder bus protocols. It

operates as a bus controller for these protocols and as

a peripheral with either a serial peripheral interface (SPI)

or universal asynchronous receiver-transmitter (UART)

interface connection to the attached

microcontroller/motion controller delivering the extracted

and adjusted encoder position information.

It integrates a programmable high performance serial

communication engine for synchronous and

asynchronous data up-to 16Mb/s. In addition to a clock

generator, several counter/timer units, a programmable

CRC generator and direct I/Os for connecting bus

transceivers, standard SPI, 2x UART, and I2C interfaces

are available.

Applications

• Industrial Manufacturing

• Robots/CoBots

• Automated Guided Vehicle (AGV)

Benefits and Features

• Synchronous serial bus protocols supported,

example, SSI, SPI, BiSS C, EnDat 2.x

• Asynchronous serial bus protocols supported,

example, Nikon A-format®

• Support for incremental A/B/Z encoder interface

• High speed 25MHz SPI system interface for

configuration, control, and position

• High speed 2x UART 16Mbit/s system interface for

configuration, control, and position

• Crystal oscillator or external clock with PLL

• Up to 128MHz internal system clock

• 2.5V to 5V single supply

• -40°C to +125°C operating temperature range

• TQFN24, 4mm x 4mm

Simplified Block Diagram

SERIAL
COMMUNICATION

ENGINE

SPI

I2C

(CONTROLLER)

UART
2x

GPIO

SPI

UART

I/O

I2C

LDO

+2.5V .. +5V

MOTION

CONTROLLER

EXAMPLE,
MICROCONTROLLER,

FPGA, ETC.

EEPROM

OPTIONAL

OR

OPTIONAL

MOTOR

A/B/Z
DECODER

A

B

Z

DIRECT_IN

REFERENCE SWITCH/
ENCODER LATCH INPUT

R

D

R

RS422

RS422/RS485

COMPARE DECODER

BUFFER
64 x 32

SRAM ROM

DIRECT_OUT

OSC+PLL TMC8100

ABSOLUTE
ENCODER

A/B/Z
ENCODER

Ordering Information appears at end of data sheet.

file:///C:/Users/MRamesh2/AppData/Local/Temp/tmp6739.tmp%23OrderingInformation

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 2

TABLE OF CONTENTS

General Description .. 1

Applications ... 1

Benefits and Features ... 1

Absolute Maximum Ratings .. 7

Package Information ... 8

Electrical Characteristics ... 9

Timing Diagrams ... 11

Pin Configurations ... 12

Pin Descriptions .. 13

Functional Diagrams ... 15

Detailed Description .. 16

System Architecture .. 16

Program Memory Bus ... 16

ROM Bootloader .. 17

UART0 Bootstrap Protocol .. 18

SPI Bootstrap Protocol .. 18

Data Bus .. 19

Power Supply .. 20

Reset and Clock .. 20

Reset ... 20

Clock .. 20

Crystal Oscillator .. 22

GPIO and DIRECT_IN/OUT .. 22

GPIO Matrix ... 22

DIRECT_IN/DIRECT_OUT Matrix ... 23

Serial Communication Engine ... 24

Overview .. 24

Loop Support in Hardware ... 24

Set of Counter/Timer ... 24

Cyclic Redundancy Check (CRC) .. 25

Universal Asynchronous Receiver-Transmitter (UART) .. 26

Overview .. 26

Main Features .. 26

Functional Description ... 26

Serial Peripheral Interface (SPI) .. 28

Overview .. 28

Main Features .. 28

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 3

Functional Description ... 28

I2C .. 29

Overview .. 29

Main Features .. 30

Functional Description ... 30

A/B/Z Encoder Interface .. 32

Overview .. 32

Main Features .. 32

Functional Description ... 32

x1 Code Incremental Encoder Input .. 33

x2 Code Incremental Encoder Input .. 33

x4 Code, A/B Incremental Encoder Input .. 34

CW and CCW Incremental Input ... 34

PULSE/DIR Incremental Input ... 34

Appendix ... 35

Commands .. 35

Overview .. 35

Program Flow Control .. 35

Load/Store/Move Operations ... 36

Set/Clear/Move Individual Bits ... 37

Arithmetic and Logic Operations .. 38

Compare and Test Operations .. 38

Shift Operations ... 39

JA/JC (Jump Always/Jump Conditionally) ... 41

JFA/JFC (Jump Fast Always/Jump Fast Conditionally) ... 42

CALL (Call Subroutine) .. 43

RSUB (Return from Subroutine) .. 45

REP (Repeat/Initialize Hardware Loop) ... 46

WAIT0/WAIT1 (Wait with Program Execution) .. 47

WAIT0SF/WAIT1SF (Wait with Program Execution) ... 48

NOP (No Operation) .. 50

HALT (Stop Program Execution) ... 51

LD (Load Data from Immediate Address) .. 52

ST (Store Data at Immediate Address) .. 53

LDI (Load Immediate Data) ... 54

LDR (Load Data from Register Address) ... 55

STR (Store Data at Register Address) .. 56

LDS (Load Data from System Register) .. 57

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 4

STS (Store Data in System Register) .. 58

SET (Set Register Bit) ... 60

CLR (Clear Register Bit) .. 61

SFSET (Set System Register Bit) .. 62

SFCLR (Clear System Register Bit)... 64

MOVB0 (Move Bit to Bit 0) ... 66

MOVB7 (Move Bit to Bit 7) ... 67

MOVCRC (Move Bit to CRC Unit .. 68

MOVNCRC (Move Inverted Bit to CRC Unit) ... 69

MOVF (Move Flag to Register Bit) ... 70

MOVNF (Move Inverted Flag to Register Bit) .. 71

AND (Bitwise Logical And) ... 72

OR (Bitwise Logical Or) ... 73

XOR (Bitwise Logical Exclusive Or) ... 74

NOT (Bitwise Inversion) ... 75

REV (Reverse Bit Order) ... 76

ADD (Add Registers) ... 77

SUB (Subtract Registers) .. 78

INC (Increment Register) ... 79

DEC (Decrement Register) .. 80

COMP LT (Compare Registers for Less Than).. 81

COMP LE (Compare Registers for Less or Equal) .. 82

COMP EQ (Compare Registers for Equal) .. 83

COMP NE (Compare Registers for Not Equal) .. 84

TEST0 (Test Bit for 0) .. 85

TEST1 (Test Bit for 1) .. 86

SFTEST0 (Test System Register Bit for 0) .. 87

SFTEST1 (Test System Register Bit for 1) .. 88

SHLO WAIT0SF/WAIT1SF (Wait and Shift Left Out) .. 89

SHLI WAIT0SF/WAIT1SF (Wait and Shift Left In) ... 91

SHRO WAIT0SF/WAIT1SF (Wait and Shift Right Out) ... 93

SHRI WAIT0SF/WAIT1SF (Wait and Shift Right In) .. 95

Register Map ... 96

Typical Application Circuits ... 134

Ordering Information ... 135

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 5

LIST OF FIGURES
Figure 1. SPI Timing Diagram ... 11

Figure 2. TMC8100 Pin Assignment ... 12

Figure 3. Block Diagram ... 15

Figure 4. Block Diagram ... 16

Figure 5. ROM Bootloader .. 17

Figure 6. UART0 Bootloader Example: “Get Bootloader Version” Command 0x55 0x00 and Reply 0xb5 18

Figure 7. SPI Bootloader Example: “Get Bootloader Version” Command and Reply 0xb5, 0x00, 0x00, 0x00 19

Figure 8. Clock Tree ... 20

Figure 9. Clock Configuration Registers ... 21

Figure 10. Basic Structure of GPIO Pin Control .. 22

Figure 11. Basic Structure of DIRECT_IN (Left) and DIRECT_OUT (Right) Pin Control ... 23

Figure 12. Serial Communication Engine Block Diagram and Instruction Pipeline ... 24

Figure 13. UART Block Diagram ... 27

Figure 14. SPI Block Diagram ... 29

Figure 15. I2C Block Diagram .. 31

Figure 16. A/B/N Encoder Interface Block Diagram .. 33

Figure 17. SSI Encoder Application Circuit Example .. 134

Figure 18. A/B/Z Incremental Encoder Application Example .. 134

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 6

LIST OF TABLES
Table 1. UART0 Bootloader Commands .. 18

Table 2. SPI Bootloader Commands .. 19

Table 3. Data Bus Address Range Assignment ... 20

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 7

Absolute Maximum Ratings

VCCIO .. -0.3V to +6V

RESETN to GND -0.3V to VCCIO to + 0.3V

SPI to GND.. -0.3V to VCCIO to + 0.3V

GPIO to GND -0.3V to VCCIO to + 0.3V

DIRECT_IN/OUT to GND -0.3V to VCCIO to + 0.3V

Continuous Power Dissipation (Multilayer Board) (TA = +70°C,

derate 25.60 mW/°C above +70°C.) 2051.30mW

Continuous Power Dissipation (Single Layer Board) (TA =

+70°C, derate 16.9 mW/°C above +70°C.) 1355.90mW

Operating Temperature Range -40°C to +125°C

Junction Temperature .. +150°C

Soldering Temperature (reflow).................................... +260°C

Storage Temperature Range -55°C to +150°C

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or

any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect

device reliability.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 8

Package Information

TQFN24 4x4

Package Code T2444+3C+1

Outline Number 21-0139

Land Pattern Number 90-0022

Thermal Resistance, Single Layer Board:

Junction-to-Ambient (θJA) 68°C/W

Junction-to-Case Thermal Resistance (θJC) 11°C/W

Thermal Resistance, Four Layer Board:

Junction-to-Ambient (θJA) 60°C/W

Junction-to-Case Thermal Resistance (θJC) 11°C/W

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note

that a “+”, “#”, or “-” in the package code indicates RoHS status only. Package drawings may show a different suffix

character, but the drawing pertains to the package regardless of RoHS status.

Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-

layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/ thermal-

tutorial.

https://www.analog.com/media/en/package-pcb-resources/package/pkg_pdf/tqfn-cu/21-0139.pdf
https://pdfserv.maximintegrated.com/land_patterns/90-0022.PDF
https://www.analog.com/en/design-center/packaging-quality-symbols-footprints/package-index.html
https://www.analog.com/en/index.html
https://www.analog.com/en/index.html

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 9

Electrical Characteristics
(VCCIO = +2.25V to +5.5V, TA = -40ºC to +125ºC, unless otherwise noted., Typical values are at VCCIO = +3.3V, and TA = +25ºC,

unless otherwise noted. Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

DC ELECTRICAL CHARACTERISTICS/Operating Voltage Range

VCCIO Supply Voltage

Range
 2.25 5.5 V

VCCIO UVLO Threshold VCCIO_UV
Rising 1.6 1.78 2

V
Falling 1.4 1.57 1.735

DC ELECTRICAL CHARACTERISTICS/Current Consumption

Total VCCIO Quiescent

Current Consumption
IQVCCIO VCCIO = +3.3V, RESETN low 100 uA

Total VCCIO Current

Consumption
IVCCIO

VCCIO = +3.3V, EXT_CLK = 1MHz, PLL

Output = 128MHz
 22 mA

DC ELECTRICAL CHARACTERISTICS/Data In Mode

Resistive Pull-up

(RESETN, SPI, GPIO,

DIRECT_IN)

RPU Internal 60 100 140 kΩ

Resistive Pull-down

(SPI, GPIO,

DIRECT_IN)

RPD Internal 60 100 140 kΩ

Rising Threshold

(RESETN, SPI, GPIO,

DIRECT_IN)

DIH 70 %VCCIO

Falling Threshold

(RESETN, SPI, GPIO,

DIRECT_IN)

DIL 30 %VCCIO

Hysteresis (RESETN,

SPI, GPIO, DIRECT_IN)
DI_HYS 14 %VCCIO

Logic Input Leakage

Current (SPI, GPIO,

DIRECT_IN)

ILEAK PU/PD disabled -1 +1 µA

DC ELECTRICAL CHARACTERISTICS/Data Out Mode

Output Low Voltage

(SPI, GPIO,

DIRECT_OUT)

DOL I = 5mA Note 3 0.4 V

Output High Voltage

(SPI, GPIO,

DIRECT_OUT)

DOH I = -5mA Note 3
VCCIO -

0.4
 V

DC ELECTRICAL CHARACTERISTICS/Linear Regulator

1V8 LDO Output

Voltage
V1V8 CLOAD = 2.2µF, min. VCCIO = 2.25V 1.90 V

1V8 LDO Current Limit I1V8_SH 1V8 shorted to GND 75 126 275 mA

AC ELECTRICAL CHARACTERISTICS/Data In/Out Mode

Propagation Delay

Mismatch

(DIRECT_IN/OUT)

tDIMM 7 ns

Maximum Frequency

(DIRECT_OUT)
fMAX_DOUT VCCIO = +3V 40 MHz

AC ELECTRICAL CHARACTERISTICS/Clock

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 10

(VCCIO = +2.25V to +5.5V, TA = -40ºC to +125ºC, unless otherwise noted., Typical values are at VCCIO = +3.3V, and TA = +25ºC,

unless otherwise noted. Note 1)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS

Internal Oscillator

Frequency
ICLK 15 MHz

External Oscillator

Frequency Range
ECLK 1 32 MHz

Internal PLL Output

Frequency
PLL_CLK

75, 100,

128
 MHz

AC ELECTRICAL CHARACTERISTICS/Quartz Oscillator

Oscillator Frequency fXTAL

8, 16,

24, 25,

32

 MHz

Recommended Load

Capacitance of the

Crystal

CL 9 pF

Crystal Driving current

Note 2
IXTAL

VCCIO = +3V .. +5.5V,

with CL = 9 pF, fXTAL = 32MHz
 1.2 mA

Oscillator

Transconductance

Note 2

gm
VCCIO = +3V .. +5.5V,

with CL = 9 pF
 1.8 mA/V

Start-up Time tSU
VCCIO = +3V .. +5.5V,

with CL = 9 pF
 2.5 ms

AC ELECTRICAL CHARACTERISTICS/SPI Figure 1

SPI Clock Frequency fSCLK
VCCIO = +3V .. +5.5V 25

MHz
VCCIO = +2.25V .. +3V 15

SCLK Clock Period tCH+CL
VCCIO = +3V .. +5.5V 40

ns
VCCIO = +2.25 .. +3V 66

SCLK Pulse Width High tCH VCCIO = +2.25 .. +5.5V 12 ns

SCLK Pulse Width Low tCL VCCIO = +2.25 .. +5.5V 12 ns

CSN Fall to SDO Delay tCSDO
VCCIO = +3V .. +5.5V 25

ns
VCCIO = +2.25V .. +3V 45

CSN High Pulse

Duration Note 2
tCSNPW VCCIO = +2.25V .. +5.5V

4x

PLL_CL

K

CSN Hold Time tCSH VCCIO = +2.25V .. +5.5V 6 ns

SDI Setup Time tDS VCCIO = +2.25V .. +5.5V 4 ns

SDI Hold Time tDH VCCIO = +2.25V .. +5.5V 4 ns

SDO Output Data

Propagation Delay
tDO

VCCIO = +3V .. +5.5V, CL = 30pF 6 34
ns

VCCIO = +2.25V .. +3V, CL = 30pF 6 60

ESD AND EMC TOLERANCE

ESD Protection (All

Pins)
 Human Body Model ±2 kV

Note 1: All devices are 100% production tested at TA = +25°C. Specifications over temperature are guaranteed by design and

characterization.

Note 2: Guaranteed by design

Note 3: All currents into the device are positive. All currents out of the device are negative.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 11

Timing Diagrams

tDS

MSB

MSBSDO

SDI

SCLK

/CS

tDH

tCL

tCH

tCSDO tDO

LSB

LSB

tCSH

Figure 1. SPI Timing Diagram

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 12

Pin Configurations

TQFN

Package is TQFN24 4mm x 4mm with 0.5mm pitch. (T2444+3C).

G
P

IO
4/

U
A

R
T

0_
TX

D
/S

P
I_

D
A

T
A

_A
V

A
IL

A
B

LE
/H

O
M

E

G
P

IO
6/

S
P

I_
D

A
T

A
_A

V
A

IL
A

B
L

E
/C

O
M

P
A

R
E

_O
U

T
/D

E
C

O
D

E
R

_O
U

T

V
C

C
IO

G
P

IO
3/

I2
C

_S
C

L
/U

A
R

T1
_R

X
D

/D
E

C
O

D
E

R
_O

U
T

G
P

IO
0/

O
S

C
_I

N
/C

LK
_E

X
T

G
N

D

D
IR

E
C

T
_I

N
0

V
D

D
1V

8

D
IR

E
C

T
_I

N
1

SPI_SCLK

SPI_CSN

DIRECT_OUT0/DIRECT_CLK_OUT

DIRECT_OUT1/DIRECT_CLK_OUT

ENC_Z/DIRECT_OUT2/DIRECT_CLK_OUT

HOME/DIRECT_OUT3/DIRECT_CLK_OUT

G
P

IO
5/

U
A

R
T

0_
R

X
D

/C
O

M
P

A
R

E
_O

U
T

/D
E

C
O

D
E

R
_O

U
T

G
P

IO
1/

O
S

C
_O

U
T

SPI_SDO

DIRECT_IN3/ENC_B

SPI_SDI

DIRECT_IN2/ENC_AVCCIO

TQFN
4mm x 4mm

+

131415161718

12

11

10

9

8

7

19

20

21

22

23

24

654321

TMC8100ATG+

EP = GND

G
P

IO
2/

I2
C

_S
D

A
/U

A
R

T1
_T

X
D

/H
O

M
E

RESETN

TOP VIEW

Figure 2. TMC8100 Pin Assignment

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 13

Pin Descriptions

PIN NAME FUNCTION
REF

SUPPLY
Type

PMIO

19 VCCIO Supply input for internal LDO and I/O pins. Connect pins 19 and 6 externally. VCCIO Power

18 VDD1V8
1V8 output of internal linear regulator. Connect 2.2µF low ESR ceramic capacitor

to GND externally.
VCCIO Power

6 VCCIO Supply Input for I/O pins. Connect pins 19 and 6 externally. VCCIO Power

15
GND

Connect to GND.

EP Exposed pad – connect to GND. Power

SYSTEM

20 RESETN
Active-low, external reset input. The device remains in reset while this pin is in its

active state. Internal pull-up resistor.
VCCIO DIpud

DIRECTIO

14
DIRECT_I

N0

Serial engine direct input 0 (DIRECT_IN0) with programmable internal pull-up or

pull-down resistor - power-up: pull-up resistor enabled
VCCIO DIpud

13
DIRECT_I

N1

Serial engine direct input 1 (DIRECT_IN1) with programmable internal pull-up or

pull-down resistor - power-up: pull-up resistor enabled.
VCCIO DIpud

12
DIRECT_I

N2/ENC_A

Serial engine direct input 2 (DIRECT_IN2) and A/B/Z encoder interface channel A

input (ENC_A) with programmable internal pull-up or pull-down resistor - power-up:

pull-up resistor enabled.

VCCIO DIpud

11
DIRECT_I

N3/ENC_B

Serial engine direct input 3 (DIRECT_IN3) and A/B/Z encoder interface channel B

input (ENC_B) with programmable internal pull-up or pull-down resistor - power-up:

pull-up resistor enabled.

VCCIO DIpud

10

DIRECT_O

UT0/DIRE

CT_CLK_O

UT

Serial engine direct output 0 (DIRECT_OUT0) or serial engine direct clock output

(DIRECT_CLK_OUT) - power-up: DIRECT_OUT0 output selected.
VCCIO DO

9
DIRECT_O

UT1

Protocol engine direct output 1 (DIRECT_OUT1) or protocol engine direct clock

output (DIRECT_CLK_OUT) - power-up: DIRECT_OUT1 output selected.
VCCIO DO

8

ENC_Z/DI

RECT_OU

T2

A/B/Z encoder interface channel Z input (ENC_Z) with programmable internal pull-

up or pull-down resistor or protocol engine direct output 2 (DIRECT_OUT2)

or protocol engine direct clock output (DIRECT_CLK_OUT) - power-up: ENC_Z

input with pull-up resistor enabled.

VCCIO DIOpud

7
HOME/DIR

ECT_OUT3

A/B/Z encoder interface home switch input (HOME) with programmable internal

pull-up or pull-down resistor or protocol engine direct output 3 (DIRECT_OUT3) or

protocol engine direct clock output (DIRECT_CLK_OUT) - power-up: HOME input

with pull-up resistor enabled.

VCCIO DIOpud

GPIO

21 SPI_SDI
SPI serial data input (SPI_SDI) with programmable internal pull-up or pull-down

resistor - power-up: pull-up resistor enabled.
VCCIO DIpud

22 SPI_SDO
SPI serial data output (SPI_SDO) with tristate and programmable internal pull-up

or pull-down resistor - power-up: pull-up resistor enabled.
VCCIO DOpud

23 SPI_SCLK
SPI clock input (SPI_SCLK) with programmable internal pull-up or pull-down

resistor - power-up: pull-up resistor enabled.
VCCIO DIpud

24 SPI_CSN
SPI chip select input (SPI_CSN) with programmable internal pull-up or pull-down

resistor - power-up: pull-up resistor enabled.
VCCIO DIOpud

17

GPIO0/OS

C_IN/CLK_

EXT

General purpose digital input or output 0 (GPIO0) with programmable internal pull-

up or pull-down resistor or external clock signal in (CLK_EXT) or crystal oscillator

input (OSC_IN) - power-up: GPIO0 configured as input with pull-up resistor

enabled.

VCCIO ADIOpud

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 14

16
GPIO1/OS

C_OUT

General purpose digital input or output 1 (GPIO1) with programmable internal pull-

up or pull-down resistor or crystal oscillator output (OSC_OUT) - power-up: GPIO1

configured as input with pull-up resistor enabled.

VCCIO ADIOpud

1

GPIO2/I2C

_SDA/UAR

T1_TXD/H

OME

General purpose digital input or output 2 (GPIO2) with programmable internal pull-

up or pull-down resistor or I
2
C serial data input/output (I2C_SDA) or UART1

transmit data output (UART1_TXD) or A/B/Z encoder interface home switch input

(HOME) - power-up: GPIO2 configured as input with pull-up resistor enabled.

VCCIO DIOpud

2

GPIO3/I2C

_SCL/UAR

T1_RXD/D

ECODER_

OUT

General purpose digital input or output 3 (GPIO3) with programmable internal pull-

up or pull-down resistor or I
2
C clock output (I2C_SCL) or UART1 receive data

input (UART1_RXD) or A/B/Z encoder interface decoder output signal

(DECODER_OUT) - power-up: GPIO3 configured as input with pull-up resistor

enabled.

VCCIO DIOpud

3

GPIO4/UA

RT0_TXD/

SPI_DATA

_AVAILAB

LE/HOME

General purpose digital input or output (GPIO4) with programmable internal pull-up

or pull-down resistor or UART0 transmit data output (UART0_TXD) or SPI transmit

data available signal output (SPI_DATA_AVAILABLE) or A/B/Z encoder interface

home switch input (HOME) - power-up: GPIO4 configured as input with pull-up

resistor enabled.

VCCIO DIOpud

4

GPIO5/

UART0_RX

D/COMPA

RE_OUT/D

ECODER_

OUT

General purpose digital input or output (GPIO5) with programmable internal pull-up

or pull-down resistor or UART0 receive data input (UART0_RXD) or A/B/Z encoder

interface position compare output (COMPARE_OUT) or A/B/Z encoder interface

decoder output signal (DECODER_OUT) - power-up: GPIO5 configured as input

with pull-up resistor enabled.

VCCIO DIOpud

5

GPIO6/SPI

_DATA_AV

AILABLE/C

OMPARE_

OUT/DEC

ODER_OU

T

General purpose digital input or output (GPIO6) with programmable internal pull-up

or pull-down resistor or SPI transmit data available (SPI_DATA_AVAILABLE) or

A/B/Z encoder interface position compare output (COMPARE_OUT) or A/B/Z

encoder interface decoder output signal (DECODER_OUT) - power-up: GPIO6

configured as input with pull-up resistor enabled.

VCCIO DIOpud

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 15

Functional Diagrams

Functional Block Diagram

BUCK
DC/DC

+24V

ENCODER
SUPPLY

SRAM
2Kx16

BOOT-ROM

SPI
(TARGET)

I2C

(CONTROLL
ER)

UART
2x

GPIO

SPI

UART

I2C

DIRECT_IN

DIRECT_IN

LDO
1V8

D
IR

E
C

T
_I

N
 /

 D
IR

E
C

T
_O

U
T

G
P

IO
 M

A
T

R
IX

75/100/128MHz

MOTION

CONTROLLER

EXAMPLE,
MICROCONTROLLER,

FPGA, ETC.

EEPROM

OPTIONAL

OR

R

D

RS485

R

D

RS485

DATA+

DATA-

CLK-

CLK+

MOTOR

ENCODER

ABSOLUTE

COUNTER
+

CAPTURE
FILTER

ENC_A

ENC_B

ENC_Z

DECODER

100

HOME INPUT

VCCIO

GPIO MATRIX

SRAM
64x8

GPIO

COMPARE_OUT

POR

8MHz/16MHz/24MHz/
25MHz/32MHz
(OPTIONAL)

 CLK_EXT
1..32MHz

(OPTIONAL)

BUFFER
64x32

DECODER_OUT

CRYSTAL
OSC

INT
OSC

PLL

CLOCK
GENERATOR

TIMER

PRE-SCALER

CRC

CORE

CALL
STACK

HW
LOOP

ALU
REGISTER

8x8
PC

DIRECT_OUT

TMC8100

SPI_DATA_AVAILABLE

VCCIO

+5V

LE
V

E
L

 S
H

IF
T

E
R

VCCIO

LE
V

E
L

 S
H

IF
T

E
R

+5V

Figure 3. Block Diagram

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 16

Detailed Description

The TMC8100 is a programmable serial bus protocol converter IC targeting different absolute encoder bus protocols. It

operates as a bus controller for these encoders and as a peripheral with either SPI or UART interface for the attached

microcontroller or motion controller delivering the extracted and adjusted encoder position information.

The TMC8100 also supports encoders with standard incremental A/B/Z outputs. The 32-bit encoder position counter

includes a capture/compare unit for generating synchronization signals and capturing the encoder counter value on

external latch signals.

The TMC8100 offloads a general-purpose microcontroller or motion controller from this encoder data signal conversion

task. In contrast to fully hardware-based solutions, it offers a high degree of flexibility for current protocol implementations,

customization, and future protocol extensions.

For initial setup after power-up, a program supporting the specific bus protocol has to be loaded into the TMC8100 through

SPI or UART with the help of the integrated bootloader program. There is also the option to add an external I2C EEPROM

for initial bootstrap supporting standalone operation.

System Architecture

The TMC8100 contains a programmable serial communication engine. The architecture and command set are optimized

to convert synchronous and asynchronous serial data into parallel and vice versa. All instructions are 16-bit wide and

execute within one clock cycle. The general-purpose register set contains eight registers with 8-bit each.

The processor core directly supports four digital inputs (DIRECT_IN) and four digital outputs (DIRECT_OUT) for serial

data input and output. It offers separate program memory and data memory bus interfaces (Harvard architecture).

The program memory bus is connected to an on-chip static random access memory (SRAM) and a bootloader read-only

memory (ROM). Several serial communication peripheral interfaces (SPI, UART, I2C), the incremental A/B/Z encoder

interface, and a small data SRAM (64x8) are connected to the data memory interface.

DIRECT_OUT[3:0]
SERIAL COMMUNICATION

ENGINE

ROM
1Kx16

SRAM
2Kx16

GPIO

SPI

UART0

UART1

I2C
ENCODER

TIMER

MEM

DIRECT_IN[3:0]

GPIO[6:0]

SPI_SDI, SPI_SDO, SPI_SCLK, SPI_CSN

UART0_RXD

UART0_TXD

UART1_RXD

UART1_TXD

I2C_SCL

I2C_SDA ENC_A/B/Z, HOME

DECODER_OUT, COMPARE_OUT

SPI_DATA_AVAILABLE

SRAM
64x8

Figure 4. Block Diagram

Program Memory Bus

An embedded 2Kx16 SRAM memory is available for storing program code along with an embedded 1Kx16 ROM with

bootloader to support the initial bootstrap of the application program after power-up. Both are connected to the program

memory bus. The program memory bus is 16-bit wide, supporting one instruction word fetch per clock cycle. Program

memory access is pipelined with two pipeline stages. Therefore, any program branch usually takes two clock cycles until

the next instruction from the branch target is ready for decode and execution.

The program memory space is organized in banks with the bootloader ROM placed in the bank that is active immediately

after power-up. After loading the application program into the program SRAM, the active bank is switched to the SRAM

under bootloader control to start program execution from the SRAM.

Address Memory Description

0x0000 to 0x03FF, bank 0 1Kx16 ROM with bootloader

0x0000 to 0x07FF, bank 1 2Kx16 program memory (SRAM)

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 17

ROM Bootloader

After power-up, the bootloader in the ROM is executed first. The bootloader program takes care of the basic initialization

of the system and sets the PLL output frequency to 75MHz with the internal oscillator as clock source. As soon as the

interfaces are initialized, pin GPIO6 is configured as output and pulled low as the system is ready now for communication.

Three different bootstrap modes are supported: remote through SPI or UART0 from an external microcontroller or

standalone with an EEPROM (at least 4KB, example, 24LC32/24LC64) connected to the I2C interface. During bootstrap,

an application program supporting the desired encoder functionality/communication protocol must be loaded into the

internal program memory (SRAM). As soon as this is successful, memory banks are switched and program execution

starts from the SRAM at address $0000.

The bootstrap mode is detected automatically. In case of SPI and UART0, the receive interface is listening for incoming

commands and the commands are executed accordingly. For standalone mode, a read attempt through I2C for an external

EEPROM is generated. If this is successful (ACK received), a sequential read to the first two bytes (first instruction word)

starting at address $0000 (two address bytes are transmitted) follow. In case there is an acknowledge (EEPROM

available) and both bytes are not $ff (EEPROM empty/erased check), 4KB of the EEPROM contents is copied to the

internal SRAM automatically.

BOOTLOADER

INITIALIZE UART0_RXD (GPIO5) and SPI

SET GPIO6 = 0/PP OUT (READY FOR COMMUNICATION)

I2C ENABLED?

ENABLE I2C, UART0, AND SPI FOR COMMUNICATION

SCL AND SDA = 1?

1. INIT I2C INTERFACE

2. SEND $a1, ACK ?
3. READ DUMMY BYTE
4. SEND $a0
5. SEND ADDRESS $0000
6. SEND $a1
7. READ TWO BYTES

BOTH BYTES NOT $ff?

START
PROGRAM
IN SRAM

COPY 4KB
FROM EEPROM

TO SRAM

UART0 ENABLED?

YES YES YES

NO NO NO

GPIO4 = 1?
(UART0_TXD)

INIT UART0_TXD

UART0
DATA RECEIVED?

YESYES

NO

SPI ENABLED?
YES

SPI
DATA RECEIVED?

YES

YESNO PROCESS UART0 COMMAND
(+ DISABLE OTHER INTERFACES)

 PROCESS SPI COMMAND
(+ DISABLE OTHER INTERFACES)

NO

NO

INITIALIZE CLOCK: INT_OSC + PLL = 75MHz

CHECK FOR EXTERNAL I2C EEPROM

24LC32/64 WITH CHIP SELECT BITS ALL ZERO

NO

Figure 5. ROM Bootloader

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 18

UART0 Bootstrap Protocol

For serial communication through UART0, autobaud is enabled and transmission uses 1 start bit, 8 data bits, and one

stop bit (8n1). The bootstrap protocol supports reading and writing to the internal program memory (SRAM) and reading

and programming an external EEPROM connected through I2C. A valid command received through UART0_RXD

(GPIO5) from TMC8100 is usually followed by a reply sent out through UART0_TXD (GPIO4).

Table 1. UART0 Bootloader Commands

COMMAND REPLY DESCRIPTION

0x55, 0x00 0xb5 Get bootloader version.

0x55, 0x01, <ADDR_L>, <ADDR_H> No reply Write program memory address with lower 8-bit of address first and

then the upper bits (address of 16-bit instruction word).

0x55, 0x02, <DATA_L>, <DATA_H> No reply Write program memory data with lower 8-bit of the instruction word

first and then the upper 8-bit (instruction words are always 16-bit).

The address counter for read/write access to the program memory is

incremented afterwards, automatically.

0x55, 0x03 <DATA_L>, <DATA_H> Read program memory data. Reply provides lower 8-bit of the

instruction word first and then the upper 8-bit.

0x55, 0x04, <BAUD_L>, <BAUD_H> 0x09 Enable I2C interface and set I2C baud rate. The command includes

the lower and upper byte of the I2C baud-rate divider.

0x55, 0x05, <ADDR_L>, <ADDR_H>,

<DATA_L>, <DATA_H>

0x09 Write EEPROM - lower 8-bit of the address and upper bits must be

provided same as lower 8-bit of the instruction word and then the

other 8-bit. As the write access to the external EEPROM takes some

time, there is a reply after the write access is finished.

0x55, 0x06, <ADDR_L>, <ADDR_H> <DATA_L>, <DATA_H> Read EEPROM – lower 8-bit and upper bits of the address must be

provided. Reply contains the 8-bit data at the specified EEPROM

address and the 8-bit at the subsequent address (one 16-bit

instruction word).

0x55, 0x07 No reply Start program – stop bootloader program execution and start

program execution from SRAM/address $0000.

0x55, 0x08 $38, $31, $30, $30 Get Chip ID – “8100” as ASCII characters.

0x55, 0x09 $11 Get Chip Revision.

S

T

A

R

T

S

T

O

P

S

T

A

R

T

0x55 0x00

S

T

O

P

0xb5

S

T

O

P

S

T

A

R

T

UART0_RXD

UART0_TXD

Figure 6. UART0 Bootloader Example: “Get Bootloader Version” Command 0x55 0x00 and Reply 0xb5

SPI Bootstrap Protocol

The SPI bootstrap protocol uses 32-bit datagrams with the MSB being transmitted first. All bootloader commands require

one SPI datagram. After transmission, the command gets executed and any reply is placed into the SPI transmit buffer

of the TMC8100. Signal SPI_DATA_AVAILABLE (has to be configured as an alternate function to GPIO6 and output to

be visible externally) is pulled high to indicate new data available. A second SPI transmission is necessary to read out

the reply. As SPI transmissions always include data in both directions, another command may be already included with

this transmission.

The 32-bit SPI command datagram includes a read (high) or write (low) bit (RnW) as MSB, 4-bit for command encoding

(CMD[3:0]), optional 11-bit for address (ADDR[10:0]), and 16-bit for data (DATA[15:0]).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 19

Table 2. SPI Bootloader Commands

COMMAND REPLY DESCRIPTION

RnW = 0/1, CMD[3:0] = 0,

ADDR[10:0] = 0, DATA[15:0] = 0

$b5, $00, $00, $00 Get bootloader version.

RnW = 0, CMD[3:0] = 1,

ADDR[10:0] = address, DATA[15:0] = instruction

No reply Write program memory data – 16-bit instruction at

specified address.

RnW = 1, CMD[3:0] = 1,

ADDR[10:0] = address, DATA[15:0] = 0

DATA[15:0] = instruction,

other bits copied from command

Read program memory data – 16-bit instruction

from specified address.

RnW = 0/1, CMD[3:0] = 2,

ADDR[10:0] = 0, DATA[15:0] = 0

No reply Start program – stop bootloader program

execution and start program execution from

SRAM/address $0000.

RnW = 0/1, CMD[3:0] = 3,

ADDR[10:0] = 0, DATA[15:0] = BAUD

No reply Enable I2C interface and set I2C baud rate. The

command includes the I2C baud-rate divider.

RnW = 0, CMD[3:0] = 4,

ADDR[10:0] = address, DATA[15:0] = instruction

Copy of command Write EEPROM - address and 16-bit

data/instruction word must be provided. As the

write access to the external EEPROM takes some

time, there is a reply after the write access is

finished - copy of the original command.

RnW = 1, CMD[3:0] = 4,

ADDR[10:0] = address, DATA[15:0] = 0

DATA[15:0] = instruction,

Other bits copied from command

Read EEPROM – address must be provided.

Reply contains the 8-bit data at the specified

EEPROM address and the 8-bit at the subsequent

address (one 16-bit instruction word).

RnW = 0, CMD[3:0] = 5,

ADDR[10:0] = xx, DATA[15:0] = yy

RnW = 0, CMD[3:0] = 5,

ADDR[10:0] = xx, DATA[15:0] =

yy

Reply with copy of command.

RnW = 1, CMD[3:0] = 10,

ADDR[10:0] = xx, DATA[15:0] = yy

RnW = 1, CMD[3:0] = 2,

ADDR[10:0] = xx, DATA[15:0] =

yy

Reply with copy of command.

RnW = 1, CMD[3:0] = 6,

ADDR[10:0] = 0, DATA[15:0] = 0

$38, $31, $30, $30 Get Chip ID – “8100” as ASCII character.

RnW = 1, CMD[3:0] = 7,

ADDR[10:0] = 0, DATA[15:0] = 0

$11, $00, $00, $00 Get Chip Revision.

CSN

SCLK

SDO MSB LSB

SDI

RnW LSBCMD[3] CMD[2] CMD[1] CMD[0]

1 0 0 0 0 0 0

REPLY FROM PREVIOUS COMMAND

RnW CMD[3] CMD[2] CMD[1] CMD[0]
 GET VERSION COMMAND

1 0 1 1 0 1 0 1

0xb5

0xb5 0x00 0x00 0x00 reply

NEXT COMMAND

Bit31 Bit0

Bit31 Bit0

SPI_DATA_AVAILABLE

Figure 7. SPI Bootloader Example: “Get Bootloader Version” Command and Reply 0xb5, 0x00, 0x00, 0x00

Data Bus

All peripherals including UART (2x), SPI, I2C, GPIO, and a data memory (64x8) are connected to the data bus. The data

bus supports reading and writing 8-bit data with an 8-bit address (0..255). All read and write accesses take one clock

cycle.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 20

Table 3. Data Bus Address Range Assignment

ADDRESS PERIPHERAL DESCRIPTION

0x80 to 0xBF SRAM 64x8 data memory Data memory with 64 entries for storing intermediate values.

0x60 to 0x78 A/B/Z encoder interface Read/write and configure A/B/Z incremental encoder interface.

0x40 to 0x4E GPIO – GPIO interface and configuration Read/write and configure GPIO0..6 pins and select alternate pin

functions.

0x30 to 0x34 SPI Read/write and configure SPI.

0x28 to 0x2B I2C Read/write and configure I2C interface.

0x20 to 0x23 DIRECT – DIRECT interface configuration Configure DIRECT_IN0..3 and DIRECT_OUT0..3 pin signals and

select alternate functions.

0x18 to 0x1C MEM – program memory write interface Peripheral required for write access to program memory through

the data bus. Supports setting address and writing 16-bit

instructions words to program memory.

0x10 to 0x15 UART1 Read/write and configure UART1 interface.

0x08 to 0x0D UART0 Read/write and configure UART0 interface.

Power Supply

The TMC8100 supports single supply operation between 2.5V and 5V. It includes a linear regulator (LDO) for the core

supply voltage. This regulator is internally connected to the VCCIO I/O supply input and requires a 2.2µF ceramic capacitor

at the VDD1V8 output pin for proper operation. The TMC8100 offers two VCCIO supply inputs on pins 6 and 19, which must

be connected externally.

Reset and Clock

Reset

The TMC8100 offers an internal power-on-reset (POR). In addition, there is a dedicated low-active reset input pin. This

pin offers an internal pull-up. It can be used to extend the power-on reset or explicitly reset the device during operation.

Clock

The clock generation offers a high degree of flexibility and supports three different clock source options. After power-up,

the digital circuit always starts on the internal oscillator (15MHz). For higher clock frequencies, an integrated PLL is

available. The PLL requires an input frequency of 1MHz. The pre-diver (RDIV) must be set accordingly. After configuring

the pre-divider (RDIV) and the division factor (PLL_FB_DIV), the PLL can be activated. Supported PLL output frequencies

are 75MHz, 100MHz, and 128MHz. The integrated bootloader program already configures the PLL in combination with

the internal oscillator for 75MHz system frequency.

As an alternative to the integrated oscillator (INT_OSC), an external clock source can be selected (CLK_EXT) or the on-

chip crystal oscillator can be used for a more precise clock source. In both cases, the respective GPIO pins must be

configured through the GPIO matrix. The crystal oscillator requires an external crystal for operation. After configuring the

crystal oscillator, a start-up time is required before the clock signal is stable and can be selected as input for the PLL.

In case the external clock or the crystal oscillator with an external crystal is selected as clock source for the PLL, a clock

loss detection is activated. This uses the internal oscillator as reference. In case a clock loss is detected, a system reset

is initiated and the clock source is switched back to the internal oscillator.

INT_OSC
15MHz

/PLL_FB_DIV

/RDIV LOOP
FILTER

VCO
PHASE

DETECTOR
CRYSTAL

OSC

CLK_EXT

EXT.
XTAL

G
P

IO
 M

A
T

R
IX OSC_IN

OSC_OUT

CLK_EXT

PLL

OR

CLK_OK

XTAL_CFG

128MHz
OR 100MHz
OR 75MHz

SYSTEM CLOCKGPIO0

GPIO1

1MHz

EXT_NOT_XTAL

EXT_NOT_INT

PLL_OUT_SEL

Figure 8. Clock Tree

Code example for setting different PLL output frequencies or changing clock source:

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 21

 LDI $03, r0 ; for EXT_CLK / XTAL - enable input for GPIO0/GPIO1

 ST GPIO_IN, r0

 LDI $03, r0 ; for EXT_CLK / XTAL - disable pull-up for GPIO0/GPIO1

 ST GPIO_PU, r0

 LDI PLL_FB_CFG, r0

 ST CLK_ADDR, r0

 LDI $36, r0 ; set pll feedback divider for 75MHz

 ;LDI $4f, r0 ; set pll feedback divider for 100MHz

 ;LDI $6b, r0 ; set pll feedback divider for 128MHz

 ST CLK_DOUT, r0 ; write access to clock control register PLL_FB_CFG

 LDI CLK_CTRL_SOURCE, r0 ; use internal clock

 ST CLK_ADDR, r0

 ;LDI $26, r0 ; use XTAL

 ;LDI $21, r0 ; use external clock

 LDI $00, r0 ; use internal clock

 ST CLK_DOUT, r0 ; write access to clock control register CLK_CTRL_SOURCE

 LDI CLK_CTRL_OPT, r0

 ST CLK_ADDR, r0

 LDI %0100_0000, r0 ; enable clock control state machine

 ST CLK_DOUT, r0 ; write access to clock control register CLK_CTRL_OPT

 LDI CLK_CTRL_PLL_CFG, r0

 ST CLK_ADDR, r0

 LDI %1011_1001, r0 ; RDIV = 14 (assuming 15MHz clock), select PLL output, start state machine

 ; LDI %1011_1101, r0 ; RDIV = 15 (assuming 16MHz clock), select PLL output, start state machine

 ST CLK_DOUT, r0 ; write access to clock control register CLK_CTRL_PLL_CFG

 LDI CLK_CTRL_PLL_CFG, r0

 ST CLK_ADDR, r0 ; set address for read from clock control register CLK_CTRL_PLL_CFG

 NOP

 NOP

WAIT_FOR_PLL_LOCK:

 LD CLK_DIN, r0; read from clock control register CLK_CTRL_PLL_CFG

 NOP

 TEST1 $7, r0

 JC WAIT_FOR_PLL_LOCK

 ; continue with 75MHz system clock

The clock configuration offers three user programmable registers used in the example code above accessed with the help

of the CLK_ADDR, CLK_DIN and CLK_DOUT registers:

CLK_CTRL_SOURCE

($04)

7

EXT_NOT_INT EXT_NOT_XTALXTAL_CFG[2:0]

0123456

CLK_CTRL_PLL_CFG

($08)

7 0123456

COMMIT RDIV PLL_OUT_SEL

PLL_FB_CFG

($00)

7

PLL_FB_DIV

0123456

Figure 9. Clock Configuration Registers

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 22

• PLL_FB_DIV: Internal PLL divider for setting PLL multiplication factor.

• EXT_NOT_INT: External clock or crystal oscillator output (= 1) instead of internal oscillator (= 0).

• XTAL_CFG[2:0]: Crystal oscillator configuration.

• EXT_NOT_XTAL: External clock (= 1) instead of crystal oscillator output (= 0).

• COMMIT: Apply changes to clock block (= 1).

• RDIV: Clock divider for PLL input. PLL input must be 1 MHz.

• PLL_OUT_SEL: Select PLL output (= $1) instead of internal oscillator (= $0).

Crystal Oscillator

The crystal oscillator is designed to provide a programmable output current based on the quartz crystal frequency, which

can be either 8MHz, 16MHz, 24MHz, 25MHz, or 32MHz.

The programmable output current is determined by 3-bit (XTAL_CFG) used to set the code assigned to each quartz

crystal frequency, as shown in the following table:

XTAL_CFG CONDITIONS IXTAL_OUT [µA] fXTAL[MHz]

1 ESR(1)<250 and CL(2) = 9pF 75µA 8MHz

2 ESR>250 and CL = 9pF 150µA 8MHz

3 ESR<70 and CL = 9pF 225µA 16MHz

4 ESR<70 and CL = 9pF 275µA 24MHz to

25MHz

5 ESR<60 and CL = 9pF 450µA 32MHz

(1) ESR is the equivalent series resistance given by the quartz crystal manufacturer.

(2) CL = 9pF is recommended.

GPIO and DIRECT_IN/OUT

GPIO Matrix

All general purpose I/Os (GPIO) can be configured individually as digital input or output. After reset, all GPIOs are

configured as inputs with internal pull-up to VCCIO. For each GPIO, polarity of input and output can be defined

(GPIO_POLARITY), output can be enabled (GPIO_OUT_EN), and for GPIO2, type of output (either push-pull or open-

drain (GPIO_OUT_OD)) can be selected. Alternate function can be also configured individually per pin

(GPIO_ALTx_FUNCTION). Note that output/input/polarity and type of output must be set correctly for a certain pin in case

an alternate function is selected (example, open-drain for I2C signals, output enable for TXD, etc.). Some peripheral units

provide their own output enable signal together with the output signal for the alternate function, which overrides the output

enable setting in the GPIO output enable register (example, I2C).

In case an alternate function is selected, it is still possible to read out the current pin status using the GPIO_IN register.

VCCIO

VCCIO

GPIOx

GPIO_IN

GPIO_OUT

GPIO_OUT_EN

GPIO_OUT_OD

GPIO_POLARITY

ALTERNATE
FUNCTION
OUTPUT

ALTERNATE
FUNCTION

INPUT

GPIO_ALTx_FUNCTION

...

...

GPIO_PU

GPIO_PD

PP/OD

PROTECTION
DIODES

GPIO_ALTx_FUNCTION

Figure 10. Basic Structure of GPIO Pin Control

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 23

Code example for toggling GPIO:

 ; set all gpio outputs to zero

 LDI %0000_0000, r0

 ST GPIO_OUT, r0

 ST GPIO_POLARITY, r0

 ST GPIO0_ALT0_FUNCTION, r0

 ST GPIO0_ALT1_FUNCTION, r0

 ; configure all gpio as outputs

 LDI %1111_1111, r0

 ST GPIO_OUT_ENABLE, r0

 LDI %0101_0101, r0

 LDI %00101010, r1

TOGGLE_GPIO_OUTPUT:

 ST GPIO_OUT, r0 ; GPIO6..0 -> "01010101"

 ST GPIO_OUT, r1 ; GPIO6..0 -> "00101010"

 JA TOGGLE_GPIO_OUTPUT

DIRECT_IN/DIRECT_OUT Matrix

The TMC8100 offers four direct inputs (DIRECT_IN0..3) and four direct outputs (DIRECT_OUT0..3), which can be

accessed individually from within the serial communication engine for fast bit manipulation and sampling of the serial data

stream. For each pin, polarity can be programmed individually (DIRECT_POLARITY). As an alternative to setting the

output bits for DIRECT_OUT directly, a clock signal from the internal clock/timer block of the serial protocol engine can

be selected (DIRECT_ALT_FUNCTION).

All DIRECT_IN pins are configured as inputs with internal pull-ups to VCCIO after reset. While DIRECT_OUT0 and

DIRECT_OUT1 are fixed outputs (push-pull), ENC_Z and HOME inputs are selected instead of DIRECT_OUT2 and

DIRECT_OUT3 with internal pull-ups after power-up.

VCCIO

DIRECT_INx

DIRECT_POLARITY

SERIAL
PROTOCOL

ENGINE

DIRECT_PU

DIRECT_PD

PROTECTION
DIODES

VCCIO

DIRECT_INx

VCCIO

DIRECT_OUTx

DIRECT_POLARITY

SERIAL

PROTOCOL

ENGINE

PROTECTION

DIODES

PP

CLOCK_OUT

DIRECT_ALT_FUNCTION

DIRECT_OUTx

Figure 11. Basic Structure of DIRECT_IN (Left) and DIRECT_OUT (Right) Pin Control

Code example for toggling DIRECT_OUT:

 ; set all DIRECT_OUT to zero

 SFCLR WAIT0SF NO_WAIT, 0, 0

 SFCLR WAIT0SF NO_WAIT, 0, 1

 SFCLR WAIT0SF NO_WAIT, 0, 2

 SFCLR WAIT0SF NO_WAIT, 0, 3

 ; select DIRECT_OUT0..3 for all 4 direct connections

 LDI %0000_0000, r0

 ST DIRECT_POLARITY, r0

 ST DIRECT_ALT_FUNCTION, r0

TOGGLE_OUTPUT:

 ; toggle DIRECT_OUT(0..3): 0 -> 1 -> 0

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 24

 SFSET WAIT0SF NO_WAIT, 0, 0

 SFSET WAIT0SF NO_WAIT, 0, 1

 SFSET WAIT0SF NO_WAIT, 0, 2

 SFSET WAIT0SF NO_WAIT, 0, 3

 SFCLR WAIT0SF NO_WAIT, 0, 0

 SFCLR WAIT0SF NO_WAIT, 0, 1

 SFCLR WAIT0SF NO_WAIT, 0, 2

 SFCLR WAIT0SF NO_WAIT, 0, 3

 JA TOGGLE_OUTPUT

Serial Communication Engine

Overview

The serial communication engine is the core part of the TMC8100. It includes a controller operating on 16-bit instructions

with an 8x8-bit general purpose register set (R0…R7). The command execution pipeline includes two fetch stages and

one decode/execute stage. An additional write back stage offers a bypass to reduce pipeline delays. An 11-bit program

counter (PC) selects the next address from the on-chip program memory.

Also part of the core engine is a timer unit for clock generation and sampling of the incoming data stream. A programmable

CRC unit supports on-the-fly CRC generation while data is being shifted in or out.

FETCH1

CLOCK

INSTRUCTION 1 >>

INSTRUCTION 2 >>

INSTRUCTION 3 >>

INSTRUCTION 4 >>

REGISTER SET
8x8BIT

CRC UNIT 32BIT
(LFSR)

CALL STACK
8x11BIT

PC 11BIT
FETCH2

DECODE
EXECUTE

WRITE
BACK

FETCH1 FETCH2
DECODE
EXECUTE

WRITE
BACK

FETCH1 FETCH2
DECODE
EXECUTE

WRITE
BACK

FETCH1 FETCH2
DECODE
EXECUTE

WRITE
BACK

INSTRUCTION
FETCH

DECODE
EXECUTION

INSTRUCTION FIFO
8x16BIT

MANCHESTER
DECODER

SCALER 8BIT

COUNTER 8BIT

TIMER 8BIT

TIMEOUT 8BIT

EDGECOUNT 8BIT

TIMER UNITINSTRUCTION
BUS [15:0]

DATA
BUS [7:0]

DIRECT_OUT[3:0]

DIRECT_IN[3:0]

SERIAL COMMUNICATION ENGINE

Figure 12. Serial Communication Engine Block Diagram and Instruction Pipeline

In a typical application, incoming serial data is sampled through DIRECT_IN from an attached encoder with on-the-fly

extraction and alignment of encoder values. As soon as all relevant data is received, it is forwarded through one of the

serial interfaces (SPI or UART) to the attached motion controller or microcontroller (store-and-forward). This way, any

processing delays are minimized.

Loop Support in Hardware

When shifting in or out data, the shift operation usually must be repeated several times until all bits are in or out. A loop

can be used to reduce the number of shift operations in the program code. Nevertheless, a loop requires loop cycle

counting, compare, and conditional branch instructions, which introduce significant overhead not just with respect to code

size but also instruction execution time.

To reduce the overhead, hardware loops are supported. During program execution, the last four instructions are always

remembered in an instruction FIFO buffer. In addition, there is a dedicated hardware loop counter (up-to 8x). With the

help of the REP instruction, the loop size (number of instructions) and loop counter limit are specified. The loop starts

immediately after the REP instruction. This hardware loop allows for similar performance as unrolling loops during compile

time while reducing code size to minimum.

Set of Counter/Timer

The serial communication engine contains a number of counter and timer units for all time dependent program execution,

insertion of delay, clock generation, number of clock pulses, and timeout for all commands with variable execution time.

The programmable pre-scaler divides the main system clock by 1…256. The pre-scaler is used by the counter unit and

optional (programmable) for the timer and timeout counters.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 25

The integrated 8-bit counter uses the pre-scaler output as clock input. It is an up-counter with automatic wrap-around at

its programmable upper limit (sawtooth). It can be used for clock generation. In this case, the clock output toggles at each

overflow of the counter. The limit value for the counter can be calculated using the following formular:

𝑆𝑌𝑆𝑇𝐸𝑀_𝑇𝐼𝑀𝐸𝑅_𝐶𝑂𝑈𝑁𝑇𝐸𝑅_𝐿𝐼𝑀𝐼𝑇 =
𝑓𝑝𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

𝑓𝑜𝑢𝑡𝑝𝑢𝑡
− 1

Another 8-bit edge counter is available to limit the number of rising and falling edges the counter generates. The edge

counter is also an up-counter that stops when reaching its upper limit (a limit of zero disables the edge counter). This

way, clock signals with up-to 255 rising and falling edges can be generated (up-to 128 clock cycles with selectable rising

or falling edge at the end). Commands including a wait condition offer the possibility to stop any further program execution

until the counter or edge counter reaching their limits or overflow. There are instructions available for incrementing the

edge counter to compensate, example, for additional processing time required by the external peripheral that receives

the clock signal.

Code example for generating 3x pulses (6 edges) with a frequency of 9.375MHz (75MHz system clock):

 LDI $01, r0

 ST DIRECT_ALT_FUNCTION, r0 ; configure DIRECT_OUT(0) as clock output

 LDI $03, r0

 STS r0, SYSTEM_TIMER, SYSTEM_TIMER_COUNTER_LIMIT_W ; 75MHz / 4 toggle rate

 LDI 6, r0 ; number of clock edges

 STS r0, SYSTEM_TIMER, SYSTEM_TIMER_PULS_COUNTER_LIMIT_W

 LDI 1, r0 ; enable counter

 STS r0, SYSTEM_TIMER, SYSTEM_TIMER_CTRL_W

In addition to the clock generator, another 8-bit timer is available. This timer also offers a programmable upper limit and

automatically wraps around when reaching this limit while counting up (sawtooth). The timer supports operations where

a programmable amount of time must be waited before, example, data is shifted in or out through

DIRECT_IN/DIRECT_OUT. The timer may also take the output of the pre-scaler as clock input in case longer delays are

required.

Finally, there is a timeout counter. This is another 8-bit up-counter with programmable limit (sawtooth). It must be used

together with a timeout target address register. In case the timeout limit is not zero, the timeout counter is enabled. As

soon as the executed instruction includes a wait condition temporarily halting program execution, this counter starts

counting. If the timeout counter reaches its limit before the wait condition is met and program execution resumed, regular

program execution stops. Instead, program execution continues with the instruction at the address specified in the timeout

target address register.

Description of instructions STS/LDS in the appendix contains more details on setting the timer/counter limit values.

Cyclic Redundancy Check (CRC)

The serial communication engine includes on-the-fly CRC calculation in hardware as an option for the serial bits shifted

in or out through the DIRECT_IN or DIRECT_OUT pins. The generator polynomial and the start value for CRC calculation

can be programmed. The CRC unit uses linear feedback shift register (LFSR) for CRC calculation. Generator polynomials

up to 32-bit are supported.

Example:

Generator polynomial: g = x5 ⊕ x2 ⊕ x ⊕ 1

The bit sequence for this generator polynomial is 100111. This must be written to the CRC polynomial register.

An optional start value can be written to the CRC start register. Otherwise, the start value is zero.

The resulting shift register in hardware for this polynomial looks like this:

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 26

DATA IN

For example, if the input data stream is 10010011, the CRC checksum after shifting in these 8-bit/after 8 shifts is 1010.

There are no additional cycles required for CRC checksum calculation.

The result can be read out through the CRC result register.

Note that these registers are part of the core, and therefore special load and store instructions (LDS/STS) must be used.

The data bits itself can be shifted into the CRC unit in parallel with shifting in through DIRECT_IN or shifting out through

DIRECT_OUT using shift-left and shift-right commands. For each shift operation, it can be decided whether the bit shifted

in or out is part of the CRC calculation or not.

Description of instructions STS/LDS in the appendix contains more details on setting the CRC start/polynomial values

and accessing the result.

Universal Asynchronous Receiver-Transmitter (UART)

Overview

The universal asynchronous receiver transmitter (UART) supports full-duplex data exchange with external devices using

industry standard NRZ asynchronous serial data format. The UART supports autobaud (character 0x55) and offers

separate transmit and receive buffers with programmable time-out. Transmission format is fixed 8n1.

Main Features

• Full duplex, asynchronous communication

• NRZ standard format (mark/space)

• Separate configurable signal polarity for transmitter/receiver

• Programmable filter for receiver input

• Configurable oversampling by a factor 16 or by a factor of 8

• Programmable baud rate generator

• Auto baud rate detection (character 0x55)

• 8-bit data word length

• One stop bit

• Transmit FIFO buffer with up to eight character entries

• Receive buffer with programmable length up-to eight characters and programmable timeout (reset buffer contents)

Functional Description

The TMC8100 includes two UART peripheral blocks, UART0 and UART1. For bidirectional connection, two pins are

required for each UART: receive data (UARTx_RXD) and transmit data (UARTx_TXD). In case one or both UARTs are

used, the GPIO matrix must be programmed accordingly to make the communication pins available externally. The

features of both UARTs are the same and they operate completely independent of each other. Therefore, the following

functional description covers both UARTs.

The communication format is fixed: one start bit, 8 data bits with least significant bit (LSB) first, no parity, and one stop bit

(8n1). An integrated baud rate generator is available that uses the system clock as input. Either 8x or 16x oversampling

can be selected and there is an optional input filter for the incoming data. The baud rate is the same for the receiver and

transmitter circuit. The baud rate generator register limit value (UARTx_BAUD_L/H) can be calculated using the following

formular:

𝑈𝐴𝑅𝑇𝑥_𝐵𝐴𝑈𝐷 =
𝑓𝑃𝐿𝐿_𝐶𝐿𝐾

𝑏𝑖𝑡𝑠_𝑝𝑒𝑟_𝑠𝑒𝑐𝑜𝑛𝑑 𝑥 8
− 1

For x16 oversampling, the 8 in the formular must be replaced with 16. Values for common baud rates and system clock

settings are:

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 27

 fPLL_CLK = 75MHz, x8 fPLL_CLK = 100MHz, x8 fPLL_CLK = 128MHz, x8

9600bit/s 976 1301 1666

115200bit/s 81 108 138

1Mbit/s 9 12 15

8Mbit/s 1

16Mbit/s 0

Automatic baud rate detection is supported. In case autobaud is enabled, any further transmission of data through

UARTx_TXD is disabled, and the receiver expects to receive the character 0x55. The baud rate generator starts counting

with the first low-to-high transition after the start bit and stops with the last low-to-high transition at the beginning of the

stop bit. The result is then scaled and used as new baud rate generator limit value. The autobaud bit is reset automatically,

indicating the end of the autobaud mode.

The receiver contains an 8-bit shift register for the incoming serial data and a buffer with max. eight entries. As soon as

a new character is received, the data is copied to the next available receive buffer entry. The number of bytes expected

for one message can be programmed (RX_BUFFER_LENGTH = 1..8 in UARTx_CTRL). As soon as a complete message

according to the programmed message length is received, the RX_FULL flag in the status register (UARTx_STATUS) is

set. The received bytes being part of one message can be read-out first-in first-out afterwards through the bus interface

using register UARTx_BUFFER. After a complete message is read-out, the buffer is ready for receiving the next message.

There is a 16-bit timeout counter available for the receiver that starts counting after the stop bit of a character is received.

It continues counting as long as the receiver line remains idle. Each new character on the receiver line resets this counter.

In case the timeout limit (UARTx_TIMEOUT) is reached before the next character within a message is received, the

receive buffer contents are reset, deleting any non-complete message.

The transmitter contains an eight entry FIFO transmit buffer. Any value written to the transmit buffer (UARTx_BUFFER)

is forwarded to the transmit shift register as soon as the transmit shift register is empty and any previous value in the

FIFO buffer is sent out. Separate flags in the status register indicate full (TX_FULL) and empty (TX_EMPTY) FIFO buffer.

G
P

IO
 M

A
T

R
IX

UARTx_TXD

UARTx_RXD RX SHIFT

UARTx_TIMEOUT
 BAUD RATE
GENERATOR

AUTOBAUD
CONTROL

TX SHIFT

FILTER

UARTx

DATA
BUS

UARTx_CTRL

RX

TX

UARTx_BUFFER
RX_DATA

8x8

UARTx_BUFFER
TX_DATA

8x8

UARTx_BAUD

UARTx_STATUS

...

...

Figure 13. UART Block Diagram

Code example for UART communication:

 LDI %0000_0101, r0

 ST GPIO0_ALT1_FUNCTION, r0 ; TXD and RXD on GPIO4/5

 LDI %0001_0000, r0

 ST GPIO_OUT_ENABLE, r0 ; GPIO4 / TXD output

 LDI %0000_0101, r0

 ST UART0_CTRL, r0 ; x8, no filter, autobaud enabled

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 28

 LDI UART0_STATUS, r2

 WAIT1 $0, r2 ; wait for incoming byte

 ; byte received

 LD UART0_BUFFER, r0 ; load received data into r0

 ...

Serial Peripheral Interface (SPI)

Overview

SPI block offers SPI peripheral device functionality and supports standard SPI mode 0. The SPI is one of the available

serial interfaces supported by the bootloader and intended for communication with a motion-controller or microcontroller.

A deep 64x32-bit entry transmit buffer for sending data back to the controller allows for high data rates while minimizing

the interrupt frequency on controller side.

Main Features

The SPI peripheral block supports the following main features:

• SPI peripheral device support

• SPI mode 0

• MSB first

• 32-bit receive buffer

• 64x32-bit FIFO transmit buffer

• SPI clock up to 25MHz

Functional Description

The SPI bus interface is intended to be connected to a microprocessor or motion controller with an SPI controller interface.

The SPI supports SPI mode 0 (clock polarity = 0 and clock phase = 0). In addition to four SPI signals: serial-data-out

(SDO), serial-data-in (SDI), serial clock (SCLK), and chip select (CSN), an additional signal SPI_DATA_AVAILABLE is

available that indicates new data available in the transmit buffer. Maximum SPI data length for a single transfer supported

in hardware is 32-bit. Data is always shifted in and out MSB first.

For receiving data from the external controller, a single 32-bit buffer is available. During SPI transfer, the serial data from

the SPI controller is shifted in and copied from the shift register to this buffer as soon as the SPI data transfer is completed

with the rising edge of the chip select signal SPI_CSN.

For transmission of data, a FIFO buffer with 64 entries (32-bit each) is available. This way, the serial engine can fetch

encoder counter values at a fixed rate while the host/microcontroller can read them out in bursts, keeping the interrupt

frequency and the overhead low. In case the transmit buffer reaches its capacity fetching, further encoder data by the

serial engine can be stopped (default) or older values can be discarded, keeping always the most recent ones (TX_SKIP

in register SPI_CTRL). This can come into place if the controller requesting the encoder data is not fast enough or not

available from time to time, and the latest data is always more important for system control than any historic values.

The transmit buffer is 32-bit in size and therefore four write accesses through the 8-bit data bus are required to fill it. The

bytes must be written into the buffer most significant byte first (MSB, register SPI_BUFFER3) and least significant byte

last (LSB, register SPI_BUFFER0). Following this rule, the control logic is able to detect a new 32-bit value and can

automatically transfer the content of the transmit buffer to the 64 entry FIFO buffer.

The FIFO also contains an output buffer between the FIFO and transmit shift register. As soon as the shift register is

empty or the last SPI transfer is finished, the content of this buffer is transferred to the shift register and the next value for

the buffer is fetched from the FIFO. At the same time, the signal SPI_DATA_AVAILABLE is set to '1'. This output signal

can be selected as an alternate function to pin GPIO6 and indicate any attached controller that new data is available and

another SPI transaction should be initiated to read this data.

Flags in the status register (SPI_STATUS) indicate an end of SPI transmission with new data available in the receive

buffer (EOT), currently no SPI transfer on-going (NO_TRANSFER), and transmit buffer full (TX_FULL).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 29

SPI

TX_DATA_BYTE0

TX_DATA_BYTE1

TX_DATA_BYTE2

TX_DATA_BYTE3

RX_DATA_BYTE0

RX_DATA_BYTE1

RX_DATA_BYTE2

RX_DATA_BYTE3

BUFFERRX_SHIFT

BUFFERTX_SHIFT

SPI_CTRL

SPI_STATUS

DATA
BUS

TX
FIFO

BUFFER
64x32

...

SPI_BUFFERx

SPI_SDO

SPI_SDI

SPI_SCLK

SPI_CSN
CSN

SCLK

SPI_DATA_AVAILABLE
DATA_AVAILABLE

G
P

IO
 M

A
T

R
IX

Figure 14. SPI Block Diagram

Code example for SPI communication:

WAIT_FOR_CMD:

 LD SPI_STATUS, r0

 NOP

 TEST1 $0, r0 ; new SPI datagram received ?

 JC SPI_CMD

 JA WAIT_FOR_CMD

 ...

SPI_CMD:

 LD SPI_BUFFER_3, r0

 LDI $01, r1

 CMP NE r0, r1 ; compare MSB of datagram with $01

 JC WAIT_FOR_CMD

 LDI $38, r0 ; "8" ; put "8100" into SPI transmit buffer

 ST SPI_BUFFER_3, r0

 LDI $31, r0 ; "1"

 ST SPI_BUFFER_2, r0

 LDI $30, r0 ; "0"

 ST SPI_BUFFER_1, r0

 ST SPI_BUFFER_0, r0

 JA WAIT_FOR_CMD

I2C

Overview

The I2C block supports host/controller operation. Usually, either an external I2C EEPROM for standalone

operation/bootstrap or additional sensors (example, temperature) are connected here.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 30

Main Features

• Host/Controller

• Receive shift register

• Transmit shift register

• Command buffer

• Configurable start/stop repeated start stop conditions

• 7-bit address mode

• Standard mode

Functional Description

The TMC8100 contains an I2C host interface. This interface supports I2C standard mode. The physical interface consists

of the bidirectional serial data line I2C_SDA and the serial clock output I2C_SCL (alternate pin functions to GPIO2 and

GPIO3). Note that these serial interface signals must be selected individually in the GPIO matrix to make them available

externally. Also, open-drain operation instead of push-pull (default) for the SDA output must be activated explicitly in the

GPIO matrix. The pull-ups to VCCIO must be added externally for valid signal levels.

An integrated baud rate generator is available, which uses the system clock as input. The limit value for the baud rate

generator (I2C_BAUD_L/H) can be calculated using the following formular:

𝐼2𝐶_𝐵𝐴𝑈𝐷 =
𝑓𝑃𝐿𝐿_𝐶𝐿𝐾

𝑓𝐼2𝐶_𝑆𝐶𝐿 𝑥 4
− 1

The I2C interface is optimized to support byte and page read and write operations in combination with an 24LC64

EEPROM or similar. Nevertheless, the I2C host interface can be used for communication with other peripherals also.

For control of I2C host operation, a command register is available. The following I2C commands are supported:

COMMAND LABEL COMMAND CODE DESCRIPTION

I2C_CMD_STOP 0x00 Send stop condition.

I2C_CMD_START_TXD_ACK 0x01
Send start signal and transmit one byte afterwards (usually command

byte). Sample/check target acknowledge.

I2C_CMD_TXD_ACK 0x02 Transmit one byte and check/sample target acknowledge.

I2C_CMD_RXD_ACK 0x03 Receive one byte and send acknowledge.

I2C_CMD_RXD_NO_ACK 0x04 Receive one byte and send no acknowledge.

In case the last command is executed and there is no new command available, an I2C stop condition is sent automatically.

In case the command does include transmission of a byte, this must be written into the transmit shift register

(I2C_BUFFER) prior to command initiation. A byte received is available in the receive shift register I2C_BUFFER at the

end of command execution. The status register indicates successful command execution (CMD_RDY), any acknowledge

bit received (RCV_ACK), and its value (RCV_ACK_VALUE).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 31

I2C_SDA

I2C

DATA
BUS

I2C_STATUS

I2C_CMD

I2C_BAUD

I2C_BUFFER
RX_DATA

I2C_BUFFER
TX_DATA

BAUDRATE
GENERATOR

CONTROL

CLOCK

G
P

IO
 M

A
T

R
IX

SDA_IN

SDA_OUT

I2C_SCL

Figure 15. I
2
C Block Diagram

Code example for I2C communication:

 ; send command + write address + data (I2C EEPROM)

 LDI $a0, r0

 ST I2C_TX_BUFFER, r0

 LDI I2C_CMD_START_TXD_ACK, r0

 ST I2C_CMD, r0

 LDI I2C_STATUS, r0

 WAIT1 $0, r0

 ; send address high byte

 ST I2C_TX_BUFFER, r4

 LDI I2C_CMD_TXD_ACK, r0

 ST I2C_CMD, r0

 LDI I2C_STATUS, r0

 WAIT1 $0, r0

 ; send address low byte

 ST I2C_TX_BUFFER, r3

 LDI I2C_CMD_TXD_ACK, r0

 ST I2C_CMD, r0

 LDI I2C_STATUS, r0

 WAIT1 $0, r0

 ; send data byte

 ST I2C_TX_BUFFER, r6

 LDI I2C_CMD_TXD_ACK, r0

 ST I2C_CMD, r0

 LDI I2C_STATUS, r0

 WAIT1 $0, r0

 ; send stop

 LDI I2C_CMD_STOP, r0

 ST I2C_CMD, r0

 LDI I2C_STATUS, r0

 WAIT1 $0, r0

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 32

A/B/Z Encoder Interface

Overview

The TMC8100 offers a timer block with 32-bit position counter with programmable input decoder supporting incremental

(quadrature) encoder signals.

Main Features

• 32-bit position counter

• Programmable input decoder supporting A/B/Z, x1, x2, CW/CCW, STEP/DIR

• Decoder output for synchronization of external devices (with programmable pulse length)

• Programmable input filter and sampling frequency

• Programmable position counter reset on Z-channel and/or HOME switch event (once/always, programmable)

• 32-bit position capture register

• Capture encoder counter value on Z-channel/HOME switch event (once/always)

• 2x 32-bit compare register for output waveform based on position counter value

• Output pulse generation with programmable length (16-bit counter)

Functional Description

The TMC8100 contains a 32-bit counter with quadrature decoder for incremental encoder with A/B channel and optional

Z channel. These encoder inputs are available as alternate functions of the DIRECT_IN pins. The matrix must be

programmed accordingly to use these inputs. The encoder inputs must pass an optional filter with programmable sample

rate before decoding and the main 32-bit encoder counter is incremented or decremented accordingly. The decoder

supports quadrature (x4) decoding for the standard incremental encoder A and B channel signals and several other codes

too (x1, x2, CW/CCW, PULSE/DIR). The encoder counter can be captured and/or reset to its start value depending on a

programmable signal pattern in case of an Z channel event or an external trigger signal. This signal input has its own

optional filter and programmable sample rate and can be used as single trigger source for capturing the encoder counter

value or in combination with the Z channel event. The same trigger options are available for resetting the encoder counter

to its programmable start value. Both capture and reset events can be enabled and accepted continuously or just once.

This can be used for homing with reset and/or capture of encoder value once the home position is reached. Also, more

complex homing operations are supported, example, as soon as the home switch gets activated, the next encoder Z

channel event defines the precise home position (usually more precise than a mechanical home switch). The definition of

a Z channel event is fully programmable (rising or falling edges of one of the A/B or Z channel can be selected while the

other channels are either ignored, low, or high, for full flexibility.

For the 32-bit encoder counter, an upper wraparound limit can be defined. This way cyclic counting, example, adjusted

to one motor turn is supported.

For synchronization of external devices, the encoder counter offers two programmable outputs. The decoder output

(DECODER_OUT) generates one pulse with programmable length for each encoder counter increment or decrement.

The additional compare output signal (COMPARE_OUT) can be configured to generate a high signal of programmable

length in case the compare registers 0 and 1 are less or equal or greater than the encoder counter value.

Input and output polarities of all signals are programmable through the GPIO and DIRECT_IN matrix.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 33

A/B/Z ENCODER INTERFACE

TIMER_CAPTURE

TIMER_LIMIT

TIMER_COUNTER

TIMER_COMP0

TIMER_COMP1

DECODER

LATCH

TIMER_START

TIMER_COMP_PULSE_LIMIT

ENC_Z

ENC_B
F

IL
T

E
R

RESET

UP/DOWN

CAPTURE

ENC_A

HOME

D
IR

E
C

T
_I

N
 M

A
T

R
IX

G
P

IO
 M

A
T

R
IX

COMPARE_OUT

DECODER_OUT

HOME

HOME

ENC_Z

ENC_B

ENC_A

TIMER_COMP_PULSE_CFG

TIMER_AB_EVENT_CFG

TIMER_DEC_PULSE_LIMIT

TIMER_HOME_DIV

TIMER_ABZ_DIV

UP/DOWN

TIMER_STATUS

TIMER_CTRL

DATA
BUS

TIMER_ZH_EVENT_CFG

Figure 16. A/B/N Encoder Interface Block Diagram

x1 Code Incremental Encoder Input

With x1 incremental code, the encoder position counter is incremented at the rising edge of channel A in case channel A

is leading and decremented at the falling edge of channel A if channel B is leading.

ENC_A

ENC_B

TIMER_COUNTER 5 6 7 7 6 5

x2 Code Incremental Encoder Input

With x2 incremental code, the encoder position counter is incremented at both edges of channel A in case channel A is

leading and decremented at both edges of channel A if channel B is leading.

ENC_A

ENC_B

TIMER_COUNTER 5 6 7 9 6 58 9 8 7

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 34

x4 Code, A/B Incremental Encoder Input

With x4 incremental code, the encoder position counter is incremented at both edges of channel A and both edges of

channel B in case channel A is leading, and decremented at both edges of channel A and both edges of channel B if

channel B is leading. An additional channel N(neutral) or Z(zero) can be used to indicate zero/null position within one

rotation of the encoder. A pulse on this channel can be directly indicating zero position (example, rising or falling edge)

or just qualify a rising or falling edge on channel A or B as null/zero position.

ENC_A

ENC_B

TIMER_COUNTER 5 6 127 8 9 10 11 12 611 10 9 8 7 5

Code example for A/B/N incremental encoder:

 ; capture on z-channel high and channel b rising edge
 LDI %0001_0111, r0

 ST TIMER_AB_EVENT_CFG, r0

 LDI %0011_1001, r0

 ST TIMER_ZH_EVENT_CFG, r0

 ; select x4 code, capture on z-channel

 LDI %0010_0010, r0

 ST TIMER_CTRL, r0

 ; set length of decode output signal

 LDI %0000_0010, r0

 ST TIMER_DEC_PULSE_LIMIT, r0

 ; set counter limit to max and reset counter

 LDI $ff, r0

 ST TIMER_LIMIT0, r0

 ST TIMER_LIMIT1, r0

 ST TIMER_LIMIT2, r0

 ST TIMER_LIMIT3, r0

 ...

 ; read abz encoder value

 LD TIMER_COUNTER3, r3

 LD TIMER_COUNTER2, r2

 LD TIMER_COUNTER1, r1

 LD TIMER_COUNTER0, r0

CW and CCW Incremental Input

With this decoder configuration, different signals are used for counting up/clock-wise (cw) counting and counting

down/counter-clock-wise (ccw) counting of the encoder position counter.

PULSE/DIR Incremental Input

With this configuration, different signals are used for counting up/down and for direction control. The encoder position

counter either counts up or counts downwards with each pulse/step depending on polarity of the direction input.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 35

Appendix

Commands

The protocol engine inside the TMC8100 contains a programmable state machine. The architecture and command set

are optimized for the specific purpose of converting serial data into parallel and vice versa. This way, synchronous and

asynchronous bit-streams are supported with up-to 16 Mbit/s (with 128 MHz core clock frequency and eight times

oversampling). The protocol engine offloads the motion controller or main general-purpose microcontroller from this

conversion task, and in contrast to fully hardware-based solutions, offers a high degree of flexibility for current protocol

implementations, customization, and future protocol extensions.

The protocol engine accepts a set of 16-bit wide commands while operating on 8-bit data. The command execution

pipeline includes two fetch stages and one decode/execute stage. An additional write-back stage offers a bypass to

reduce pipeline delays. A 12-bit program counter selects the next address from the 2048 x 16 on-chip program memory.

For program branches, conditional and unconditional jumps are supported. While most instructions are executed in one

clock cycle, branch instructions usually require three cycles as the command pipeline must be refilled. Nevertheless, to

be able to use the otherwise empty slots after a taken branch, delayed jumps are supported. For delayed jumps, the two

instructions after the jump are always executed before continuing at the jump target address. A hardware stack with eight

entries supports nested subroutines with call/return instructions. Also, for small command loops with known number of

cycles, hardware loopbacks with integrated instruction cache are available for loop unrolling without any instruction

overhead or pipeline delay.

The load/store architecture operates on 8x 8-bit general-purpose registers. In addition, there are a number of flag registers

and system registers available for accessing several timers/counters and the CRC unit integrated into the core. For the

main purpose of serial/parallel data conversion, several shift and bit tests and manipulate commands are available that

can be linked to timer/clock events to synchronize command processing to the serial bit stream.

To ensure highly deterministic program execution times, each instruction contains a conditional execution flag (instruction

basically requires the same time whether executed or not) and there are no interrupts. Nevertheless, in combination with

the core timer, block timeouts are supported while processing the data stream.

Overview

Program Flow Control

COMMAND SYNTAX DESCRIPTION

JA/JC JA <addr>

JC <addr>

Jump always (JA) or jump conditionally (JC) to immediate program memory

address.

In case the jump is taken, two additional idle cycles are inserted after this instruction

before the first instruction at the target address is executed.

JFA/JFC JFA <addr>

JFC <addr>

Jump (fast) to immediate program memory address (without inserting idle cycles).

Always execute the two instructions immediately after this instruction before the next

instruction or the first instruction at the jump target address is executed (without idle

cycles).

CALL CALL <addr> Jump to immediate address, remember address of next instruction on return

address stack.

RSUB RSUB Return from sub-routine (jump back to address on top of return address stack).

REP REP <loops>, <instr> Hardware loop consisting of <instr> subsequent instructions (<instr> = 1...4

instructions supported). Loop is executed <loops> + 1 time without jump back

overhead (no additional cycles) using instruction loop cache (<loops> = 0...7 - 0...7

jump backs/1..8 loop execution supported in hardware).

WAIT0 WAIT0 <bit>, <reg> Stop program execution until <bit> of register at peripheral address <reg> is zero.

WAIT1 WAIT1 <bit>, <reg> Stop program execution until <bit> of register at peripheral address <reg> is one.

WAIT0SF WAIT0SF <wait_flag>, <wait_ctrl> Stop program execution until <wait_flag> is zero, then perform action according to

<wait_ctrl>.

WAIT1SF WAIT1SF <wait_flag>, <wait_ctrl> Stop program execution until <wait_flag> is one, then perform action according to

<wait_ctrl>.

NOP NOP No operation.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 36

HALT HALT Stop program counter (do not use during regular program flow).

<addr> immediate 11-bit address value 0...2047

<bit> bit within one byte 0...7

<reg> any general purpose register 0...7

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Pulse counter has reached pulse counter limit

6 Overflow timer

7 No wait

<wait_ctrl> DESCRIPTION

0 No action

1 Start timer

2 Stop timer

3 No action

4 If DIRECT_IN[0] is 0/1 increment pulse counter limit

5 If DIRECT_IN[1] is 0/1 increment pulse counter limit

6 If DIRECT_IN[2] is 0/1 increment pulse counter limit

7 If DIRECT_IN[3] is 0/1 increment pulse counter limit

Load/Store/Move Operations

COMMAND SYNTAX DESCRIPTION

LD LD <addr>, <reg> Read from data memory/peripheral address <addr> and load into register

<reg>.

ST ST <addr>, <reg> Store register contents <reg> at data memory/peripheral address <addr>.

LDI LDI <data>, <reg> Load <data> value into register.

LDR LDR <regy>, <regz> Load value from data memory/peripheral at address provided in <regy> and

store value in register <regz>.

STR STR <regy>, <regz> Store register <regz> value at data memory/peripheral address given in

register <regy>.

LDS LDS <system_unit>, <system_reg_read>,

<reg>

Store contents of <system_reg> part of <system_unit> in <reg>.

STS STS <reg>, <system_unit>,

<system_reg_write>

Store contents of <reg> in <system_reg> part of <system_unit>.

<addr> immediate (part of the instruction word) 8-bit data memory/peripheral address 0...255

<data> immediate (part of the instruction word) 8-bit data 0...255

<reg>, <regy>, <regz> any general purpose register 0...7

<system_unit> <system_reg_read> DESCRIPTION

0: Core 0 Program source

Bit 0 – 0: ROM bootloader

Bit 0 – 1: SRAM program memory

1: Timer 1 Counter value

2 Pulse counter value

3 Timer value

4 Timeout counter value

2: CRC 0 CRC result [7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 37

1 CRC result [15:8]

2 CRC result [23:16]

3 CRC result [31:24]

<system_unit> <system_reg_write> DESCRIPTION

0: Core 0 Select program source

Bit 0 – 0: ROM bootloader

Bit 0 – 1: SRAM program memory

 1 Bit 0 – DIRECT_IN[3:0] input filter enable

Bit 2, 1 – DIRECT_IN[3:0] filter sample scaler (/1, /8, /64, /512)

Bit 3 – Select Manchester decoder

 2 Timeout jump target address [7:0]

 3 Timeout jump target address[10:8]

 4 Manchester decoder sample window low [4:0]

 5 Manchester decoder sample window high [4:0]

1: Timer 0 Pre-scaler limit

 1 Counter limit

 2 Pulse counter limit

 3 Timer limit

 4 Timeout counter limit

 5 Bit 0 – Counter enable

Bit 1 – Timer enable

Bit 2 – Select pre-scaler for timer

 7 Timer limit (without resetting timer)

2: CRC 0 Circular buffer for writing 32-bit CRC start value beginning with the LSB (CRC start

value[7:0])

 1 Circular buffer for writing 32-bit CRC polynomial beginning with the LSB (CRC

polynomial[7:0])

 2 Bit 0 – CRC polynomial[32]

Bit 1 – CRC out in reverse order

When writing to this register the write buffer pointer for the 32-bit CRC start value and 32-bit

CRC polynomial value is reset to the first entry/LSB.

Set/Clear/Move Individual Bits

COMMAND SYNTAX INSTRUCTION FORMAT

SET SET <bit>, <regy>, <regz> Copy contents of <regy> to <regz> and set <bit> to ‘1’.

CLR CLR <bit>, <regy>, <regz> Copy contents of <regy> to <regz> and clear <bit> to ‘0’.

SFSET SFSET WAIT0SF <wait_flag>, <flag_reg_out>, <bit> Write ‘1’ to <bit> of <flag_reg_out> as soon as <wait_flag>

condition is ‘0’.

SFSET WAIT1SF <wait_flag>, <flag_reg_out>, <bit> Write ‘1’ to <bit> of <flag_reg_out> as soon as <wait_flag>

condition is ‘1’.

SFCLR SFCLR WAIT0SF <wait_flag>, <flag_reg_out>, <bit> Write ‘0’ to <bit> of <flag_reg_out> as soon as <wait_flag>

condition is ‘0’.

SFCLR WAIT1SF <wait_flag>, <flag_reg_out>, <bit> Write ‘0’ to <bit> of <flag_reg_out> as soon as <wait_flag>

condition is ‘1’.

MOVB0 MOVB0 <bit>, <regy>, <regz> Overwrite bit 0 of <regz> with <bit> of <regy>.

MOVB7 MOVB7 <bit>, <regy>, <regz> Overwrite bit 7 of <regz> with <bit> of <regy>.

MOVCRC MOVCRC <bit>, <regz> Move <bit> of <regz> to serial input of CRC unit.

MOVNCRC MOVNCRC <bit>, <regz> Move inverted <bit> of <regz> to serial input of CRC unit.

MOVF MOVF <bit>, <regz> Overwrite <bit> of <regz> with flag status.

MOVNF MOVNF <bit>, <regz> Overwrite <bit> of <regz> with inverted flag status.

<bit>: bit within register byte 0...7

<regy>, <regz>: any general purpose register 0...7

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 38

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow flag counter

5 Overflow flag timer

6 Overflow flag pulse counter

7 No wait

<flag_reg_out> DESCRIPTION

0 Bit 0 – DIRECT_OUT[0]

Bit 1 – DIRECT_OUT[1]

Bit 2 – DIRECT_OUT[2]

Bit 3 – DIRECT_OUT[3]

Bit 4 – DIRECT_OUT[0] + CRC unit serial in

Bit 5 – DIRECT_OUT[1] + CRC unit serial in

Bit 6 – DIRECT_OUT[2] + CRC unit serial in

Bit 7 – DIRECT_OUT[3] + CRC unit serial in

1 Bit 0 – DIRECT_OUT[0] enable (push-pull)

Bit 1 – DIRECT_OUT[1] enable (push-pull)

Bit 2 – DIRECT_OUT[2] enable (push-pull)

Bit 3 – DIRECT_OUT[3] enable (push-pull)

2 Bit 0 – CRC unit

3 Bit 0 – counter enable

Bit 1 – timer enable

Bit 2 – timeout counter enable

4 Bit 0 – counter reset

Bit 1 – timer reset

Bit 2 timeout counter reset

Arithmetic and Logic Operations

COMMAND SYNTAX DESCRIPTION

AND AND <regx>, <regy>, <regz> Store result of <regx> and (bitwise) <regy> in <regz>.

OR OR <regx>, <regy>, <regz> Store result of <regx> or (bitwise) <regy> in <regz>.

XOR XOR <regx>, <regy>, <regz> Store result of <regx> exclusive or (bitwise) <regy> in <regz>.

NOT NOT <regy>, <regz> Store inverted (bitwise) value of <regy> in <regz>.

REV REV <regy>, <regz> Reverse bits in <regy> and store result in <regz>.

ADD ADD <regx>, <regy>, <regz> Add <regx> to <regy> and store result in <regz>.

SUB SUB <regx>, <regy>, <regz> Substract <regy> from <regx> and store result in <regz>.

INC INC <regy>, <regz> Increment <regy> and store result in <regz>.

DEC DEC <regy>, <regz> Decrement <regy> and store result in <regz>.

Compare and Test Operations

COMMAND SYNTAX DESCRIPTION

COMP LT COMP LT <regy>, <regz> If <regy> is less than <regz>, the flag is set – otherwise cleared.

COMP LE COMP LE <regy>, <regz> If <regy> is less than or equal to <regz>, the flag is set – otherwise

cleared.

COMP EQ COMP EQ <regy>, <regz> If <regy> is equal to <regz>, the flag is set – otherwise cleared.

COMP NE COMP NE <regy>, <regz> If <regy> is not equal to <regz>, the flag is set – otherwise cleared.

TEST0 TEST0 <bit>, <reg> If <bit> of <reg> is ‘0’, the flag is set – otherwise cleared.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 39

TEST1 TEST1 <bit>, <reg> If <bit> of <reg> is ‘1’, the flag is set – otherwise cleared.

SFTEST0 SFTEST0 <flag_reg_in>, <bit> If <bit> of <flag_reg_in> is ‘0’, the flag is set – otherwise cleared.

SFTEST1 SFTEST1 <flag_reg_in>, <bit> If <bit> of <flag_reg_in> is ‘1’, the flag is set – otherwise cleared.

<regx>, <regy>, <regz>: any general purpose register

<bit>: bit within byte 0...7

<flag_reg_in> DESCRIPTION

0 Bit 0 – DIRECT_IN[0]

Bit 1 – DIRECT_IN[1]

Bit 2 – DIRECT_IN[2]

Bit 3 – DIRECT_IN[3]

1 Bit 0 – clock generator output

Bit 1 – set to one in case pulse counter has reached limit value

Shift Operations

COMMAND SYNTAX INSTRUCTION FORMAT

SHLO SHLO WAIT0SF <wait_flag>, <out_flag>,

<reg>

Shift <reg> left one bit as soon as

<wait_flag> is ‘0’ and output MSB to

<out_flag>.

SHLO WAIT1SF <wait_flag>, <out_flag>,

<reg>

Shift <reg> left one bit as soon as

<wait_flag> is ‘1’ and output MSB to

<out_flag>.

SHLI SHLI WAIT0SF <wait_flag>, <reg>,

<in_flag>

Shift <reg> left one bit as soon as

<wait_flag> is ‚0’ with LSB from <in_flag>.

SHLI WAIT1SF <wait_flag>, <reg>,

<in_flag>

Shift <reg> left one bit as soon as

<wait_flag> is ‚1’ with LSB from <in_flag>.

SHRO SHRO WAIT0SF <wait_flag>, <reg>,

<out_flag>

Shift <reg> right one bit as soon as

<wait_flag> is ‘0’ and output LSB to

<out_flag>.

SHRO WAIT1SF <wait_flag>, <reg>,

<out_flag>

Shift <reg> right one bit as soon as

<wait_flag> is ‘1’ and output LSB to

<out_flag>.

SHRI SHRI WAIT0SF <wait_flag>, <in_flag>,

<reg>

Shift <reg> right one bit as soon as

<wait_flag> is ‚0’ with MSB from <in_flag>.

SHRI WAIT1SF <wait_flag>, <in_flag>,

<reg>

Shift <reg> right one bit as soon as

<wait_flag> is ‚1’ with MSB from <in_flag>.

<reg>: any general purpose register 0...7

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow pulse counter

6 Overflow timer

7 No wait

<out_flag> DESCRIPTION

0 DIRECT_OUT[0]

1 DIRECT_OUT[1]

2 DIRECT_OUT[2]

3 DIRECT_OUT[3]

4 DIRECT_OUT[0] and CRC unit serial in

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 40

5 DIRECT_OUT[1] and CRC unit serial in

6 DIRECT_OUT[2] and CRC unit serial in

7 DIRECT_OUT[3] and CRC unit serial in

<in_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 DIRECT_IN[0] and CRC unit serial in

5 DIRECT_IN[1] and CRC unit serial in

6 DIRECT_IN[2] and CRC unit serial in

7 DIRECT_IN[3] and CRC unit serial in

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 41

JA/JC (Jump Always/Jump Conditionally)

Operation:

Jump always (JA) or jump conditionally (JC) to immediate program memory address. The immediate address is always

the address of an instruction word (16-bit) in program memory (either bootloader ROM or program memory SRAM).

Execution of the instruction itself requires one clock cycle. In case the jump is taken, there is an additional pipeline delay

of two clock cycles before the instruction at the specified jump target program memory address is executed.

Assembler Syntax:

JA <addr>

JC <addr>

<addr>: program memory address (jump target) 0..2047

Instruction Format:

15

c 1 0 0 0

0

addr[10:0]

c: condition flag

• 0: Always execute jump instruction/jump always (JA)

• 1: Execute jump instruction in case flag is '1'/jump conditionally (JC)

addr[10:0] immediate address of jump target instruction. Specifies any instruction within 2Kx16 (4KB) program memory

area 0...2047.

Example:

...

CLK_DIN = $4a

...

WAIT_FOR_PLL:

 LD CLK_DIN, r0

 NOP

 TEST1 $7, r0

 JC WAIT_FOR_PLL

In this example, the jump back to the start of the loop takes place in case the TEST1 instruction immediately before the

JC instruction is successful and the flag bit is set. The assembler supports symbolic names for jump addresses and

calculates the address automatically (in this case "WAIT_FOR_PLL"). Note the ':' behind the placeholder for the address

- indicating that the current program memory address is assigned to this placeholder instead of a value.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 42

JFA/JFC (Jump Fast Always/Jump Fast Conditionally)

Operation:

Jump fast always (JFA) and jump fast conditional (JFC) to immediate program memory address. The immediate address

is always the address of an instruction word (16-bit) in program memory (either bootloader ROM or program memory

SRAM). Execution of the instruction itself requires one clock cycle. The next two instructions located immediately after

the jump instruction in the program code are always executed (whether the jump is taken or not). This way, no additional

wait cycles are necessary in case the jump is taken.

Assembler Syntax:

JFA <addr>

JFC <addr>

<addr>: program memory address (jump target) 0..2047

Instruction Format:

15

c 1 0 0 1

0

addr[10:0]

C: condition flag

• 0: Always execute jump instruction/jump fast always (JFA)

• 1: Execute jump instruction in case flag is '1'/jump fast conditionally (JFC)

addr[10:0] immediate address of jump target instruction. Specifies any instruction within 2Kx16 (4KB) program memory

area 0…2047.

Example:

...

GPIO_OUT = $40

...

WAIT:

 LDI %0101_0101, r0

 ST GPIO_OUT, r0

 JFA WAIT

 LDI %1010_1010, r0

 ST GPIO_OUT, r0

In this example, the jump back to the start of the loop always takes place. The two instructions after the JFA WAIT

command at the end of the example code snippet are executed before the first instruction at the start of the loop is

executed again. The code sequence results in toggling of the GPIO outputs (01010101 → 10101010 → 01010101 → ...).

The assembler supports symbolic names for jump addresses and calculates the address automatically (in this case

"WAIT"). Note the ':' behind the placeholder for the address - indicating that the current program memory address is

assigned to this placeholder instead of an explicitly assigned value.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 43

CALL (Call Subroutine)

Operation:

Branch to subroutine. The immediate address is always the address of an instruction word (16-bit) in the program memory

(either bootloader ROM or program memory SRAM). Execution of the instruction itself requires one clock cycle. For the

unconditional CALL command, the next two instructions located immediately after the CALL instruction in the program

code are always executed before the program jump takes place. This way, no additional wait cycles are necessary. For

the conditional CCALL instruction, there is an additional delay of two clock cycles automatically inserted before the

instruction at the specified branch target program memory address is executed. In case the branch is taken, the return

address (the address of the instruction immediately after the CALL instruction) is stored on a return stack. The dedicated

return stack avoids any additional clock cycles required otherwise for memory access to store the return address. The

return stack offers a maximum of eight entries. This limits the number of nested branches to subroutines (call of another

subroutine within a subroutine) to 8.

Assembler Syntax:

CALL <addr>

CCALL <addr>

<addr>: program memory address (start of subroutine) 0…2047

Instruction Format:

15

c 1 0 1 0

0

addr[10:0]

C: condition flag

• 0: Always execute call instruction/branch to subroutine (CALL)

• 1: Execute call instruction/branch to subroutine in case flag is '1'/(CCALL)

addr[10:0] immediate address of branch target instruction. Specifies any instruction within 2Kx16 (4KB) program memory

area 0…2047.

Example:

...

GPIO_OUT = $40 ; 0100_0000

GPIO_IN = $40

...

CALL TOGGLE_GPIO

NOP

NOP

...

TOGGLE_GPIO:

 LD GPIO_IN, r0

 LDI $ff, r1

 RSUB

 XOR r0, r1, r0

 ST GPIO_OUT, r0

In this example, the program branch/call of the subroutine TOGGLE_GPIO always takes place. The two NOP instructions

immediately following the CALL instruction in program code are executed before the first instruction of the subroutine LD

GPIO_IN, r0 is executed. At the end of the subroutine, the RSUB command initiates a jump back to the calling routine.

The two instructions after the RSUB command (XOR ...) are still executed before the first NOP instruction immediately

following the CALL instruction in the main function is executed.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 44

The assembler supports symbolic names for jump addresses and calculates the address automatically (in this case

"TOGGLE_GPIO"). Note the ':' behind the placeholder for the address - indicating that the current program memory

address is assigned to this placeholder instead of an explicitly assigned value.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 45

RSUB (Return from Subroutine)

Operation:

Return from subroutine. This command does not require any parameter. Instead, the branch target address is taken from

the top of the hardware return stack. Execution of the instruction itself requires one clock cycle. For the unconditional

RSUB command, the next two instructions located immediately after the RSUB instruction in the program code are

executed before the instruction at the branch target address is executed. This way, no additional wait cycles are necessary

for the jump back. For the conditional RSUB instruction, two idle clock cycles are inserted automatically before the

instruction at the branch target is executed.

Assembler Syntax:

RSUB

CRSUB

Instruction Format:

15

c 0 0 0 0

0

0 0 0 0 1 0 0 0 0 0 0

C: condition flag

• 0: Always execute instruction/return from subroutine (RSUB)

• 1: Execute instruction/branch back from subroutine to calling function in case flag is '1'/(CRSUB)

Example:

...

GPIO_OUT = $40 ; 0100_0000

GPIO_IN = $40

...

CALL TOGGLE_GPIO

NOP

NOP

...

TOGGLE_GPIO:

 LD GPIO_IN, r0

 LDI $ff, r1

 RSUB

 XOR r0, r1, r0

 ST GPIO_OUT, r0

In this example, the program branch/call of the subroutine TOGGLE_GPIO always takes place. The two NOP instructions

immediately following the CALL instruction in program code are executed before the first instruction of the subroutine LD

GPIO_IN, r0 is executed. At the end of the subroutine, the RSUB command initiates a jump back to the calling routine.

The two instructions after the RSUB command (XOR ...) still are executed before the first NOP instruction immediately

following the CALL instruction in the main function is executed.

The assembler supports symbolic names for jump addresses and calculates the address automatically (in this case

"TOGGLE_GPIO"). Note the ':' behind the placeholder for the address - indicating that the current program memory

address is assigned to this placeholder instead of an explicitly assigned value.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 46

REP (Repeat/Initialize Hardware Loop)

Operation:

Initialize hardware loop. This command supports loop unrolling in hardware at program execution time to eliminate the

additional clock cycles for loop counting and jump back for repeated execution of loop instructions. Traditional loop

unrolling at compile time typically increases program length significantly. With loop unrolling in hardware, just the

additional command for initialization (REP) is required. Execution of this command takes one clock cycle. The loop starts

immediately after this instruction.

During regular program execution, all instructions executed are remembered using a first-in first-out (FIFO) buffer with

four entries. This buffer is used for repeated execution of instructions during loop unrolling. Instructions are seamlessly

fetched from the FIFO buffer after the loop is executed for the first time avoiding additional clock cycles/overhead for jump

back and instruction fetching. There is a hardware counter available that limits the number of loops being executed. A

hardware loop may contain up to four instructions (1...4) and supports up-to eight times (1…8) loop execution.

Assembler Syntax:

REP <loops>, <instr>

CREP <loops>, <instr>

<loops>: Loop is repeatedly executed <loops> times (<loops> = 1..8x loop execution).

<instr>: Loop consists of <instr> subsequent instructions (<instr> = 1..4 instructions supported).

Instruction Format:

15

c 0 0 0 0

0

0 0 0 1 1 loops[2:0] instr[2:0]

loops[2:0]: 1..8 loops are encoded as 0...7

instr[2:0]: 1..4 instructions are encoded as 0...3

C: condition flag

• 0: Always execute instruction/initialize hardware loop (REP)

• 1: Execute instruction/initialize hardware loop in case flag is '1'/(CREP)

Example:

; <wait_flag>

WAIT_OVERFLOW_TIMER = 6

 ; <in_flag>

FLAG_IN1_CRC = 5

...

REP 4, 1

; wait for timer overflow and shift in data

SHRI WAIT1SF WAIT_OVERFLOW_TIMER, FLAG_IN1_CRC, r3

REP 8, 1

; wait for timer overflow and shift in data

SHRI WAIT1SF WAIT_OVERFLOW_TIMER, FLAG_IN1_CRC, r4

...

In this example, the first SHRI command (shift data bits in) is repeated four times and the second SHRI command eight

times. In both cases, just one command is repeatedly executed. Short loops benefit more from hardware loop unrolling

as the overhead in software required otherwise for counting loops and jumping back dominates loop execution time.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 47

WAIT0/WAIT1 (Wait with Program Execution)

Operation:

Wait with further program execution until register bit (example, status flag) of peripheral register connected to data bus

has changed to zero (WAIT0) or one (WAIT1). In case the specified bit is already zero/one, execution of the instruction

takes just one clock cycle. Otherwise, the specified register is read during each clock cycle and checked for the status of

the bit within this register. As soon as the bit has changed, program execution continues. This instruction can be used to

synchronize program execution to external signals, serial data received, or timer events.

Assembler Syntax:

WAIT0 <bit>, <reg>

CWAIT0 <bit>, <reg>

WAIT1 <bit>, <reg>

CWAIT1 <bit>, <reg>

<bit>: bit within byte that is monitored (0…7)

<reg>: register (0...7) with address of peripheral register (0...255)

Instruction Format WAIT0:

15

c 0 0 0 0

0

0 0 1 0 0 reg[2:0] bit[2:0]

Instruction Format WAIT1:

15

c 0 0 0 0

0

0 0 1 0 1 reg[2:0] bit[2:0]

c: condition flag

• 0: Always execute instruction/wait

• 1: Execute instruction/wait in case flag is '1'/(CWAIT0/1)

Example:

...

UART0_BUFFER = $08

UART0_STATUS = $0b

...

LDI UART0_STATUS, r2

WAIT1 $0, r2

LD UART0_BUFFER, r1

...

In this example, the address of the UART0 status register (UART0_STATUS) is loaded into register r2. Program execution

waits until bit 0 of the status register gets one (byte received). Immediately afterwards, data byte received is read out from

the UART0 receive buffer register (UART0_BUFFER).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 48

WAIT0SF/WAIT1SF (Wait with Program Execution)

Operation:

Wait with further program execution until selected system flag <wait_flag> has turned to zero (WAIT0) or one (WAIT1).

In case the specified system flag is already zero/one, execution of the instruction takes just one clock cycle. Otherwise,

the specified flag is read during each clock cycle and status/value is checked. As soon as the flag has changed, the

specified action <wait_ctrl> is initiated and program execution continues without any further delay. This instruction can be

used to synchronize program execution to external signals or timer events.

Assembler Syntax:

WAIT0SF <wait_flag>, <wait_ctrl>

CWAIT0SF <wait_flag>, <wait_ctrl>

WAIT1SF <wait_flag>, <wait_ctrl>

CWAIT1SF <wait_flag>, <wait_ctrl>

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Pulse counter has reached pulse counter limit

6 Overflow timer

7 No wait

<wait_ctrl> DESCRIPTION

0 No action

1 Start timer

2 Stop timer

3 No action

4 If DIRECT_IN[0] is 0/1 increment pulse counter limit

5 If DIRECT_IN[1] is 0/1 increment pulse counter limit

6 If DIRECT_IN[2] is 0/1 increment pulse counter limit

7 If DIRECT_IN[3] is 0/1 increment pulse counter limit

Instruction Format (WAIT0SF):

15

c 0 0 0 0

0

0 0 1 1 0 wait_flag[2:0] wait_ctrl[2:0]

Instruction Format (WAIT1SF):

15

c 0 0 0 0

0

0 0 1 1 1 wait_flag[2:0] wait_ctrl[2:0]

C: condition flag

• 0: Always execute instruction/wait

• 1: Execute instruction/wait in case flag is '1'/(CWAIT0SF/CWAIT1SF)

Example:

; <wait_flag>

WAIT_IN0 = 0

WAIT_IN1 = 1

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 49

WAIT_IN2 = 2

WAIT_IN3 = 3

WAIT_OVERFLOW_COUNTER = 4

WAIT_OVERFLOW_PULSE = 5

WAIT_OVERFLOW_TIMER = 6

NO_WAIT = 7

; <wait ctrl>

WAIT_NO_ACTION = 0

WAIT_START_TIMER = 1

WAIT_STOP_TIMER = 2

WAIT_IN0_INC_PULSE = 4

WAIT_IN1_INC_PULSE = 5

WAIT_IN2_INC_PULSE = 6

WAIT_IN3_INC_PULSE = 7

...

WAIT0SF WAIT_IN1, WAIT_START_TIMER

...

Wait for rising edge (0 → 1) on DIRECT_IN[1] (WAIT_IN1) and then start timer (WAIT_START_TIMER).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 50

NOP (No Operation)

Operation:

No operation. This command does not require any parameter and executes in one clock cycle. Note: NOP and the

conditionally executed CNOP instruction have the same effect on program execution.

Assembler Syntax:

NOP

CNOP

Instruction Format:

15

c 0 0 0 0

0

0 0 0 0 0 0 0 0 0 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute instruction in case flag is '1'/(CNOP)

Example:

...

STATUS = $4c

...

LD STATUS, r0

NOP

TEST1 $2, r0

...

In this example, the contents of a peripheral status register are copied into register r0. As this requires one additional

clock cycle, a NOP instruction is inserted before the register contents are available and can be tested with the TEST1

instruction.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 51

HALT (Stop Program Execution)

Operation:

This instruction is automatically inserted into the instruction pipeline in case the execution stage is waiting for some event.

The execution of this instruction takes one clock cycle but in contrast to the NOP instruction, the program counter is not

incremented. Therefore, this instruction should not be used within regular program code.

Assembler Syntax:

HALT

CHALT

Instruction Format:

15

c 0 0 0 0

0

0 0 0 1 0 0 0 0 0 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute instruction in case flag is '1'/(CHALT)

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 52

LD (Load Data from Immediate Address)

Operation:

Load value from data memory or peripheral register through data bus into processor register. The data memory/peripheral

register address is part of the instruction word. Any processor register can be selected as target register. The execution

of this instruction takes one clock cycle. Note that the selected value is not immediately available after execution of this

command. It requires one more clock cycle before the value is available in the processor register for further processing

due to the data memory pipeline.

Assembler Syntax:

LD <addr>, <reg>

CLD <addr>, <reg>

<addr>: data memory/peripheral register address 0…255

<reg>: target register 0...7

Instruction Format:

15

c 1 1 0 0

0

addr[7:0] reg[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute LD instruction in case flag is '1'/load conditionally (CLD)

addr[7:0] immediate data memory/peripheral register address. Specifies any location within 256 byte data memory area

0...255.

Example:

STATUS = $4c

...

LD STATUS, r0

NOP

TEST1 $2, r0

...

In this example, the contents of the system status register are loaded into processor register 0. A NOP instruction is

inserted immediately afterwards before the contents of the register 0 is accessed and tested.

Example:

; gpio

GPIO0_ALT1_FUNCTION = $44

GPIO_OUT_ENABLE = $45

...

LD GPIO0_ALT1_FUNCTION, r0

LD GPIO_OUT_ENABLE, r1

SET $0, r0, r0

CLR $5, r1, r1

ST GPIO0_ALT1_FUNCTION, r0

ST GPIO_OUT_ENABLE, r1

...

In this second example, the content of GPIO0 alternate function register is loaded into register 0 and the contents of the

GPIO output enable register into register 1 before both registers are modified. Note that both registers are loaded with

one clock cycle delay before the new contents of the registers are accessed. By rearranging instructions, it is possible to

fill the gap with a "useful"/required instruction instead of inserting a NOP.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 53

ST (Store Data at Immediate Address)

Operation:

Store register value at data memory location or peripheral register. The data memory/peripheral register address is part

of the instruction word. Any processor register can be selected as source register. The execution of this instruction takes

one clock cycle.

Assembler Syntax:

ST <addr>, <reg>

CST <addr>, <reg>

<addr>: data memory/peripheral register address 0...255 of target

<reg>: source register 0...7

Instruction Format:

15

c 1 1 0 1

0

addr[7:0] reg[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute ST instruction in case flag is '1'/load conditionally (CST)

addr[7:0] immediate data memory/peripheral register address. Specifies any location within 256 byte data memory area

0…255.

Example:

; gpio

GPIO0_ALT1_FUNCTION = $44

GPIO_OUT_ENABLE = $45

...

LD GPIO0_ALT1_FUNCTION, r0

LD GPIO_OUT_ENABLE, r1

SET $0, r0, r0

CLR $5, r1, r1

ST GPIO0_ALT1_FUNCTION, r0

ST GPIO_OUT_ENABLE, r1

...

In this example, the contents of GPIO0 alternate function register are loaded into register 0 and the contents of the GPIO

output enable register into register 1 before both registers are modified. Both registers are loaded with one clock cycle

delay before the new contents of the registers are accessed. By rearranging instructions, it is possible to fill the gap with

a "useful"/required instruction instead of inserting a NOP. At the end of the example, both registers r0 and r1 are copied

to peripheral register locations (r0 → GPIO_ALT1_FUNCTION, r1 → GPIO_OUT_ENABLE).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 54

LDI (Load Immediate Data)

Operation:

Load immediate 8-bit value (part of the instruction) into processor register. Any processor register can be selected as

target register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the value is

immediately available for further processing in the next clock cycle/with the next instruction.

Assembler Syntax:

LDI <data>, <reg>

CLDI <data>, <reg>

<data>: immediate data value 0...255 (part of the instruction word)

<reg>: processor target register 0...7

Instruction Format:

15

c 1 1 1 0

0

data[7:0] reg[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute LDI instruction in case flag is '1'/load conditionally (CLDI)

data[7:0] immediate data value 0...255.

reg[2:0] processor register

Example:

UART0_CTRL = $0b

...

; 8x sampling, filter, autobaud enable, message_size = 0

LDI %0000_0101, r1

ST UART0_CTRL, r1

...

In this example, the peripheral control register of UART0 is initialized with a constant value.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 55

LDR (Load Data from Register Address)

Operation:

Load value from data memory/peripheral register at address taken from processor register into target register. Any

general-purpose processor register can be selected as register with address value and as target register. The execution

of this instruction takes one clock cycle. Note that the data transfer from data memory to processor register takes another

clock cycle due to the data memory access pipeline. Therefore, the value from data memory/peripheral register is

available with one cycle delay in the target register for further processing.

Assembler Syntax:

LDR <regy>, <regz>

CLDR <regy>, <regz>

<regy>: general purpose register with data memory address location 0...7

<regz>: general purpose target register 0...7

Instruction Format:

15

c 0 0 0 1

0

regy[7:0] regz[2:0]0 0 0 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute LDR instruction in case flag is '1'/load conditionally (CLDR)

Example:

...

DATA_MEM_BASE = $C0 ; data memory start address

...

LDI DATA_MEM_BASE, r3

LDR r3, r0

LDI $02, r1

ADD r0, r1, r2

In this example, the start address of the data memory is stored in register r3. With the next LDR instruction, the value

stored at this address is loaded into register r0. A constant value ($02) is then loaded into register r1, filling in also the

additional cycle required until the value from memory is available in the register set for further processing. Finally, the

constant value and the value loaded from data memory are added and the result is stored in register r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 56

STR (Store Data at Register Address)

Operation:

Store contents of processor register in data memory or peripheral register at address given in another processor register.

Any general-purpose processor register can be selected as source register and address register. The execution of this

instruction takes one clock cycle. Note that the data transfer from the processor to data memory or peripheral block takes

another clock cycle due to the data memory access pipeline.

Assembler Syntax:

STR <regy>, <regz>

CSTR <regy>, <regz>

<regy>: general purpose register 0...7 with data memory or peripheral register address (0...255)

<regz>: general purpose register 0...7 with source data value

Instruction Format:

15

c 0 0 0 1

0

regy[7:0] regz[2:0]0 0 1 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute LDR instruction in case flag is '1'/load conditionally (CLDR)

Example:

...

DATA_MEM_BASE = $C0 ; data memory start address

...

LDI DATA_MEM_BASE, r0

LDI $05, r1

STR r0, r1

...

In this example, the start address of the data memory is stored in register r0 and a constant value ($05) into register r1.

With the final STR command, this constant value in register r1 is stored in the data memory block (with the address taken

from processor register r0).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 57

LDS (Load Data from System Register)

Operation:

Load value from system register into processor register. Any readable system unit register is supported as source register.

Any general-purpose processor register can be selected as target.

Assembler Syntax:

LDS <system_unit>, <system_reg>, <reg>

CLDS <system_unit>, <system_reg>, <reg>

<system_unit>: system unit 0...7

<system_reg>: system register 0...7 in system unit selected

<reg>: general purpose processor register 0...7

<system_unit> <system_reg> DESCRIPTION

0: Core Unit 0 Program memory selected for execution

Bit 0 – 0: ROM bootloader

Bit 0 – 1: SRAM program memory

1: Timer Unit 1 Counter value

2 Pulse counter value

3 Timer value

4 Timeout counter value

2: CRC Unit 0 CRC result [7:0]

1 CRC result [15:8]

2 CRC result [23:16]

3 CRC result [31:24]

Instruction Format:

15

c 0 0 1 1

0

system_reg[2:0] reg[2:0]1 0 system_unit[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute STS instruction in case flag is '1'/load conditionally (CSTS)

Example:

...

; system unit

SYSTEM_CRC = $2

...

; system crc unit

SYSTEM_CRC_RESULT0_R = $0

...

LDS SYSTEM_CRC, SYSTEM_CRC_RESULT0_R, r0

...

In this example, the result from the CRC calculation in system register SYSTEM_CRC_RESULT0 of the CRC unit is

loaded into the general-purpose processor register r0.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 58

STS (Store Data in System Register)

Operation:

Store value from processor register in system register. Any general-purpose processor register can be used as source

register. Any writable system register is supported as target.

Assembler Syntax:

STS <reg>, <system_unit>, <system_reg>

CSTS <reg>, <system_unit>, <system_reg>

<reg>: general purpose processor register 0...7

<system_unit>: system unit 0...7

<system_reg>: system register 0...7 in selected system unit

<system_unit> <system_reg> DESCRIPTION

0: Core 0 Select program memory for execution.

Bit[0] - 0: ROM bootloader

Bit[0] - 1: SRAM program memory

 1 Bit 0: DIRECT_IN[3:0] input filter enable

Bit 2,1: DIRECT_IN[3:0] filter sample scaler (/1, /8, /64, /512)

Bit 3: Select manchester decoder

 2 Timeout jump target address [7:0]

 3 Timeout jump target address [10:8]

 4 Manchester decoder sample window low [4:0]

 5 Manchester decoder sample window high [4:0]

1: Timer 0 Pre-scaler limit

 1 Counter limit (reset counter)

 2 Pulse counter limit (reset pulse counter)

 3 Timer limit (reset timer)

 4 Timeout counter limit (reset timeout counter)

 5 Bit 0: Counter enable (0: reset counter)

Bit 1: Timer enable (0: reset timer)

Bit 2: Select pre-scaler for timer

 7 Timer limit (without resetting timer)

2: CRC 0 Circular buffer for writing 32-bit CRC start value: 1st write: CRC start value [7:0] ...

 1 Circular buffer for writing 32-bit CRC polynomial: 1st write: CRC polynomial[7:0] ...

 2 Bit 0: CRC polynomial[32]

Bit 1: Reverse CRC result[31:0]

When writing to this register, the write buffer pointer for the 32-bit CRC start value and 32-bit CRC

polynomial value is reset to the first entry - to CRC start value [7:0]/CRC polynomial [7:0].

Instruction Format:

15

c 0 0 1 1

0

system_unit[2:0] system_reg[2:0]1 1 reg[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute STS instruction in case flag is '1'/load conditionally (CSTS)

Example:

...

; system register

SYSTEM_TIMER = $1

...

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 59

 ; system timer unit

SYSTEM_TIMER_CTRL_W = $5

...

LDI 1, r0 ; enable counter

STS r0, SYSTEM_TIMER, SYSTEM_TIMER_CTRL_W

...

With the first instruction, a constant value is loaded into the general-purpose processor register r0. With the second

instruction, this value is then stored in the timer control register SYSTEM_TIMER_CTRL_W of the system timer unit

SYSTEM_TIMER.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 60

SET (Set Register Bit)

Operation:

Set selected bit 0…7 (one bit) of source register value to '1' and store result in destination register. Any general-purpose

register can be selected as source and destination register. The contents of the destination register are overwritten while

the content of the source register remains untouched. The execution of this instruction takes one clock cycle. Due to the

write-back stage, the modified target register can be already used as source for the next instruction during the next clock

cycle.

Assembler Syntax:

SET <bit>, <regy>, <regz>

CSET <bit>, <regy>, <regz>

<bit>: bit within register 0...7

<regy>: processor source register 0…7

<regz>: processor destination register 0…7

Instruction Format:

15

c 0 1 0 0

0

regy[2:0] regz[2:0]0 0 bit[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute SET instruction in case flag is '1'/load conditionally (CSET)

Example:

...

SET $2, r0, r3

...

In this example, bit 2 of processor register r0 is set to '1' and the result is written back to register r3.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 61

CLR (Clear Register Bit)

Operation:

Clear selected bit 0...7 (one bit) of source register value to '0' and store result in destination register. Any general-purpose

register can be selected as source and destination register. The contents of the destination register are overwritten while

the contents of the source register remain untouched. The execution of this instruction takes one clock cycle. Due to the

write-back stage, the modified target register can be used already as source for the next instruction during the next clock

cycle.

Assembler Syntax:

CLR <bit>, <regy>, <regz>

CCLR <bit>, <regy>, <regz>

<bit>: bit within register 0...7

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 1 0 0

0

regy[2:0] regz[2:0]0 1 bit[2:0]

 c: condition flag

• 0: Always execute instruction

• 1: Execute CLR instruction in case flag is '1'/load conditionally (CCLR)

Example:

...

CLR $3, r0, r0

...

In this example, bit 3 of the content of general-purpose processor register r0 is cleared/set to '0' and the result is written

back into register r0, overwriting the contents of r0.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 62

SFSET (Set System Register Bit)

Operation:

Wait with further program execution until selected system flag has turned to zero (WAIT0SF) or one (WAIT1SF). In case

the specified wait flag is already zero/one, execution of the instruction takes just one clock cycle. Otherwise, the specified

wait flag is read during each clock cycle and status/value is checked. As soon as the flag has changed, the specified bit

<bit> within the specified system flag register <flag_reg> is set to '1' and program execution continues. This instruction

can be used to synchronize flag modification and further program execution to external signals or timer events.

Assembler Syntax:

SFSET WAIT0SF <wait_flag>, <flag_reg>, <bit>

CSFSET WAIT0SF <wait_flag>, <flag_reg>, <bit>

SFSET WAIT1SF <wait_flag>, <flag_reg>, <bit>

CSFSET WAIT1SF <wait_flag>, <flag_reg>, <bit>

<wait_flag>: bit within register 0...7

<flag_reg>: system flag register 0...7

<bit>: bit within system register 0...7

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow timer

6 Overflow pulse counter

7 No wait

<flag_reg> DESCRIPTION

0 Bit 0: DIRECT_OUT[0]

Bit 1: DIRECT_OUT[1]

Bit 2: DIRECT_OUT[2]

Bit 3: DIRECT_OUT[3]

Bit 4: DIRECT_OUT[0] + CRC unit in

Bit 5: DIRECT_OUT[1] + CRC unit in

Bit 6: DIRECT_OUT[2] + CRC unit in

Bit 7: DIRECT_OUT[3] + CRC unit in

1 Bit 0: DIRECT_OUT[0] enable

Bit 1: DIRECT_OUT[1] enable

Bit 2: DIRECT_OUT[2] enable

Bit 3: DIRECT_OUT[3] enable

2 Bit 0: CRC unit

3 Bit 0: counter enable

Bit 1: timer enable

Bit 2: timeout counter enable

4 Bit 0: counter reset

Bit 1: timer reset

Bit 2: timeout counter reset

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 63

Instruction Format (SFSET WAIT0SF):

15

c 0 1 1 1

0

wait_flag[2:0] flag_reg[2:0]0 0 bit[2:0]

Instruction Format (SFSET WAIT1SF):

15

c 0 1 1 1

0

wait_flag[2:0] flag_reg[2:0]0 1 bit[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute SFSET instruction in case flag is '1'/set conditionally (CSFSET)

Example:

...

SFSET WAIT0SF NO_WAIT, 0, 1

...

In this example, DIRECT_OUT[1] is set to '1'

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 64

SFCLR (Clear System Register Bit)

Operation:

Wait with further program execution until selected system flag has turned to zero (WAIT0SF) or one (WAIT1SF). In case

the specified wait flag is already zero/one, execution of the instruction takes just one clock cycle. Otherwise, the specified

wait flag is read during each clock cycle and status/value is checked. As soon as the flag has changed, the specified bit

<bit> within the specified system flag register <flag_reg> is cleared to '0' and program execution continues. This instruction

can be used to synchronize flag modification and further program execution to external signals or timer events.

Assembler Syntax:

SFCLR WAIT0SF <wait_flag>, <flag_reg>, <bit>

CSFCLR WAIT0SF <wait_flag>, <flag_reg>, <bit>

SFCLR WAIT1SF <wait_flag>, <flag_reg>, <bit>

CSFCLR WAIT1SF <wait_flag>, <flag_reg>, <bit>

<wait_flag>: bit within register 0...7

<flag_reg>: system flag register 0...7

<bit>: bit within system register 0...7

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow timer

6 Overflow pulse counter

7 No wait

<flag_reg> DESCRIPTION

0 Bit 0: DIRECT_OUT[0]

Bit 1: DIRECT_OUT[1]

Bit 2: DIRECT_OUT[2]

Bit 3: DIRECT_OUT[3]

Bit 4: DIRECT_OUT[0] + CRC unit in

Bit 5: DIRECT_OUT[1] + CRC unit in

Bit 6: DIRECT_OUT[2] + CRC unit in

Bit 7: DIRECT_OUT[3] + CRC unit in

1 Bit 0: DIRECT_OUT[0] enable

Bit 1: DIRECT_OUT[1] enable

Bit 2: DIRECT_OUT[2] enable

Bit 3: DIRECT_OUT[3] enable

2 Bit 0: CRC unit

3 Bit 0: counter enable

Bit 1: timer enable

Bit 2: timeout counter enable

4 Bit 0: counter reset

Bit 1: timer reset

Bit 2: timeout counter reset

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 65

Instruction Format (SFCLR WAIT0SF):

15

c 0 1 1 1

0

wait_flag[2:0] flag_out[2:0]1 0 bit[2:0]

Instruction Format (SFCLR WAIT1SF):

15

c 0 1 1 1

0

wait_flag[2:0] flag_out[2:0]1 1 bit[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute SFCLR instruction in case flag is '1'/clear conditionally (CSFCLR)

Example:

...

SFCLR WAIT0SF NO_WAIT, 0, 1

...

In this example, DIRECT_OUT[1] is cleared to '0'

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 66

MOVB0 (Move Bit to Bit 0)

Operation:

The selected bit of the processor source register is copied to bit 0 (LSB) of the selected processor destination register.

The source register remains untouched while for the destination register just bit 0 may be toggled. Any general-purpose

register can be selected as source and destination register. The execution of this instruction takes one clock cycle. Due

to the write-back stage, the modified destination register can be already used as source for the next instruction during the

next clock cycle.

Assembler Syntax:

MOVB0 <bit>, <regy>, <regz>

CMOVB0 <bit>, <regy>, <regz>

<bit>: bit within processor source register 0...7

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 1 0 0

0

regy[2:0] regz[2:0]1 0 bit[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute MOVB0 instruction in case flag is '1'/move bit conditionally (CMOVB0)

Example:

...

MOVB0 2, r0, r1

...

In this example, bit 2 of processor register r0 overwrites bit 0 (LSB) of processor register r1.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 67

MOVB7 (Move Bit to Bit 7)

Operation:

The selected bit of the processor source register is copied to bit 7 (MSB) of the selected processor destination register.

The source register remains untouched while for the destination register just bit 7 may be toggled. Any general-purpose

register can be selected as source and destination register. The execution of this instruction takes one clock cycle. Due

to the write-back stage, the modified destination register can be already used as source for the next instruction during the

next clock cycle.

Assembler Syntax:

MOVB7 <bit>, <regy>, <regz>

CMOVB7 <bit>, <regy>, <regz>

<bit>: bit within processor source register 0...7

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 1 0 0

0

regy[2:0] regz[2:0]1 1 bit[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute MOVB7 instruction in case flag is '1'/move bit conditionally (CMOVB7)

Example:

...

MOVB7 2, r0, r1

...

In this example, bit 2 of processor register r0 overwrites bit 7 (MSB) of processor register r1.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 68

MOVCRC (Move Bit to CRC Unit

Operation:

The selected bit of the processor source register is copied to the serial input stream of the CRC unit for CRC checksum

calculation. The source register remains untouched. Any general-purpose register can be selected as source register.

The execution of this instruction takes one clock cycle.

Assembler Syntax:

MOVCRC <bit>, <reg>

CMOVCRC <bit>, <reg>

<bit>: bit within processor source register 0...7

<reg>: processor register 0...7

Instruction Format:

15

c 0 0 0 0

0

bit[2:0] reg[2:0]1 1 011

c: condition flag

• 0: Always execute instruction

• 1: Execute MOVCRC instruction in case flag is '1'/move bit conditionally (CMOVCRC)

Example:

...

LDI %0000_0100, r0 ; sync code

MOVCRC 0, r0

MOVCRC 1, r0

MOVCRC 2, r0

...

In this example, bit 0, bit 1, and bit 2 are copied to the serial input stream of the CRC unit for CRC checksum calculation

(one after the other).

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 69

MOVNCRC (Move Inverted Bit to CRC Unit)

Operation:

The selected bit of the processor source register is inverted and then copied to the serial input stream of the CRC unit for

CRC checksum calculation. The source register remains untouched. Any general-purpose register can be selected as

source register. The execution of this instruction takes one clock cycle.

Assembler Syntax:

MOVNCRC <bit>, <reg>

CMOVNCRC <bit>, <reg>

<bit>: bit within processor source register 0...7

<reg>: processor register 0...7

Instruction Format:

15

c 0 0 0 0

0

bit[2:0] reg[2:0]1 1 1 1 1

c: condition flag

• 0: Always execute instruction

• 1: Execute MOVNCRC instruction in case flag is '1'/move bit conditionally (CMOVNCRC)

Example:

...

MOVNCRC 0, r0

...

In this example, bit 0 of processor register r0 is copied to the serial input stream of the CRC unit for CRC checksum

calculation.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 70

MOVF (Move Flag to Register Bit)

Operation:

The status flag is copied to the specified bit of the destination register. The flag itself remains untouched. The destination

register contents also remains untouched apart from the bit specified that may toggle. The execution of this instruction

takes one clock cycle. Due to the write-back stage, the modified destination register can be already used as source for

the next instruction during the next clock cycle.

Assembler Syntax:

MOVF <bit>, <reg>

CMOVF <bit>, <reg>

<bit>: bit within processor destination register 0...7

<reg>: processor destination register 0...7

Instruction Format:

15

c 0 0 0 0

0

bit[2:0] reg[2:0]1 1 0 1 0

c: condition flag

• 0: Always execute instruction

• 1: Execute MOVF instruction in case flag is '1'/move bit conditionally (CMOVF)

Example:

...

COMP EQ r0, r1

MOVF 2, r2

...

In this example, processor registers r0 and r1 are compared. In case contents of r0 and r1 are equal, the status flag is

set. The status bit is then copied to bit 2 of the destination register r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 71

MOVNF (Move Inverted Flag to Register Bit)

Operation:

The inverted value of the status flag is copied to the specified bit of the destination register. The flag itself remains

untouched. The destination register contents also remains untouched apart from the bit specified that may toggle. The

execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be

already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

MOVNF <bit>, <reg>

CMOVNF <bit>, <reg>

<bit>: bit within processor destination register 0...7

<reg>: processor destination register 0...7

Instruction Format:

15

c 0 0 0 0

0

bit[2:0] reg[2:0]1 1 0 1 1

c: condition flag

• 0: Always execute instruction

• 1: Execute MOVNF instruction in case flag is '1'/move bit conditionally (CMOVNF)

Example:

...

COMP EQ r0, r1

MOVNF 2, r2

...

In this example, processor registers r0 and r1 are compared. In case contents of r0 and r1 are equal, the status flag is set

to '1'. The inverted status bit ('0' in case r0 and r1 are equal) is then copied to bit 2 of the destination register r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 72

AND (Bitwise Logical And)

Operation:

A logical AND operation is performed bit-by-bit on the corresponding bits of two processor registers and the result is

stored in the destination register. The source registers remain untouched while the destination register contents are

overwritten with the result value. Any general-purpose register can be selected as source and destination register. The

execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be

already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

AND <regx>, <regy>, <regz>

CAND <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 1 0

0

regy[2:0] regz[2:0]0 0 regx[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute AND instruction in case flag is '1'/move bit conditionally (CAND)

Example:

...

LDI %1111_0000, r1

AND r0, r1, r0

...

In this example, the lower four bits/nibble of register r0 is set to zero.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 73

OR (Bitwise Logical Or)

Operation:

A logical OR operation is performed bit-by-bit on the corresponding bits of two processor registers and the result is stored

in the destination register. The source registers remain untouched while the destination register contents are overwritten

with the result value. Any general-purpose register can be selected s source and destination register. The execution of

this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be already used

as source for the next instruction during the next clock cycle.

Assembler Syntax:

OR <regx>, <regy>, <regz>

COR <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 1 0

0

regy[2:0] regz[2:0]0 1 regx[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute OR instruction in case flag is '1'/move bit conditionally (COR)

Example:

...

LDI %1111_0000, r1

OR r0, r1, r0

...

In this example, the upper four bits/nibble of register r0 is set to one.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 74

XOR (Bitwise Logical Exclusive Or)

Operation:

A logical exclusive OR operation is performed bit-by-bit on the corresponding bits of two processor registers and the result

is stored in the destination register. The source registers remain untouched while the destination register contents are

overwritten with the result value. Any general-purpose register can be selected as source and destination register. The

execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can be

already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

XOR <regx>, <regy>, <regz>

CXOR <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 1 0

0

regy[2:0] regz[2:0]1 0 regx[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute XOR instruction in case flag is '1'/move bit conditionally (CXOR)

Example:

...

LDI %1111_0000, r1

XOR r0, r1, r0

...

In this example, the upper four bits/nibble of register r0 is inverted.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 75

NOT (Bitwise Inversion)

Operation:

The value of the source register is inverted, and the result stored in the destination register. The source register remains

untouched while the destination register contents are overwritten with the result value. Any general-purpose register can

be selected as source and destination register. The execution of this instruction takes one clock cycle. Due to the write-

back stage, the modified destination register can be already used as source for the next instruction during the next clock

cycle.

Assembler Syntax:

NOT <regy>, <regz>

CNOT <regy>, <regz>

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]1 0 0 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute NOT instruction in case flag is '1'/move bit conditionally (CNOT)

Example:

...

LDI $37, r0

NOT r0, r1

...

In this example, the value in register r0 ($37) is inverted and the result ($c8) written to destination register r1.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 76

REV (Reverse Bit Order)

Operation:

The order of bits from the source register is reversed (bit7 → bit0, bit6 → bit1, ...) and the result stored in the destination

register. The source register remains untouched while the destination register contents are overwritten with the result

value. Any general-purpose register can be selected as source and destination register. The execution of this instruction

takes one clock cycle. Due to the write-back stage, the modified destination register can be already used as source for

the next instruction during the next clock cycle.

Assembler Syntax:

REV <regy>, <regz>

CREV <regy>, <regz>

<regy>: processor source register 0…7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]1 0 0 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute REV instruction in case flag is '1'/reverse bits conditionally (CREV)

Example:

...

LDI $37, r0

REV r0, r1

...

In this example, the bit order of the value in register r0 ($37 = %0011_0111) is reversed and the result ($EC

= %1110_1100) written to destination register r1.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 77

ADD (Add Registers)

Operation:

The contents of two registers are added (unsigned), the result is written to the destination register, and the flag is updated

with the overflow/carry bit. The two source registers remain untouched while the contents of the destination register and

the flag are overwritten with the result. Any general-purpose register can be selected as source and destination register.

The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified destination register can

be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

ADD <regx>, <regy>, <regz>

CADD <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0…7

<regz>: processor destination register 0…7

Instruction Format:

15

c 0 0 1 1

0

regy[2:0] regz[2:0]0 0 regx[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute ADD instruction in case flag is '1'/add conditionally (CADD)

Example:

...

LDI $42, r1

ADD r0, r1, r2

...

In this example, $42 is added to the contents of r0 and the result stored in r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 78

SUB (Subtract Registers)

Operation:

The value of the register listed as second argument is subtracted from the first register value (both unsigned) and the

result is written to the destination register. Standard two's compliment is used for calculation and in case of a negative

result, the status flag is set - otherwise cleared. The two source registers remain untouched while the contents of the

destination register and the flag are overwritten with the result. Any general-purpose register can be selected as source

and destination register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified

destination register can be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

SUB <regx>, <regy>, <regz>

CSUB <regx>, <regy>, <regz>

<regx>, <regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 1 1

0

regy[2:0] regz[2:0]0 1 regx[2:0]

c: condition flag

• 0: Always execute instruction

• 1: Execute SUB instruction in case flag is '1'/subtract conditionally (CSUB)

Example:

...

LDI $42, r1

SUB r0, r1, r2

...

In this example, $42 is subtracted from the contents of r0 and the result stored in r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 79

INC (Increment Register)

Operation:

The value of the register is incremented by one and the result is written to the destination register. In case there is an

overflow, the status flag is set - otherwise cleared. The source register remains untouched while the contents of the

destination register and the flag are overwritten with the result. Any general-purpose register can be selected as source

and destination register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified

destination register can be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

INC <regy>, <regz>

CINC <regy>, <regz>

<regy>: processor source register 0…7

<regz>: processor destination register 0…7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]1 0 1 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute INC instruction in case flag is '1'/increment conditionally (CSUB)

Example:

...

INC r1, r2

...

In this example, register r1 is incremented by one and the result written to register r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 80

DEC (Decrement Register)

Operation:

The value of the register is decremented by one and the result is written to the destination register. In case there is an

underflow, the status flag is set - otherwise cleared. The source register remains untouched while the contents of the

destination register and the flag are overwritten with the result. Any general-purpose register can be selected as source

and destination register. The execution of this instruction takes one clock cycle. Due to the write-back stage, the modified

destination register can be already used as source for the next instruction during the next clock cycle.

Assembler Syntax:

DEC <regy>, <regz>

CDEC <regy>, <regz>

<regy>: processor source register 0...7

<regz>: processor destination register 0...7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]1 0 1 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute DEC instruction in case flag is '1'/decrement conditionally (CDEC)

Example:

...

DEC r1, r2

...

In this example, register r1 is decremented by one and the result written to register r2.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 81

COMP LT (Compare Registers for Less Than)

Operation:

The values of two registers are compared. In case the value of the first parameter register is less than the value of the

second parameter register, the status flag is set - otherwise cleared. The source registers remain untouched and just the

status flag is overwritten with the result. Any general-purpose register can be selected as source register. The execution

of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next

instruction/during the next clock cycle.

Exchanging both registers allow for greater equal comparison.

Assembler Syntax:

COMP LT <regy>, <regz>

CCOMP LT <regy>, <regz>

<regy>, <regz>: processor source registers 0...7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]0 1 0 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:

 ...

 LDI $42, r1

 COMP LT r0, r1

 JC LOOP

 ...

In this example, the register contents of r0 are compared to $42. As long as r0 is less than $42, the status flag is set and

the conditional jump JC back to the LOOP label is executed. As soon as r0 is equal or larger than $42, the flag is

cleared/set to zero and the program jump is not executed.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 82

COMP LE (Compare Registers for Less or Equal)

Operation:

The values of two registers are compared. In case the value of the first parameter register is less than or equal to the

value of the second parameter register, the status flag is set - otherwise cleared. The source registers remain untouched

and just the status flag is overwritten with the result. Any general-purpose register can be selected as source register.

The execution of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next

instruction/during the next clock cycle.

Exchanging both registers allow for greater than comparison.

Assembler Syntax:

COMP LE <regy>, <regz>

CCOMP LE <regy>, <regz>

<regy>, <regz>: processor source registers 0...7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]0 1 0 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:

 ...

 LDI $42, r1

 COMP LE r0, r1

 JC LOOP

 ...

In this example, the register contents of r0 are compared to $42. As long as r0 is less than or equal to $42, the status flag

is set and the conditional jump JC back to the LOOP label is executed. As soon as r0 is greater than $42, the flag is

cleared/set to zero and the program jump is not executed.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 83

COMP EQ (Compare Registers for Equal)

Operation:

The values of two registers are compared. In case the value of the first parameter register is equal to the value of the

second parameter register, the status flag is set - otherwise cleared. The source registers remains untouched and just

the status flag is overwritten with the result. Any general-purpose register can be selected as source register. The

execution of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next

instruction/during the next clock cycle.

Assembler Syntax:

COMP EQ <regy>, <regz>

CCOMP EQ <regy>, <regz>

<regy>, <regz>: processor source registers 0…7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]0 1 0 1 0

c: condition flag

• 0: Always execute instruction

• 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:

 ...

 LDI $42, r1

 COMP EQ r0, r1

 JC LOOP

 ...

In this example, the register contents of r0 are compared to $42. In case r0 is equal to $42, the status flag is set and the

conditional jump JC back to the LOOP label is executed. Otherwise, the flag is cleared/set to zero and program execution

continues without the jump.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 84

COMP NE (Compare Registers for Not Equal)

Operation:

The values of two registers are compared. In case the value of the first parameter register is different from the value of

the second parameter register, the status flag is set - otherwise cleared. The source registers remains untouched and

just the status flag is overwritten with the result. Any general-purpose register can be selected as source register. The

execution of this instruction takes one clock cycle and the updated status flag is available for evaluation with the next

instruction/during the next clock cycle.

Assembler Syntax:

COMP NE <regy>, <regz>

CCOMP NE <regy>, <regz>

<regy>, <regz>: processor source registers 0…7

Instruction Format:

15

c 0 0 0 0

0

regy[2:0] regz[2:0]0 1 0 1 1

c: condition flag

• 0: Always execute instruction

• 1: Execute COMP instruction in case flag is '1'/compare conditionally (CCOMP)

Example:

LOOP:

 ...

 LDI $42, r1

 COMP NE r0, r1

 JC LOOP

 ...

In this example, the register contents of r0 are compared to $42. As long as r0 is different from $42, the status flag is set

and the conditional jump JC back to the LOOP label is executed. As soon as r0 is equal to $42, the flag is cleared/set to

zero and program execution continues without the jump.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 85

TEST0 (Test Bit for 0)

Operation:

Test specified bit of processor register. In case the bit is '0', the status flag is set to '1' - otherwise zero. Any general-

purpose register can be selected as register. The contents of the register remain untouched. The execution of this

instruction takes one clock cycle and the updated status flag is available for evaluation with the next instruction/during the

next clock cycle.

Assembler Syntax:

TEST0 <bit>, <reg>

CTEST0 <bit>, <reg>

<bit>: bit within processor register 0…7

<reg>: processor source register 0…7

Instruction Format:

15

c 0 0 0 0

0

bit[2:0] reg[2:0]1 1 0 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute TEST instruction in case flag is '1'/test bit conditionally (CSET)

Example:

READ_LOOP:

 ...

 INC r5, r5

 TEST0 $3, r5

 JC READ_LOOP

 ...

In this example, the contents of register r5 is increased by one and then bit 3 of r5 tested. As long as this bit is still 0, the

conditional jump to label READ_LOOP is executed and loop instruction execution repeated.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 86

TEST1 (Test Bit for 1)

Operation:

Test specified bit of processor register. In case the bit is '1', the status flag is set to '1' - otherwise zero. Any general-

purpose register can be selected as register. The contents of the register remain untouched. The execution of this

instruction takes one clock cycle and the updated status flag is available for evaluation with the next instruction/during the

next clock cycle.

Assembler Syntax:

TEST1 <bit>, <reg>

CTEST1 <bit>, <reg>

<bit>: bit within processor register 0…7

<reg>: processor source register 0...7

Instruction Format:

15

c 0 0 0 0

0

bit[2:0] reg[2:0]1 1 0 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute TEST instruction in case flag is '1'/test bit conditionally (CSET)

Example:

...

 TEST1 $3, r0

...

In this example, bit 3 of r0 is tested. In case this bit is ‘1’, the status flag is set.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 87

SFTEST0 (Test System Register Bit for 0)

Operation:

Test specified bit of system flag register. In case the bit/flag is '0', the status flag is set to '1' - otherwise zero. The contents

of the system flag register remain untouched. The execution of this instruction takes one clock cycle and the updated

status flag is available for evaluation with the next instruction/during the next clock cycle.

Assembler Syntax:

SFTEST0 <flag_reg>, <bit>

CSFTEST0 <flag_reg>, <bit>

<flag_reg>: system flag register 0...7

<bit>: bit/flag within system flag register 0...7

Instruction Format:

15

c 0 0 0 0

0

flag_reg[2:0] bit[2:0]1 1 1 0 0

c: condition flag

• 0: Always execute instruction

• 1: Execute SFTEST instruction in case flag is '1'/test bit/flag conditionally (CSFTEST0)

<flag_reg> DESCRIPTION

0 Bit 0: DIRECT_IN[0]

Bit 1: DIRECT_IN[1]

Bit 2: DIRECT_IN[2]

Bit 3: DIRECT_IN[3]

1 Bit 0 - clock generator output

Bit 1 - pulse counter has reached limit value

Example:

 ...

 SFTEST0 0, $1

 ...

In this example, the status flag is set in case DIRECT_IN[1] is currently zero.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 88

SFTEST1 (Test System Register Bit for 1)

Operation:

Test specified bit of system flag register. In case the bit/flag is '1', the status flag is set to '1' - otherwise zero. The contents

of the system flag register remain untouched. The execution of this instruction takes one clock cycle and the updated

status flag is available for evaluation with the next instruction/during the next clock cycle.

Assembler Syntax:

SFTEST1 <flag_reg>, <bit>

CSFTEST1 <flag_reg>, <bit>

<flag_reg>: system flag register 0...7

<bit>: bit/flag within system flag register 0…7

Instruction Format:

15

c 0 0 0 0

0

flag_reg[2:0] bit[2:0]1 1 1 0 1

c: condition flag

• 0: Always execute instruction

• 1: Execute SFTEST instruction in case flag is '1'/test bit/flag conditionally (CSFTEST0)

<flag_reg> DESCRIPTION

0 Bit 0: DIRECT_IN[0]

Bit 1: DIRECT_IN[1]

Bit 2: DIRECT_IN[2]

Bit 3: DIRECT_IN[3]

1 Bit 0 - clock generator output

Bit 1 - pulse counter has reached limit value

Example:

...

 SFTEST1 0, $1

...

In this example, the status flag is set in case DIRECT_IN[1] is currently one.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 89

SHLO WAIT0SF/WAIT1SF (Wait and Shift Left Out)

Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to

zero (WAIT0SF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes

just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.

As soon as the bit has changed, the specified processor register is shifted to the left by one, the most significant bit of the

register (MSB) is shifted out to the specified system flag (<out_flag>), and program execution continues. At the same

time, the system flag is shifted in as new LSB for the specified processor register. This instruction can be used to

synchronize parallel-to-serial conversion and transmission of serial data to external signals, serial clock/data received, or

internal timer events.

Assembler Syntax:

SHLO WAIT0SF <wait_flag>, <out_flag>, <reg>

CSHLO WAIT0SF <wait_flag>, <out_flag>, <reg>

SHLO WAIT1SF <wait_flag>, <out_flag>, <reg>

CSHLO WAIT1SF <wait_flag>, <out_flag>, <reg>

<wait_flag>: system wait flag

<out_flag>: output bit/flag

<reg>: processor register (0…7)

Instruction Format SHLO WAIT0SF:

15

c 0 1 0 1

0

wait_flag[2:0] reg[2:0]0 0 out_flag[2:0]

Instruction Format SHLO WAIT1SF:

15

c 0 1 0 1

0

wait_flag[2:0] regz[2:0]0 1 out_flag[2:0]

c: condition flag

• 0: Always execute instruction/wait

• 1: Execute instruction/shift left out in case flag is '1'/(CSHLO)

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow pulse counter

6 Overflow timer

7 No wait

<out_flag> DESCRIPTION

0 DIRECT_OUT[0]

1 DIRECT_OUT[1]

2 DIRECT_OUT[2]

3 DIRECT_OUT[3]

4 DIRECT_OUT[0] and CRC unit in

5 DIRECT_OUT[1] and CRC unit in

6 DIRECT_OUT[2] and CRC unit in

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 90

7 DIRECT_OUT[3] and CRC unit in

Example:

...

WAIT_OVERFLOW_TIMER = 6

...

FLAG_OUT1 = 1

...

LDI %0101_0000, r0

REP 4, 1

SHLO WAIT1SF WAIT_OVERFLOW_TIMER, r0, FLAG_OUT1

...

In this example, the upper four bits of pattern %0101_0000 in register r0 are shifted out to DIRECT_OUT[1] bit-for-bit

each time the system timer overflows and wraps around. The REP instruction initializes the hardware loop and makes

sure the shift instruction SHLO is repeated four times. The shift instruction SHLO itself then synchronizes shifting to the

system timer overflow.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 91

SHLI WAIT0SF/WAIT1SF (Wait and Shift Left In)

Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to

zero (WAIT0SF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes

just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.

As soon as the bit has changed, the specified processor register is shifted to the left by one, the least significant bit of the

register (LSB) is shifted in from the specified system flag (<in_flag>), and program execution continues. The MSB of this

register is dropped. This instruction can be used to synchronize serial-to-parallel conversion and capture incoming serial

data to external signals, serial clock/data received, or internal timer events.

Assembler Syntax:

SHLI WAIT0SF <wait_flag>, <reg>, <in_flag>

CSHLI WAIT0SF <wait_flag>, <reg>, <in_flag>

SHLI WAIT1SF <wait_flag>, <reg>, <in_flag>

CSHLI WAIT1SF <wait_flag>, <reg>, <in_flag>

<wait_flag>: system wait flag

<reg>: processor register (0...7)

<in_flag>: input bit/flag

Instruction Format SHLI WAIT0SF:

15

c 0 1 0 1

0

wait_flag[2:0] regz[2:0]1 0 in_flag[2:0]

Instruction Format SHLI WAIT1SF:

15

c 0 1 0 1

0

wait_flag[2:0] regz[2:0]1 1 in_flag[2:0]

c: condition flag

• 0: Always execute instruction/wait

• 1: Execute instruction/shift left in in case flag is '1'/(CSHLI)

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow pulse counter

6 Overflow timer

7 No wait

<in_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 DIRECT_IN[0] and CRC unit in

5 DIRECT_IN[1] and CRC unit in

6 DIRECT_IN[2] and CRC unit in

7 DIRECT_IN[3] and CRC unit in

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 92

Example:

...

WAIT_OVERFLOW_TIMER = 6

...

FLAG_IN1 = 1

...

REP 8, 1

; wait for timer overflow and shift in D0..D7

SHLI WAIT1SF WAIT_OVERFLOW_TIMER, r6, FLAG_IN1

...

In this example, 8 bits from DIRECT_IN[1] are shifted into register r6 one after the other each time the system timer wraps

around/overflows. The REP instruction initializes the hardware loop and makes sure the shift instruction SHLI is repeated

eight times. The shift instruction SHLI itself then synchronizes shifting and serial-to-parallel conversion to the system timer

overflow.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 93

SHRO WAIT0SF/WAIT1SF (Wait and Shift Right Out)

Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to

zero (WAIT0SF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes

just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.

As soon as the bit has changed, the specified processor register is shifted to the right by one, the least significant bit of

the register (LSB) is shifted out to the specified system signal/flag (<out_flag>), and program execution continues. At the

same time, the system flag is shifted in as new MSB for the specified processor register. This instruction can be used to

synchronize parallel-to-serial conversion and transmission of serial data to external signals, serial clock/data received, or

internal timer events.

Assembler Syntax:

SHRO WAIT0SF <wait_flag>, <reg>, <out_flag>

CSHRO WAIT0SF <wait_flag>, <reg>, <out_flag>

SHRO WAIT1SF <wait_flag>, <reg>, <out_flag>

CSHRO WAIT1SF <wait_flag>, <reg>, <out_flag>

<wait_flag>: system wait flag

<reg>: processor register (0...7)

<out_flag>: output bit/flag

Instruction Format SHRO WAIT0SF:

15

c 0 1 1 0

0

wait_flag[2:0] regz[2:0]0 0 out_flag[2:0]

Instruction Format SHRO WAIT1SF:

15

c 0 1 1 0

0

wait_flag[2:0] regz[2:0]0 1 out_flag[2:0]

c: condition flag

• 0: Always execute instruction/wait

• 1: Execute instruction/shift left out in case flag is '1'/(CSHLO)

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow pulse counter

6 Overflow timer

7 No wait

<out_flag> DESCRIPTION

0 DIRECT_OUT[0]

1 DIRECT_OUT[1]

2 DIRECT_OUT[2]

3 DIRECT_OUT[3]

4 DIRECT_OUT[0] and CRC unit in

5 DIRECT_OUT[1] and CRC unit in

6 DIRECT_OUT[2] and CRC unit in

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 94

7 DIRECT_OUT[3] and CRC unit in

Example:

...

WAIT_OVERFLOW_TIMER = 6

...

FLAG_OUT1 = 1

...

LDI %0000_0100, r0

REP 4, 1

SHRO WAIT1SF WAIT_OVERFLOW_TIMER, r0, FLAG_OUT1

...

In this example, the lower four bits of pattern %0000_0100 in register r0 are shifted out to DIRECT_OUT[1] bit-by-bit each

time the system timer overflows and wraps around. The REP instruction initializes the hardware loop and makes sure the

shift instruction SHRO is repeated four times. The shift instruction SHRO itself then synchronizes shifting to the system

timer overflow.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 95

SHRI WAIT0SF/WAIT1SF (Wait and Shift Right In)

Operation:

Wait with further program execution until specified system bit/flag (selected with parameter <wait_flag>) has changed to

zero (WAIT0SF) or one (WAIT1SF). In case the specified bit/flag is already zero/one, execution of the instruction takes

just one clock cycle. Otherwise, the specified bit/flag is read during each clock cycle and checked for the status change.

As soon as the bit has changed, the specified processor register is shifted to the right by one, the most significant bit of

the register (MSB) is shifted in from the specified system flag (<in_flag>), and program execution continues. The LSB of

this register is dropped. This instruction can be used to synchronize serial-to-parallel conversion and capture incoming

serial data to external signals, serial clock/data received, or internal timer events.

Assembler Syntax:

SHRI WAIT0SF <wait_flag>, <in_flag>, <reg>

CSHRI WAIT0SF <wait_flag>, <in_flag>, <reg>

SHRI WAIT1SF <wait_flag>, <in_flag>, <reg>

CSHRI WAIT1SF <wait_flag>, <in_flag>, <reg>

<wait_flag>: system wait flag

<in_flag>: input bit/flag

<reg>: processor register (0...7)

Instruction Format SHRI WAIT0SF:

15

c 0 1 1 0

0

wait_flag[2:0] regz[2:0]1 0 in_flag[2:0]

Instruction Format SHRI WAIT1SF:

15

c 0 1 1 0

0

wait_flag[2:0] regz[2:0]1 1 in_flag[2:0]

c: condition flag

• 0: Always execute instruction/wait

• 1: Execute instruction/shift left in in case flag is '1'/(CSHLI)

<wait_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 Overflow counter

5 Overflow pulse counter

6 Overflow timer

7 No wait

<in_flag> DESCRIPTION

0 DIRECT_IN[0]

1 DIRECT_IN[1]

2 DIRECT_IN[2]

3 DIRECT_IN[3]

4 DIRECT_IN[0] and CRC unit in

5 DIRECT_IN[1] and CRC unit in

6 DIRECT_IN[2] and CRC unit in

7 DIRECT_IN[3] and CRC unit in

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 96

Example:

WAIT_OVERFLOW_TIMER = 6

FLAG_IN1_CRC = 5

...

REP 8, 1

SHRI WAIT1SF WAIT_OVERFLOW_TIMER, FLAG_IN1_CRC, r0

In this example, 8 bits from DIRECT_IN[1] are shifted into register r0 and the hardware CRC unit one after the other each

time the system timer wraps around/overflows. The REP instruction initializes the hardware loop and makes sure the shift

instruction SHRI is repeated eight times. The shift instruction SHRI itself then synchronizes shifting and serial-to-parallel

conversion to the system timer overflow.

Register Map

Peripherals

ADDR

ESS
NAME MSB LSB

UART0

0x08 UART0_BUFFER[7:0] TX_DATA[7:0]

0x08 UART0_BUFFER[7:0] RX_DATA[7:0]

0x09 UART0_BAUD_L[7:0] BAUD_RATE_LIMIT_L[7:0]

0x0A UART0_BAUD_H[7:0] – – – – BAUD_RATE_LIMIT_H[3:0]

0x0B UART0_CTRL[7:0] – RX_BUFFER_LENGTH[2:0] RX_RESET AUTOBAUD NO_FILTER x8

0x0B UART0_STATUS[7:0] – – – TIMEOUT
AUTOBAUD_

ACTIVE
TX_EMPTY TX_FULL RX_FULL

0x0C
UART0_TIMEOUT_L[7:

0]

TIMEOUT_COUNTER_LIMIT_L[7:0]

0x0D
UART0_TIMEOUT_H[7

:0]

TIMEOUT_COUNTER_LIMIT_H[7:0]

UART1

0x10 UART1_BUFFER[7:0] TX_DATA[7:0]

0x10 UART1_BUFFER[7:0] RX_DATA[7:0]

0x11 UART1_BAUD_L[7:0] BAUD_RATE_LIMIT_L[7:0]

0x12 UART1_BAUD_H[7:0] – – – – BAUD_RATE_LIMIT_H[3:0]

0x13 UART1_CTRL[7:0] – RX_BUFFER_LENGTH[2:0] RX_RESET AUTOBAUD NO_FILTER x8

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 97

ADDR

ESS
NAME MSB LSB

0x13 UART1_STATUS[7:0] – – – TIMEOUT
AUTOBAUD_

ACTIVE
TX_EMPTY TX_FULL RX_FULL

0x14
UART1_TIMEOUT_L[7:

0]

TIMEOUT_COUNTER_LIMIT_L[7:0]

0x15
UART1_TIMEOUT_H[7

:0]

TIMEOUT_COUNTER_LIMIT_H[7:0]

MEM

0x18 MEM_CTRL[7:0] – – – – ACCESS WRITE ADDR_MOD[1:0]

0x19 MEM_DATA_L[7:0] DATA_L[7:0]

0x1A MEM_DATA_H[7:0] DATA_H[7:0]

0x1B MEM_ADDR_L[7:0] ADDR_L[7:0]

0x1C MEM_ADDR_H[7:0] – – – – – – ADDR_H[1:0]

DIRECT

0x20
DIRECT_POLARITY[7:

0]

OUT

3
OUT2 OUT1 OUT0 IN3 IN2 IN1 IN0

0x21
DIRECT_OUT_ALT[7:0

]

OUT3_ALT[1:0] OUT2_ALT[1:0] OUT1_ALT[1:0] OUT0_ALT[1:0]

0x22 DIRECT_IN_PU[7:0]

HOM

E
ENC_Z – – IN3 IN2 IN1 IN0

0x23 DIRECT_IN_PD[7:0]

HOM

E
ENC_Z – – IN3 IN2 IN1 IN0

I2C

0x28 I2C_BUFFER[7:0] TX_DATA[7:0]

0x28 I2C_BUFFER[7:0] RX_DATA[7:0]

0x29 I2C_BAUD_L[7:0] BAUD_RATE_LIMIT_L[7:0]

0x2A I2C_BAUD_H[7:0] BAUD_RATE_LIMIT_H[7:0]

0x2B I2C_CMD[7:0] – – – – – COMMAND[2:0]

0x2B I2C_STATUS[7:0] – – – – – RCV_ACK
RCV_ACK_

VALUE
CMD_RDY

SPI

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 98

ADDR

ESS
NAME MSB LSB

0x30 SPI_BUFFER0[7:0] TX_DATA_BYTE0[7:0]

0x30 SPI_BUFFER0[7:0] RX_DATA_BYTE0[7:0]

0x31 SPI_BUFFER1[7:0] TX_DATA_BYTE1[7:0]

0x31 SPI_BUFFER1[7:0] RX_DATA_BYTE1[7:0]

0x32 SPI_BUFFER2[7:0] RX_DATA_BYTE2[7:0]

0x32 SPI_BUFFER2[7:0] TX_DATA_BYTE2[7:0]

0x33 SPI_BUFFER3[7:0] TX_DATA_BYTE3[7:0]

0x33 SPI_BUFFER3[7:0] RX_DATA_BYTE3[7:0]

0x34 SPI_CTRL[7:0] – – – – – – TX_RESET TX_SKIP

0x34 SPI_STATUS[7:0] – – – – – TX_FULL
NO_TRANS

FER
EOT

GPIO

0x40 GPIO_IN[7:0] – GPIO6_IN GPIO5_IN GPIO4_IN GPIO3_IN GPIO2_IN GPIO1_IN GPIO0_IN

0x40 GPIO_OUT[7:0] –
GPIO6_OU

T

GPIO5_OU

T

GPIO4_OU

T
GPIO3_OUT

GPIO2_OU

T

GPIO1_OU

T

GPIO0_OU

T

0x41 GPIO_POLARITY[7:0] –
GPIO6_PO

LARITY

GPIO5_PO

LARITY

GPIO4_PO

LARITY

GPIO3_POLA

RITY

GPIO2_PO

LARITY

GPIO1_PO

LARITY

GPIO0_PO

LARITY

0x42 GPIO_OUT_OD[7:0] – – – – – GPIO2_OD – –

0x43 GPIO_ALT0[7:0] GPIO3_ALT[1:0] GPIO2_ALT[1:0] GPIO1_ALT[1:0] GPIO0_ALT[1:0]

0x44 GPIO_ALT1[7:0] – – GPIO6_ALT[1:0] GPIO5_ALT[1:0] GPIO4_ALT[1:0]

0x45 GPIO_OUT_EN[7:0] –
GPIO6_OU

T_EN

GPIO5_OU

T_EN

GPIO4_OU

T_EN

GPIO3_OUT_

EN

GPIO2_OU

T_EN

GPIO1_OU

T_EN

GPIO0_OU

T_EN

0x46 GPIO_PU[7:0] – GPIO6_PU GPIO5_PU GPIO4_PU GPIO3_PU GPIO2_PU GPIO1_PU GPIO0_PU

0x47 GPIO_PD[7:0] – GPIO6_PD GPIO5_PD GPIO4_PD GPIO3_PD GPIO2_PD GPIO1_PD GPIO0_PD

0x48 SPI_PU_PD[7:0]

CSN

_PD
SCLK_PD SDO_PD SDI_PD CSN_PU SCLK_PU SDO_PU SDI_PU

0x49 CLK_ADDR[7:0] CLK_ADDR[7:0]

0x4A CLK_DATA[7:0] CLK_DATA_WRITE[7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 99

ADDR

ESS
NAME MSB LSB

0x4A CLK_DATA[7:0] CLK_DATA_READ[7:0]

0x4C GPIO_IN_EN[7:0] – – – – – –
GPIO1_IN_

EN

GPIO0_IN_

EN

0x4E SILICON_REV[7:0] SILICON_REV_DIGITAL[3:0] SILICON_REV_ANALOG[3:0]

TIMER

0x60 TIMER_LIMIT0[7:0] COUNTER_LIMIT_BYTE0[7:0]

0x60
TIMER_COUNTER0[7:

0]

COUNTER_VALUE_BYTE0[7:0]

0x61 TIMER_LIMIT1[7:0] COUNTER_LIMIT_BYTE1[7:0]

0x61
TIMER_COUNTER1[7:

0]

COUNTER_VALUE_BYTE1[7:0]

0x62 TIMER_LIMIT2[7:0] COUNTER_LIMIT_BYTE2[7:0]

0x62
TIMER_COUNTER2[7:

0]

COUNTER_VALUE_BYTE2[7:0]

0x63
TIMER_COUNTER3[7:

0]

COUNTER_VALUE_BYTE3[7:0]

0x64 TIMER_START0[7:0] COUNTER_START_BYTE0[7:0]

0x64
TIMER_CAPTURE0[7:

0]

COUNTER_CAPTURE_BYTE0[7:0]

0x65
TIMER_CAPTURE1[7:

0]

COUNTER_CAPTURE_BYTE1[7:0]

0x65 TIMER_START1[7:0] COUNTER_START_BYTE1[7:0]

0x66
TIMER_CAPTURE2[7:

0]

COUNTER_CAPTURE_BYTE2[7:0]

0x66 TIMER_START2[7:0] COUNTER_START_BYTE2[7:0]

0x67
TIMER_CAPTURE3[7:

0]

COUNTER_CAPTURE_BYTE3[7:0]

0x67 TIMER_START3[7:0] COUNTER_START_BYTE3[7:0]

0x68 TIMER_ABZ_DIV[7:0] ABZ_SAMPLE_DIVIDER[7:0]

0x69
TIMER_HOME_DIV[7:0

]

HOME_SAMPLE_DIVIDER[7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 100

ADDR

ESS
NAME MSB LSB

0x6A
TIMER_AB_EVENT_C

FG[7:0]

– – ENC_B_CONFIG[2:0] ENC_A_CONFIG[2:0]

0x6B
TIMER_HZ_EVENT_C

FG[7:0]

– – HOME_CONFIG[2:0] ENC_Z_CONFIG[2:0]

0x6C TIMER_CTRL[7:0] –
CAPTURE_

ONCE

CAPTURE_

Z

RESET_ON

CE
RESET_Z DEC_MODE[2:0]

0x6C TIMER_STATUS[7:0] – – – – – – OVFL Z_EVENT

0x6D TIMER_COMP0_0[7:0] COMPARE0_BYTE0[7:0]

0x6E TIMER_COMP0_1[7:0] COMPARE0_BYTE1[7:0]

0x6F TIMER_COMP0_2[7:0] COMPARE0_BYTE2[7:0]

0x70 TIMER_COMP0_3[7:0] COMPARE0_BYTE3[7:0]

0x71 TIMER_COMP1_0[7:0] COMPARE1_BYTE0[7:0]

0x72 TIMER_COMP1_1[7:0] COMPARE1_BYTE1[7:0]

0x73 TIMER_COMP1_2[7:0] COMPARE1_BYTE2[7:0]

0x74 TIMER_COMP1_3[7:0] COMPARE1_BYTE3[7:0]

0x75
TIMER_COMP_PULSE

_LIMIT0[7:0]

COMP_PULSE_LIMIT_BYTE0[7:0]

0x76
TIMER_COMP_PULSE

_LIMIT1[7:0]

COMP_PULSE_LIMIT_BYTE1[7:0]

0x77
TIMER_COMP_PULSE

_CFG[7:0]

– – – – – – COMP1_LE COMP0_LE

0x78
TIMER_DEC_PULSE_

CFG[7:0]

DECODER_PULSE_LIMIT[7:0]

Register Details

UART0_BUFFER (0x8)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA[7:0]

Reset 0x0

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 101

Access Type Write Only

BITFIELD BITS DESCRIPTION

TX_DATA 7:0 Transmit fifo buffer with 8 entries

UART0_BUFFER (0x8)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA 7:0 Receive buffer with up-to 8 entries

UART0_BAUD_L (0x9)

BIT 7 6 5 4 3 2 1 0

Field BAUD_RATE_LIMIT_L[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_L 7:0 Baud rate divider limit value - lower byte

UART0_BAUD_H (0xA)

BIT 7 6 5 4 3 2 1 0

Field – – – – BAUD_RATE_LIMIT_H[3:0]

Reset – – – – 0x0

Access Type – – – – Write, Read

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 102

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_H 3:0 Baud rate divider limit value - upper 4 bit

UART0_CTRL (0xB)

BIT 7 6 5 4 3 2 1 0

Field – RX_BUFFER_LENGTH[2:0] RX_RESET AUTOBAUD NO_FILTER x8

Reset – 0x0 0x0 0x0 0x0 0x0

Access Type – Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

RX_BUFFER_LENGTH 6:4 Set receive buffer length.

RX_RESET 3 Reset receive buffer contents

AUTOBAUD 2 Enable autobaud

NO_FILTER 1 Disable receiver Input Filter

x8 0
Enable x8 oversampling instead of x16 for

receiver and transmitter

0x0: x16 oversampling
0x1: x8 oversampling

UART0_STATUS (0xB)

BIT 7 6 5 4 3 2 1 0

Field – – – TIMEOUT AUTOBAUD_ACTIVE TX_EMPTY TX_FULL RX_FULL

Reset – – – 0x0 0x0 0x1 0x0 0x0

Access Type – – – Read Only Read Only Read Only Read Only Read Only

BITFIELD BITS DESCRIPTION

TIMEOUT 4 Receiver timeout counter limit value reached

AUTOBAUD_ACTIVE 3 Autobaud is active

TX_EMPTY 2 Transmit buffer is empty

TX_FULL 1 Transmit buffer is full

RX_FULL 0 Number of entries in receive buffer reached RX_BUFFER_LENGTH

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 103

UART0_TIMEOUT_L (0xC)

BIT 7 6 5 4 3 2 1 0

Field TIMEOUT_COUNTER_LIMIT_L[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

TIMEOUT_COUNTER_LIMIT_L 7:0 Timeout counter limit value - lower 8-bit.

UART0_TIMEOUT_H (0xD)

BIT 7 6 5 4 3 2 1 0

Field TIMEOUT_COUNTER_LIMIT_H[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

TIMEOUT_COUNTER_LIMIT_H 7:0 Timeout counter limit value - upper 8-bit.

UART1_BUFFER (0x10)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

TX_DATA 7:0 Transmit fifo buffer with 8 entries

UART1_BUFFER (0x10)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA[7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 104

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA 7:0 Receive buffer with up-to 8 entries

UART1_BAUD_L (0x11)

BIT 7 6 5 4 3 2 1 0

Field BAUD_RATE_LIMIT_L[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_L 7:0 Baud rate divider limit value - lower byte

UART1_BAUD_H (0x12)

BIT 7 6 5 4 3 2 1 0

Field – – – – BAUD_RATE_LIMIT_H[3:0]

Reset – – – – 0x0

Access Type – – – – Write, Read

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_H 3:0 Baud rate divider limit value - upper 4 bit

UART1_CTRL (0x13)

BIT 7 6 5 4 3 2 1 0

Field – RX_BUFFER_LENGTH[2:0] RX_RESET AUTOBAUD NO_FILTER x8

Reset – 0x0 0x0 0x0 0x0 0x0

Access Type – Write Only Write Only Write Only Write Only Write Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 105

BITFIELD BITS DESCRIPTION DECODE

RX_BUFFER_LENGTH 6:4 Set receive buffer length.

RX_RESET 3 Reset receive buffer contents

AUTOBAUD 2 Enable autobaud

NO_FILTER 1 Disable Receiver Input Filter

x8 0
Switch to x8 oversampling for receiver and

transmitter

0x0: x16 oversampling
0x1: x8 oversampling

UART1_STATUS (0x13)

BIT 7 6 5 4 3 2 1 0

Field – – – TIMEOUT AUTOBAUD_ACTIVE TX_EMPTY TX_FULL RX_FULL

Reset – – – 0x0 0x0 0x1 0x0 0x0

Access Type – – – Read Only Read Only Read Only Read Only Read Only

BITFIELD BITS DESCRIPTION

TIMEOUT 4 Receiver timeout counter limit value reached

AUTOBAUD_ACTIVE 3 Autobaud is active

TX_EMPTY 2 Transmit buffer is empty

TX_FULL 1 Transmit buffer is full

RX_FULL 0 Number of entries in receive buffer reached RX_BUFFER_LENGTH

UART1_TIMEOUT_L (0x14)

BIT 7 6 5 4 3 2 1 0

Field TIMEOUT_COUNTER_LIMIT_L[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

TIMEOUT_COUNTER_LIMIT_L 7:0 Timeout counter limit value - lower 8-bit.

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 106

UART1_TIMEOUT_H (0x15)

BIT 7 6 5 4 3 2 1 0

Field TIMEOUT_COUNTER_LIMIT_H[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

TIMEOUT_COUNTER_LIMIT_H 7:0 Timeout counter limit value - upper 8-bit.

MEM_CTRL (0x18)

BIT 7 6 5 4 3 2 1 0

Field – – – – ACCESS WRITE ADDR_MOD[1:0]

Reset – – – – 0x0 0x0 0x0

Access Type – – – – Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

ACCESS 3 Program memory read or write access

WRITE 2 Write/not read to program memory

ADDR_MOD 1:0
Modify address counter (after program memory

access)

0x0
0x1: (Post) Increment Address Counter
0x2: (Post) Decrement Address Counter
0x3: (Post) Reset Address Counter

MEM_DATA_L (0x19)

BIT 7 6 5 4 3 2 1 0

Field DATA_L[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

DATA_L 7:0 Program memory read/write data (lower byte)

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 107

MEM_DATA_H (0x1A)

BIT 7 6 5 4 3 2 1 0

Field DATA_H[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

DATA_H 7:0 Program memory read/write data (upper byte)

MEM_ADDR_L (0x1B)

BIT 7 6 5 4 3 2 1 0

Field ADDR_L[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

ADDR_L 7:0 Program memory address (lower byte)

MEM_ADDR_H (0x1C)

BIT 7 6 5 4 3 2 1 0

Field – – – – – – ADDR_H[1:0]

Reset – – – – – – 0x0

Access Type – – – – – – Write Only

BITFIELD BITS DESCRIPTION

ADDR_H 1:0 Program memory address (upper bits)

DIRECT_POLARITY (0x20)

BIT 7 6 5 4 3 2 1 0

Field OUT3 OUT2 OUT1 OUT0 IN3 IN2 IN1 IN0

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 108

Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type Write Only Write Only Write Only Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

OUT3 7 DIRECT_OUT3 polarity
0x0: non-inverted
0x1: inverted

OUT2 6 DIRECT_OUT2 polarity
0x0: non-inverted
0x1: inverted

OUT1 5 DIRECT_OUT1 polarity
0x0: non-inverted
0x1: inverted

OUT0 4 DIRECT_OUT0 polarity
0x0: non-inverted
0x1: inverted

IN3 3 DIRECT_IN3 polarity
0x0: non-inverted
0x1: inverted

IN2 2 DIRECT_IN2 polarity

0x0: non-inverted
0x1: inverted

IN1 1 DIRECT_IN1 polarity
0x0: non-inverted
0x1: inverted

IN0 0 DIRECT_IN0 polarity
0x0: non-inverted
0x1: inverted

DIRECT_OUT_ALT (0x21)

BIT 7 6 5 4 3 2 1 0

Field OUT3_ALT[1:0] OUT2_ALT[1:0] OUT1_ALT[1:0] OUT0_ALT[1:0]

Reset 0x2 0x2 0x0 0x0

Access Type Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

OUT3_ALT 7:6

0x0: core DIRECT_OUT3
0x1: core clock output
0x2: disable output
0x3

OUT2_ALT 5:4

0x0: core DIRECT_OUT2
0x1: core clock output
0x2: disable output
0x3

OUT1_ALT 3:2

0x0: core DIRECT_OUT1
0x1: core clock output
0x2
0x3

OUT0_ALT 1:0

0x0: core DIRECT_OUT0
0x1: core clock output
0x2
0x3

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 109

DIRECT_IN_PU (0x22)

BIT 7 6 5 4 3 2 1 0

Field HOME ENC_Z – – IN3 IN2 IN1 IN0

Reset 0x0 0x0 – – 0x0 0x0 0x0 0x0

Access Type Write Only Write Only – – Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

HOME 7 Enable or disable pull-up resistor for HOME input
0x0: Enable pull-up
0x1: Disable pull-up

ENC_Z 6 Enable or disable pull-up resistor for ENC_Z input

0x0: Enable pull-up
0x1: Disable pull-up

IN3 3
Enable or disable pull-up resistor for DIRECT_IN3

input

0x0: Enable pull-up
0x1: Disable pull-up

IN2 2
Enable or disable pull-up resistor for DIRECT_IN2

input

0x0: Enable pull-up
0x1: Disable pull-up

IN1 1
Enable or disable pull-up resistor for DIRECT_IN1

input

0x0: Enable pull-up
0x1: Disable pull-up

IN0 0
Enable or disable pull-up resistor for DIRECT_IN0

input

0x0: Enable pull-up
0x1: Disable pull-up

DIRECT_IN_PD (0x23)

BIT 7 6 5 4 3 2 1 0

Field HOME ENC_Z – – IN3 IN2 IN1 IN0

Reset 0x0 0x0 – – 0x0 0x0 0x0 0x0

Access Type Write Only Write Only – – Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

HOME 7 Enable or disable pull-down resistor for HOME input

0x0: Disable pull-down
0x1: Enable pull-down

ENC_Z 6
Enable or disable pull-down resistor for ENC_Z

input

0x0: Disable pull-down
0x1: Enable pull-down

IN3 3
Enable or disable pull-down resistor for

DIRECT_IN3 input

0x0: Disable pull-down
0x1: Enable pull-down

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 110

BITFIELD BITS DESCRIPTION DECODE

IN2 2
Enable or disable pull-down resistor for

DIRECT_IN2 input

0x0: Disable pull-down
0x1: Enable pull-down

IN1 1
Enable or disable pull-down resistor for

DIRECT_IN1 input

0x0: Disable pull-down
0x1: Enable pull-down

IN0 0
Enable or disable pull-down resistor for

DIRECT_IN0 input

0x0: Disable pull-down
0x1: Enable pull-down

I2C_BUFFER (0x28)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

TX_DATA 7:0 Transmit data buffer

I2C_BUFFER (0x28)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA 7:0 Receive data buffer

I2C_BAUD_L (0x29)

BIT 7 6 5 4 3 2 1 0

Field BAUD_RATE_LIMIT_L[7:0]

Reset 0x0

Access Type Write, Read

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 111

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_L 7:0 Baud rate divider limit value - lower byte

I2C_BAUD_H (0x2A)

BIT 7 6 5 4 3 2 1 0

Field BAUD_RATE_LIMIT_H[7:0]

Reset 0x0

Access Type Write, Read

BITFIELD BITS DESCRIPTION

BAUD_RATE_LIMIT_H 7:0 Baud rate divider limit value - upper byte

I2C_CMD (0x2B)

BIT 7 6 5 4 3 2 1 0

Field – – – – – COMMAND[2:0]

Reset – – – – – 0x0

Access Type – – – – – Write Only

BITFIELD BITS DESCRIPTION DECODE

COMMAND 2:0 I2C comand

0x0: I2C_CMD_STOP
0x1: I2C_CMD_START_TXD_ACK
0x2: I2C_CMD_TXD_ACK
0x3: I2C_CMD_RXD_ACK
0x4: I2C_CMD_RXD_NO_ACK
0x5
0x6
0x7

I2C_STATUS (0x2B)

BIT 7 6 5 4 3 2 1 0

Field – – – – – RCV_ACK RCV_ACK_VALUE CMD_RDY

Reset – – – – – 0x0 0x0 0x0

Access Type – – – – – Read Only Read Only Read Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 112

BITFIELD BITS DESCRIPTION DECODE

RCV_ACK 2 Either ACK or NACK received

RCV_ACK_VALUE 1
Value of acknowledge received - either ACK or

NACK

0x0: ACK received
0x1: NACK received

CMD_RDY 0 Command processed flag

SPI_BUFFER0 (0x30)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA_BYTE0[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

TX_DATA_BYTE0 7:0 Transmit buffer LSB [7:0]

SPI_BUFFER0 (0x30)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA_BYTE0[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA_BYTE0 7:0 Receive buffer LSB [7:0]

SPI_BUFFER1 (0x31)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA_BYTE1[7:0]

Reset 0x0

Access Type Write Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 113

BITFIELD BITS DESCRIPTION

TX_DATA_BYTE1 7:0 Transmit buffer [15:8]

SPI_BUFFER1 (0x31)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA_BYTE1[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA_BYTE1 7:0 Receive buffer [15:8]

SPI_BUFFER2 (0x32)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA_BYTE2[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA_BYTE2 7:0 Receive buffer [23:16]

SPI_BUFFER2 (0x32)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA_BYTE2[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

TX_DATA_BYTE2 7:0 Transmit buffer [23:16]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 114

SPI_BUFFER3 (0x33)

BIT 7 6 5 4 3 2 1 0

Field TX_DATA_BYTE3[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

TX_DATA_BYTE3 7:0 Transmit buffer MSB [31:24]

SPI_BUFFER3 (0x33)

BIT 7 6 5 4 3 2 1 0

Field RX_DATA_BYTE3[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

RX_DATA_BYTE3 7:0 Receive buffer MSB [31:24]

SPI_CTRL (0x34)

BIT 7 6 5 4 3 2 1 0

Field – – – – – – TX_RESET TX_SKIP

Reset – – – – – – 0x0 0x0

Access Type – – – – – – Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

TX_RESET 1 Remove all entries from transmit buffer

TX_SKIP 0

Drop oldest entry in transmit buffer and allow

adding data instead of suppressing any write

operation in case there is an overflow of the

transmit buffer.

0x0: Suppress write operation in case the transmit buffer
is full
0x1: Allow write operation but drop oldest value in case
write buffer is full

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 115

SPI_STATUS (0x34)

BIT 7 6 5 4 3 2 1 0

Field – – – – – TX_FULL NO_TRANSFER EOT

Reset – – – – – 0x0 0x0 0x0

Access Type – – – – – Read Only Read Only Read Only

BITFIELD BITS DESCRIPTION

TX_FULL 2 Transmit buffer is full

NO_TRANSFER 1 No SPI data transfer (chip select high)

EOT 0 End of SPI data transmission

GPIO_IN (0x40)

BIT 7 6 5 4 3 2 1 0

Field – GPIO6_IN GPIO5_IN GPIO4_IN GPIO3_IN GPIO2_IN GPIO1_IN GPIO0_IN

Reset – 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type – Read Only Read Only Read Only Read Only Read Only Read Only Read Only

BITFIELD BITS DESCRIPTION

GPIO6_IN 6 GPIO6 input pin value

GPIO5_IN 5 GPIO5 input pin value

GPIO4_IN 4 GPIO4 input pin value

GPIO3_IN 3 GPIO3 input pin value

GPIO2_IN 2 GPIO2 input pin value

GPIO1_IN 1 GPIO1 input pin value

GPIO0_IN 0 GPIO0 input pin value

GPIO_OUT (0x40)

BIT 7 6 5 4 3 2 1 0

Field – GPIO6_OUT GPIO5_OUT GPIO4_OUT GPIO3_OUT GPIO2_OUT GPIO1_OUT GPIO0_OUT

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 116

Reset – 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type – Write Only Write Only Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION

GPIO6_OUT 6 GPIO6 output value

GPIO5_OUT 5 GPIO5 output value

GPIO4_OUT 4 GPIO4 output value

GPIO3_OUT 3 GPIO3 output value

GPIO2_OUT 2 GPIO2 output value

GPIO1_OUT 1 GPIO1 output value

GPIO0_OUT 0 GPIO0 output pin value

GPIO_POLARITY (0x41)

BIT 7 6 5 4 3 2 1 0

Field –
GPIO6_POLARI

TY

GPIO5_POLARI

TY

GPIO4_POLARI

TY

GPIO3_POLARI

TY

GPIO2_POLARI

TY

GPIO1_POLARI

TY

GPIO0_POLARI

TY

Reset – 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Acces

s

Type

– Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read

BITFIELD BITS DESCRIPTION DECODE

GPIO6_POLARITY 6 GPIO6 input/output polarity

GPIO5_POLARITY 5 GPIO5 input/output polarity

GPIO4_POLARITY 4 GPIO4 input/output polarity

GPIO3_POLARITY 3 GPIO3 input/output polarity

GPIO2_POLARITY 2 GPIO2 input/output polarity

GPIO1_POLARITY 1 GPIO1 input/output polarity

GPIO0_POLARITY 0 GPIO0 input/output polarity
0x0: non-inverted
0x1: inverted

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 117

GPIO_OUT_OD (0x42)

BIT 7 6 5 4 3 2 1 0

Field – – – – – GPIO2_OD – –

Reset – – – – – 0x0 – –

Access Type – – – – – Write Only – –

BITFIELD BITS DESCRIPTION DECODE

GPIO2_OD 2 GPIO2 output buffer type

0x0: push-pull
0x1: open-drain

GPIO_ALT0 (0x43)

BIT 7 6 5 4 3 2 1 0

Field GPIO3_ALT[1:0] GPIO2_ALT[1:0] GPIO1_ALT[1:0] GPIO0_ALT[1:0]

Reset 0x0 0x0 0x0 0x0

Access Type Write, Read Write, Read Write, Read Write, Read

BITFIELD BITS DESCRIPTION DECODE

GPIO3_ALT 7:6 GPIO3 alternate function selection

0x0: GPIO3
0x1: I2C_SCL
0x2: UART1_RXD
0x3: DECODER_OUT

GPIO2_ALT 5:4 GPIO2 alternate function selection

0x0: GPIO2
0x1: I2C_SDA
0x2: UART1_TXD
0x3: HOME

GPIO1_ALT 3:2 GPIO1 alternate function selection

0x0: GPIO1
0x1: XTAL_OUT
0x2
0x3

GPIO0_ALT 1:0 GPIO0 alternate function selection

0x0: GPIO0
0x1: XTAL_IN
0x2: EXT_CLK
0x3

GPIO_ALT1 (0x44)

BIT 7 6 5 4 3 2 1 0

Field – – GPIO6_ALT[1:0] GPIO5_ALT[1:0] GPIO4_ALT[1:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 118

Reset – – 0x0 0x0 0x0

Access Type – – Write, Read Write, Read Write, Read

BITFIELD BITS DESCRIPTION DECODE

GPIO6_ALT 5:4 GPIO6 alternate function selection

0x0: GPIO6
0x1: SPI_DATA_AVAILABLE
0x2: COMPARE_OUT
0x3: DECODER_OUT

GPIO5_ALT 3:2 GPIO5 alternate function selection

0x0: GPIO5
0x1: UART0_RXD
0x2: COMPARE_OUT
0x3: DECODER_OUT

GPIO4_ALT 1:0 GPIO4 alternate function selection

0x0: GPIO4
0x1: UART0_TXD
0x2: SPI_DATA_AVAILABLE
0x3: HOME

GPIO_OUT_EN (0x45)

BIT 7 6 5 4 3 2 1 0

Field –
GPIO6_OUT_E

N

GPIO5_OUT_E

N

GPIO4_OUT_E

N

GPIO3_OUT_E

N

GPIO2_OUT_E

N

GPIO1_OUT_E

N

GPIO0_OUT_E

N

Reset – 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Acces

s Type
– Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read Write, Read

BITFIELD BITS DESCRIPTION DECODE

GPIO6_OUT_EN 6 GPIO6 output enable
0x0: disable
0x1: enable

GPIO5_OUT_EN 5 GPIO5 output enable
0x0: disable
0x1: enable

GPIO4_OUT_EN 4 GPIO4 output enable
0x0: disable
0x1: enable

GPIO3_OUT_EN 3 GPIO3 output enable
0x0: disable
0x1: enable

GPIO2_OUT_EN 2 GPIO2 output enable
0x0: disable
0x1: enable

GPIO1_OUT_EN 1 GPIO1 output enable
0x0: disable
0x1: enable

GPIO0_OUT_EN 0 GPIO0 output enable
0x0: output disable
0x1: output enable

GPIO_PU (0x46)

BIT 7 6 5 4 3 2 1 0

Field – GPIO6_PU GPIO5_PU GPIO4_PU GPIO3_PU GPIO2_PU GPIO1_PU GPIO0_PU

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 119

Reset – 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type – Write Only Write Only Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

GPIO6_PU 6 GPIO6 internal pull-up resistor disable
0x0: Pull-up enable
0x1: Pull-up disable

GPIO5_PU 5 GPIO5 internal pull-up resistor disable

0x0: Pull-up enable
0x1: Pull-up disable

GPIO4_PU 4 GPIO4 internal pull-up resistor disable
0x0: Pull-up enable
0x1: Pull-up disable

GPIO3_PU 3 GPIO3 internal pull-up resistor disable

0x0: Pull-up enable
0x1: Pull-up disable

GPIO2_PU 2 GPIO2 internal pull-up resistor disable
0x0: Pull-up enable
0x1: Pull-up disable

GPIO1_PU 1 GPIO1 internal pull-up resistor disable
0x0: Pull-up enable
0x1: Pull-up disable

GPIO0_PU 0 GPIO0 internal pull-up resistor disable
0x0: Pull-up enable
0x1: Pull-up disable

GPIO_PD (0x47)

BIT 7 6 5 4 3 2 1 0

Field – GPIO6_PD GPIO5_PD GPIO4_PD GPIO3_PD GPIO2_PD GPIO1_PD GPIO0_PD

Reset – 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type – Write Only Write Only Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

GPIO6_PD 6 GPIO6 internal pull-down resistor enable
0x0: Pull-down disable
0x1: Pull-down enable

GPIO5_PD 5 GPIO5 internal pull-down resistor enable

0x0: Pull-down disable
0x1: Pull-down enable

GPIO4_PD 4 GPIO4 internal pull-down resistor enable
0x0: Pull-down disable
0x1: Pull-down enable

GPIO3_PD 3 GPIO3 internal pull-down resistor enable

0x0: Pull-down disable
0x1: Pull-down enable

GPIO2_PD 2 GPIO2 internal pull-down resistor enable
0x0: Pull-down disable
0x1: Pull-down enable

GPIO1_PD 1 GPIO1 internal pull-down resistor enable
0x0: Pull-down disable
0x1: Pull-down enable

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 120

BITFIELD BITS DESCRIPTION DECODE

GPIO0_PD 0 GPIO0 internal pull-down resistor enable
0x0: Pull-down disable
0x1: Pull-down enable

SPI_PU_PD (0x48)

BIT 7 6 5 4 3 2 1 0

Field CSN_PD SCLK_PD SDO_PD SDI_PD CSN_PU SCLK_PU SDO_PU SDI_PU

Reset 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0

Access Type Write Only Write Only Write Only Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

CSN_PD 7
SPI chip select (CSN) internal pull-down resistor

enable

0x0: Pull-down disable
0x1: Pull-down enable

SCLK_PD 6
SPI serial clock (SCLK) internal pull-down resistor

enable

0x0: Pull-down disable
0x1: Pull-down enable

SDO_PD 5
SPI serial data out (SDO) internal pull-down resistor

enable

0x0: Pull-down disable
0x1: Pull-down enable

SDI_PD 4
SPI serial data in (SDI) internal pull-down resistor

enable

0x0: Pull-down disable
0x1: Pull-down enable

CSN_PU 3
SPI chip select (CSN) internal pull-up resistor

disable

0x0: Pull-up enable
0x1: Pull-up disable

SCLK_PU 2 SPI serial clock internal pull-up resistor disable
0x0: Pull-up enable
0x1: Pull-up disable

SDO_PU 1
SPI serial data out (SDO) internal pull-up resistor

disable

0x0: Pull-up enable
0x1: Pull-up disable

SDI_PU 0
SPI serial data in (SDI) internal pull-up resistor

disable

0x0: Pull-up enable
0x1: Pull-up disable

CLK_ADDR (0x49)

BIT 7 6 5 4 3 2 1 0

Field CLK_ADDR[7:0]

Reset 0x0

Access Type Write, Read

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 121

BITFIELD BITS DESCRIPTION

CLK_ADDR 7:0 Register address for clock block access

CLK_DATA (0x4A)

BIT 7 6 5 4 3 2 1 0

Field CLK_DATA_WRITE[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

CLK_DATA_WRITE 7:0
Register data for clock block write access. Writing to this register also triggers clock

block write access.

CLK_DATA (0x4A)

BIT 7 6 5 4 3 2 1 0

Field CLK_DATA_READ[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

CLK_DATA_READ 7:0 Register data from clock block read access

GPIO_IN_EN (0x4C)

BIT 7 6 5 4 3 2 1 0

Field – – – – – – GPIO1_IN_EN GPIO0_IN_EN

Reset – – – – – – 0x1 0x1

Access Type – – – – – – Write Only Write Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 122

BITFIELD BITS DESCRIPTION DECODE

GPIO1_IN_EN 1
Enable GPIO1 digital input. Disable for external

XTAL connection.

0x0: Disable digital input
0x1: Enable digital input

GPIO0_IN_EN 0
Enable GPIO0 digital input. Disable for external

XTAL connection.

0x0: Disable digital input
0x1: Enable digital input

SILICON_REV (0x4E)

BIT 7 6 5 4 3 2 1 0

Field SILICON_REV_DIGITAL[3:0] SILICON_REV_ANALOG[3:0]

Reset 0x1 0x1

Access Type Read Only Read Only

BITFIELD BITS DESCRIPTION

SILICON_REV_DIGITAL 7:4 Silicon mask revision (digital part)

SILICON_REV_ANALOG 3:0 Silicon mask revision (analog part)

TIMER_LIMIT0 (0x60)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_LIMIT_BYTE0[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_LIMIT_BYTE0 7:0 Encoder counter upper wrap-around limit value LSB [7:0]

TIMER_COUNTER0 (0x60)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_VALUE_BYTE0[7:0]

Reset 0x0

Access Type Read Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 123

BITFIELD BITS DESCRIPTION

COUNTER_VALUE_BYTE0 7:0 Encoder counter value LSB [7:0]

TIMER_LIMIT1 (0x61)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_LIMIT_BYTE1[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_LIMIT_BYTE1 7:0 Encoder counter upper wrap-around limit value [15:8]

TIMER_COUNTER1 (0x61)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_VALUE_BYTE1[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

COUNTER_VALUE_BYTE1 7:0 Encoder counter value [15:8]

TIMER_LIMIT2 (0x62)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_LIMIT_BYTE2[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_LIMIT_BYTE2 7:0 Encoder counter upper wrap-around limit value [23:16]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 124

TIMER_COUNTER2 (0x62)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_VALUE_BYTE2[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

COUNTER_VALUE_BYTE2 7:0 Encoder counter value [23:16]

TIMER_COUNTER3 (0x63)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_VALUE_BYTE3[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

COUNTER_VALUE_BYTE3 7:0 Encoder counter value MSB [31:24]

TIMER_START0 (0x64)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_START_BYTE0[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_START_BYTE0 7:0 Encoder counter start value after reset or overflow LSB [7:0]

TIMER_CAPTURE0 (0x64)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_CAPTURE_BYTE0[7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 125

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

COUNTER_CAPTURE_BYTE0 7:0 Captured encoder counter value LSB [7:0]

TIMER_CAPTURE1 (0x65)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_CAPTURE_BYTE1[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

COUNTER_CAPTURE_BYTE1 7:0 Captured encoder counter value [15:8]

TIMER_START1 (0x65)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_START_BYTE1[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_START_BYTE1 7:0 Encoder counter start value after reset or overflow [15:8]

TIMER_CAPTURE2 (0x66)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_CAPTURE_BYTE2[7:0]

Reset 0x0

Access Type Read Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 126

BITFIELD BITS DESCRIPTION

COUNTER_CAPTURE_BYTE2 7:0 Captured encoder counter value [23:16]

TIMER_START2 (0x66)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_START_BYTE2[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_START_BYTE2 7:0 Encoder counter start value after reset or overflow [23:16]

TIMER_CAPTURE3 (0x67)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_CAPTURE_BYTE3[7:0]

Reset 0x0

Access Type Read Only

BITFIELD BITS DESCRIPTION

COUNTER_CAPTURE_BYTE3 7:0 Captured encoder counter value MSB [31:24]

TIMER_START3 (0x67)

BIT 7 6 5 4 3 2 1 0

Field COUNTER_START_BYTE3[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COUNTER_START_BYTE3 7:0 Encoder counter start value after reset or overflow MSB [31:24]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 127

TIMER_ABZ_DIV (0x68)

BIT 7 6 5 4 3 2 1 0

Field ABZ_SAMPLE_DIVIDER[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

ABZ_SAMPLE_DIVIDER 7:0 Sample clock divider for ENC_A/B/Z input signals

TIMER_HOME_DIV (0x69)

BIT 7 6 5 4 3 2 1 0

Field HOME_SAMPLE_DIVIDER[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

HOME_SAMPLE_DIVIDER 7:0 Sample clock divider for HOME input signal

TIMER_AB_EVENT_CFG (0x6A)

BIT 7 6 5 4 3 2 1 0

Field – – ENC_B_CONFIG[2:0] ENC_A_CONFIG[2:0]

Reset – – 0x0 0x0

Access Type – – Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

ENC_B_CONFIG 5:3 Select encoder B channel contribution to Z event

0x0: Encoder B low
0x1: Encoder B high
0x2: Encoder B rising edge
0x3: Encoder B falling edge
0x4: Encoder B rising and falling edge
0x5: Disable event generation
0x6: Disable event generation
0x7: Ignore encoder B input

ENC_A_CONFIG 2:0 Select encoder A channel contribution to Z event

0x0: Encoder A low
0x1: Encoder A high
0x2: Encoder A rising edge
0x3: Encoder A falling edge

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 128

BITFIELD BITS DESCRIPTION DECODE

0x4: Encoder A rising and falling edge
0x5: Disable event generation
0x6: Disable event generation
0x7: Ignore encoder A input

TIMER_HZ_EVENT_CFG (0x6B)

BIT 7 6 5 4 3 2 1 0

Field – – HOME_CONFIG[2:0] ENC_Z_CONFIG[2:0]

Reset – – 0x0 0x0

Access Type – – Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

HOME_CONFIG 5:3 Select HOME input contribution to Z event

0x0: HOME low
0x1: HOME high
0x2: HOME rising edge
0x3: HOME falling edge
0x4: HOME rising and falling edge
0x5: Disable event generation
0x6: Disable event generation
0x7: Ignore HOME input

ENC_Z_CONFIG 2:0 Select encoder Z channel contribution to Z event

0x0: Encoder Z low
0x1: Encoder Z high
0x2: Encoder Z rising edge
0x3: Encoder Z falling edge
0x4: Encoder Z rising and falling edge
0x5: Disable event generation
0x6: Disable event generation
0x7: Ignore encoder Z input

TIMER_CTRL (0x6C)

BIT 7 6 5 4 3 2 1 0

Field – CAPTURE_ONCE CAPTURE_Z RESET_ONCE RESET_Z DEC_MODE[2:0]

Reset – 0x0 0x0 0x0 0x0 0x0

Access Type – Write Only Write Only Write Only Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

CAPTURE_ONCE 6 Capture encoder counter value on Z event once

CAPTURE_Z 5 Capture encoder counter value on Z event

RESET_ONCE 4 Reset encoder counter on Z event once

RESET_Z 3 Reset encoder counter on Z event

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 129

BITFIELD BITS DESCRIPTION DECODE

DEC_MODE 2:0 Select input decoder operation mode

0x0: x1 code
0x1: x2 code
0x2: x4 code
0x3: cw/ccw
0x4: STEP (rising edge)/DIR
0x5: STEP (both edges)/DIR
0x6
0x7

TIMER_STATUS (0x6C)

BIT 7 6 5 4 3 2 1 0

Field – – – – – – OVFL Z_EVENT

Reset – – – – – – 0x0 0x0

Access Type – – – – – – Read Only Read Only

BITFIELD BITS DESCRIPTION

OVFL 1 Encoder counter overflow flag

Z_EVENT 0 Zero channel event channel

TIMER_COMP0_0 (0x6D)

BIT 7 6 5 4 3 2 1 0

Field COMPARE0_BYTE0[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE0_BYTE0 7:0 Encoder counter compare value 0 LSB [7:0]

TIMER_COMP0_1 (0x6E)

BIT 7 6 5 4 3 2 1 0

Field COMPARE0_BYTE1[7:0]

Reset 0x0

Access Type Write Only

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 130

BITFIELD BITS DESCRIPTION

COMPARE0_BYTE1 7:0 Encoder counter compare value 0 [15:8]

TIMER_COMP0_2 (0x6F)

BIT 7 6 5 4 3 2 1 0

Field COMPARE0_BYTE2[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE0_BYTE2 7:0 Encoder counter compare value 0 [23:16]

TIMER_COMP0_3 (0x70)

BIT 7 6 5 4 3 2 1 0

Field COMPARE0_BYTE3[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE0_BYTE3 7:0 Encoder counter compare value 0 MSB [31:24]

TIMER_COMP1_0 (0x71)

BIT 7 6 5 4 3 2 1 0

Field COMPARE1_BYTE0[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE1_BYTE0 7:0 Encoder counter compare value 1 LSB [7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 131

TIMER_COMP1_1 (0x72)

BIT 7 6 5 4 3 2 1 0

Field COMPARE1_BYTE1[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE1_BYTE1 7:0 Encoder counter compare value 1 [15:8]

TIMER_COMP1_2 (0x73)

BIT 7 6 5 4 3 2 1 0

Field COMPARE1_BYTE2[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE1_BYTE2 7:0 Encoder counter compare value 1 [23:16]

TIMER_COMP1_3 (0x74)

BIT 7 6 5 4 3 2 1 0

Field COMPARE1_BYTE3[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMPARE1_BYTE3 7:0 Encoder counter compare value 1 [31:24]

TIMER_COMP_PULSE_LIMIT0 (0x75)

BIT 7 6 5 4 3 2 1 0

Field COMP_PULSE_LIMIT_BYTE0[7:0]

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 132

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMP_PULSE_LIMIT_BYTE0 7:0 Length of COMPARE_OUT signal in number of system clock cycles + 1 (lower byte)

TIMER_COMP_PULSE_LIMIT1 (0x76)

BIT 7 6 5 4 3 2 1 0

Field COMP_PULSE_LIMIT_BYTE1[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

COMP_PULSE_LIMIT_BYTE1 7:0 Length of COMPARE_OUT signal in number of system clock cycles + 1 (upper byte)

TIMER_COMP_PULSE_CFG (0x77)

BIT 7 6 5 4 3 2 1 0

Field – – – – – – COMP1_LE COMP0_LE

Reset – – – – – – 0x0 0x0

Access Type – – – – – – Write Only Write Only

BITFIELD BITS DESCRIPTION DECODE

COMP1_LE 1

Select compare operation between compare1 and

encoder counter value register. In case the

compare operations with compare0 and compare1

registers both get valid, the output signal

COMPARE_OUT is activated.

0x0: Compare1 greater than
0x1: Compare1 less or equal

COMP0_LE 0

Select compare operation between compare0 and

encoder counter value register. In case the

compare operations with compare0 and compare1

registers both get valid, the output signal

COMPARE_OUT is activated.

0x0: Compare0 value greater than
0x1: Compare0 less or equal

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 133

TIMER_DEC_PULSE_CFG (0x78)

BIT 7 6 5 4 3 2 1 0

Field DECODER_PULSE_LIMIT[7:0]

Reset 0x0

Access Type Write Only

BITFIELD BITS DESCRIPTION

DECODER_PULSE_LIMIT 7:0 Length of DECODER_OUT signal in number of system clock cycles + 1

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 134

Typical Application Circuits

BUCK
DC/DC

+24V

ENCODER
SUPPLY

SRAM
2Kx16

BOOT-ROM

SPI
(TARGET)

I2C

(CONTROLL
ER)

UART
2x

GPIO

SPI

UART

I2C

DIRECT_IN

DIRECT_IN

LDO
1V8

D
IR

E
C

T
_I

N
 /

 D
IR

E
C

T
_O

U
T

G
P

IO
 M

A
T

R
IX

75MHz/100MHz/
128MHz

MOTION

CONTROLLER

EXAMPLE,
MICROCONTROLLER,

FPGA, ETC.

EEPROM

OPTIONAL

OR

R

D

RS485

R

D

RS485

DATA+

DATA-

CLK-

CLK+

MOTOR

ENCODER

ABSOLUTE

COUNTER
+

CAPTURE
FILTER

ENC_A

ENC_B

ENC_Z

DECODER

100

HOME INPUT

VCCIO

GPIO MATRIX

SRAM
64x8

GPIO

COMPARE_OUT

POR

8MHz/16MHz/
24MHz/25MHZ/

32MHz
(OPTIONAL)

 CLK_EXT
1..32MHz

(OPTIONAL)

BUFFER
64 x 32

DECODER_OUT

CRYSTAL
OSC

INT
OSC

PLL

CLOCK
GENERATOR

TIMER

PRE-SCALER

CRC

CORE

CALL
STACK

HW
LOOP

ALU
REGISTER

8x8
PC

DIRECT_OUT

TMC8100

SPI_DATA_AVAILABLE

VCCIO

+5V

LE
V

E
L

 S
H

IF
T

E
R

VCCIO

LE
V

E
L

 S
H

IF
T

E
R

+5V

Figure 17. SSI Encoder Application Circuit Example

BUCK
DC/DC

+24V

ENCODER
SUPPLY

SRAM
2Kx16

BOOT-ROM

SPI
(TARGET)

I2C

(CONTROLL
ER)

UART
2x

GPIO

SPI

UART

I2C

DIRECT_IN

LDO
1V8

D
IR

E
C

T
_I

N
 /

 D
IR

E
C

T
_O

U
T

G
P

IO
 M

A
T

R
IX

75MHz/100MHz/
128MHz

MOTION

CONTROLLER

EXAMPLE,.
MICROCONTROLLER,

FPGA, ETC.

EEPROM

OPTIONAL

OR
MOTOR

COUNTER
+

CAPTURE
FILTER

ENC_A

ENC_B

ENC_Z

DECODER

HOME INPUT

VCCIO

GPIO MATRIX

SRAM
64x8

GPIO

COMPARE_OUT

POR

BUFFER
64 x 32

DECODER_OUT

CRYSTAL
OSC

INT
OSC

PLL

CLOCK
GENERATOR

TIMER

PRE-SCALER

CRC

CORE

CALL
STACK

HW
LOOP

ALU
REGISTER

8x8
PC

DIRECT_OUT

TMC8100

SPI_DATA_AVAILABLE

INCREMENTAL

ENCODER

A/B/Z

R

VCCIO

R

R

RS422

A+

A-

B+

B-

Z+

Z-

 CLK_EXT
1..32MHz

(OPTIONAL)

8MHz/16MHz/
24MHz/25MHz/

32MHz
(OPTIONAL)

Figure 18. A/B/Z Incremental Encoder Application Example

Universal Encoder Bus Controller

TMC8100

www.analog.com Analog Devices | 135

Ordering Information

PART NUMBER TEMP RANGE PIN-PACKAGE

TMC8100ATG+ -40°C to +125°C 24 TQFN 4mm x 4mm

+Denotes lead(Pb)-free/RoHS-compliance.

#Denotes a RoHS-compliant device that may include lead(Pb) that is exempt under the RoHS requirements.

T = Tape and reel.

Y = Side-wettable package.

Universal Encoder Bus Controller TMC8100

Revision History
REVISION

NUMBER

REVISION

DATE
DESCRIPTION

0 04/24 Release for market intro

 Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is

assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may

result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise

under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their

respective owners.

w w w . a n a l o g . c o m Analog Devices | 136

	General Description
	Applications
	Benefits and Features
	Absolute Maximum Ratings
	Package Information
	Electrical Characteristics
	Timing Diagrams
	Pin Configurations
	Pin Descriptions
	Functional Diagrams
	Detailed Description
	System Architecture
	Program Memory Bus
	ROM Bootloader
	UART0 Bootstrap Protocol
	SPI Bootstrap Protocol

	Data Bus
	Power Supply
	Reset and Clock
	Reset
	Clock
	Crystal Oscillator

	GPIO and DIRECT_IN/OUT
	GPIO Matrix
	DIRECT_IN/DIRECT_OUT Matrix

	Serial Communication Engine
	Overview
	Loop Support in Hardware
	Set of Counter/Timer
	Cyclic Redundancy Check (CRC)

	Universal Asynchronous Receiver-Transmitter (UART)
	Overview
	Main Features
	Functional Description

	Serial Peripheral Interface (SPI)
	Overview
	Main Features
	Functional Description

	I2C
	Overview
	Main Features
	Functional Description

	A/B/Z Encoder Interface
	Overview
	Main Features
	Functional Description
	x1 Code Incremental Encoder Input
	x2 Code Incremental Encoder Input
	x4 Code, A/B Incremental Encoder Input
	CW and CCW Incremental Input
	PULSE/DIR Incremental Input

	Appendix
	Commands
	Overview
	Program Flow Control
	Load/Store/Move Operations
	Set/Clear/Move Individual Bits
	Arithmetic and Logic Operations
	Compare and Test Operations
	Shift Operations
	JA/JC (Jump Always/Jump Conditionally)
	JFA/JFC (Jump Fast Always/Jump Fast Conditionally)
	CALL (Call Subroutine)
	RSUB (Return from Subroutine)
	REP (Repeat/Initialize Hardware Loop)
	WAIT0/WAIT1 (Wait with Program Execution)
	WAIT0SF/WAIT1SF (Wait with Program Execution)
	NOP (No Operation)
	HALT (Stop Program Execution)
	LD (Load Data from Immediate Address)
	ST (Store Data at Immediate Address)
	LDI (Load Immediate Data)
	LDR (Load Data from Register Address)
	STR (Store Data at Register Address)
	LDS (Load Data from System Register)
	STS (Store Data in System Register)
	SET (Set Register Bit)
	CLR (Clear Register Bit)
	SFSET (Set System Register Bit)
	SFCLR (Clear System Register Bit)
	MOVB0 (Move Bit to Bit 0)
	MOVB7 (Move Bit to Bit 7)
	MOVCRC (Move Bit to CRC Unit
	MOVNCRC (Move Inverted Bit to CRC Unit)
	MOVF (Move Flag to Register Bit)
	MOVNF (Move Inverted Flag to Register Bit)
	AND (Bitwise Logical And)
	OR (Bitwise Logical Or)
	XOR (Bitwise Logical Exclusive Or)
	NOT (Bitwise Inversion)
	REV (Reverse Bit Order)
	ADD (Add Registers)
	SUB (Subtract Registers)
	INC (Increment Register)
	DEC (Decrement Register)
	COMP LT (Compare Registers for Less Than)
	COMP LE (Compare Registers for Less or Equal)
	COMP EQ (Compare Registers for Equal)
	COMP NE (Compare Registers for Not Equal)
	TEST0 (Test Bit for 0)
	TEST1 (Test Bit for 1)
	SFTEST0 (Test System Register Bit for 0)
	SFTEST1 (Test System Register Bit for 1)
	SHLO WAIT0SF/WAIT1SF (Wait and Shift Left Out)
	SHLI WAIT0SF/WAIT1SF (Wait and Shift Left In)
	SHRO WAIT0SF/WAIT1SF (Wait and Shift Right Out)
	SHRI WAIT0SF/WAIT1SF (Wait and Shift Right In)

	Register Map
	Typical Application Circuits
	Ordering Information

