

Specification

BT45212

BTHQ128064AVD1-SMN-12-LEDWHITE-COG

Doc. No.: COG-BTD12864-43 Versio November 2010

Supplied by: Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

DOCUMENT REVISION HISTORY:

DOCUMENT DATE DESCRIPTION REVISION EPOM TO	CHANGED BY	CHECKED BY
FROM TO A 2010.11.02 First Release. Based on: a.) VL-QUA-012B REV.Y 2010.12.10 According to VL-QUA-012B, LCD size is small because Unit Per Laminate=24 which is more than 6pes/Laminate.	LIWEI	CHI SHAO BO

Supplied by: Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

CONTENTS

Page No.

1.	GENERAL DESCRIPTION	4
2.	MECHANICAL SPECIFICATIONS	4
3.	INTERFACE SIGNALS	7
4. 4.1 4.2	ABSOLUTE MAXIMUM RATINGS ELECTRICAL MAXIMUM RATINGS – FOR IC ONLY ENVIRONMENTAL CONDITION	9 9 10
5. 5.1 5.2 5.3 5.4 5.5 5.6	ELECTRICAL SPECIFICATIONS TYPICAL ELECTRICAL CHARACTERISTICS APPENDIX – LED CHROMATICS COORDINATES TIMING SPECIFICATIONS COMMAND TABLE INITIAL CODE SETTING (FOR REFERENCE ONLY) REFERENCE CIRCUIT	11 11 12 15 16
6. 6.1 6.2	ELECTRO-OPTICAL CHARACTERISTICS ISO PLOT OPTICAL CHARACTERISTICS DEFINITION	17 17 18
7.	LCD COSMETIC CONDITIONS	19
8.	REMARK	19

Supplied by: Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Specification of LCD Module Type Model No.: COG-BTD12864-43

1. General Description

- 128 x 64 Dots STN Negative Blue Transmissive Dot Matrix LCD Module.
- Viewing Angle: 12 o'clock direction.
- Driving duty: 1/65 Duty, 1/7 bias.
- 'SITRONIX' ST7565P (COG) LCD controller/Driver or equivalent.
- Logic voltage: 3.3V.
- FPC connection.
- White LED02 backlight.
- "RoHS" compliance.

2. Mechanical Specifications

The mechanical detail is shown in Fig. 2 and summarized in Table 1 below.

Table	1	

Parameter	Specifications	Unit
Outline dimensions	55.6(W) x 70.2(H) x 4.33(D) (Included FPC. Excluded pins)	mm
Viewing area	50.60(W) x 31.0(H)	mm
Active area	46.577(W) x 27.697(H)	mm
Display format	128(W) x 64(H)	dots
Dot size	0.349(W) x 0.418(H)	mm
Dot spacing	0.015(W) x 0.015(H)	mm
Dot pitch	0.364(W) x 0.433(H)	mm
Weight	Approx: 14	grams

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

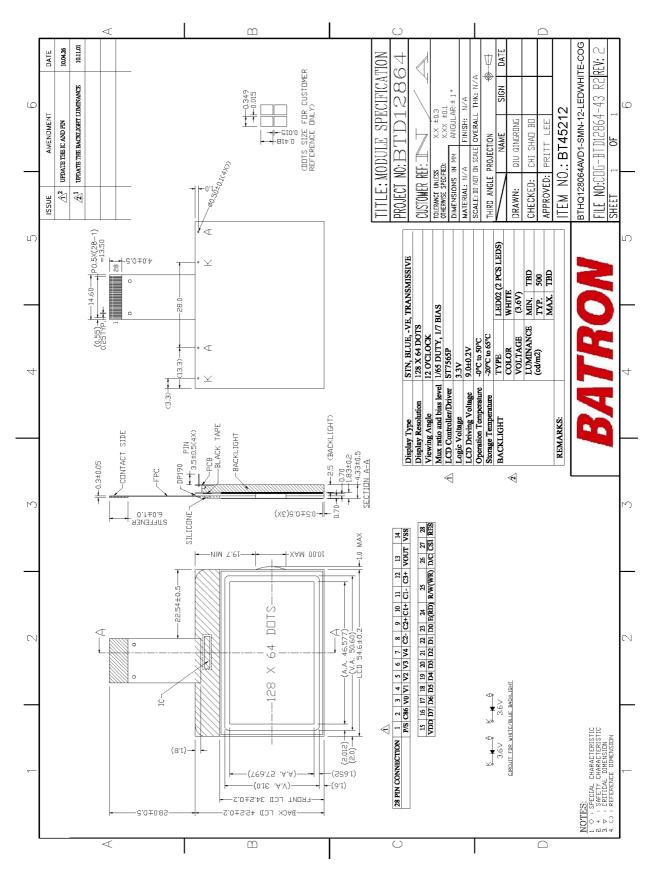


Figure 1: Module Specification

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

Supplied by:

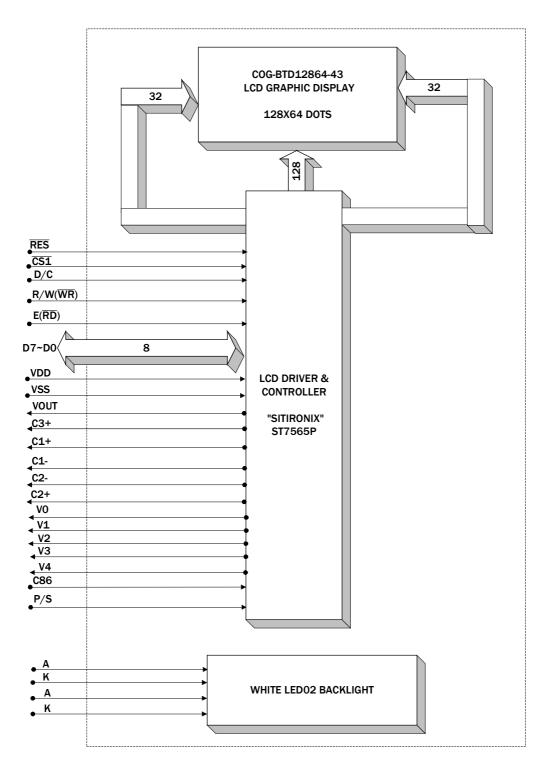


Figure 2: Block Diagram.

Supplied by: Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

3. Interface signals

Table 2(a): Pin Assignment

1This pin configures the interface to be parallel mode or serial mode.P/S = "H": Parallel data input/output. P/S = "L": Serial data input.1P/SP/SData/CommandDataRead/WriteSerial Clock "H"D/CD0 to D7RD \overline{RD} , \overline{WR} "L"D/CD7Write onlyD6When P/S = "L": D/CD7Write onlyD6When P/S = "L": D/CD7Write onlyD6When P/S = "L": ND to D5 must be fixed to "H".RD(E) and WR (R/W) are fixed to either "H" or "L". The serial access mode does NOT support read operation.2C86C86 = "H": 6800 Series MPU interface.3V0This is the MPU interface selection pin. C86 = "H": 6800 Series MPU interface.3V0This is a multi-level power supply for the liquid crystal drive. The voltage supply applied is determined by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VSS, and must maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ 7V48C2-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.9C2+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.	Din No	Sumbol	Description							
P/S = "H": Parallel data input/output. P/S = "L": Serial data input.1P/SP/SData/CommandDataRead/WriteSerial ClockP/SData/CommandDataRead/WriteSerial Clock'H"D/CD/CD0 to D7RD, WRX'L"D/CD7Write onlyD6When P/S = "L", D0 to D5 must be fixed to "H".RD (E) and WR (R/W) are fixed to either "H" or "L". The serial access mode does NOT support read operation.2C86C86 = "H": 6800 Series MPU interface. C86 = "L": 8080 Series MPU interface. C86 = "L": 8080 Series MPU interface.3V0This is the MPU interface selection pin. C86 = "L": 8080 Series MPU interface.6V3impedance using an op. amp. Voltage levels are determined based on VSS, and must maintain the relative magnitudes shown below. V0 $\geq V1 \geq V2 \geq V3 \geq V4 \geq VSS$ 7V4When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltage shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: V1= 6/7 * V0, V2=5/7 * V0, V3=2/7 *V0, V4=1/7 * V0.8C2- C2+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.10C1+ C2/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.11C1- C1-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.12C3+ DC/DC voltage converter. Connect a capacitor	Pin No.	Symbol	Description This pin configures the interface to be parallel mode or serial mode.							
2C86This is the MPU interface selection pin. C86 = "H": 6800 Series MPU interface. C86 = "L": 8080 Series MPU interface.3V0This is a multi-level power supply for the liquid crystal drive. The voltage supply applied is determined by the liquid crystal cell, and is changed 	1	P/S	P/S = "H": Parallel data input/output.P/S = "L": Serial data input.The following applies depending on the P/S status: P/S Data/CommandDataRead/WriteSerial Clock"H"D/CD0 to D7 \overline{RD} , \overline{WR} "L"D/CD7Write onlyWhen P/S = "L", D0 to D5 must be fixed to "H". \overline{RD} (E) and \overline{WR} (R/W) are fixed to either "H" or "L".							
3V0This is a multi-level power supply for the liquid crystal drive. The voltage4V1supply applied is determined by the liquid crystal cell, and is changed5V2through the use of a resistive voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VSS, and must maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ 7V4When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: V1= 6/7 * V0, V2=5/7 * V0, V3=2/7 *V0, V4=1/7 * V0.8C2-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.9C2+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.11C1+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.12C3+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.13VOUTDC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.14VSSGround.	2	C86	This is the MPU interface selection pin. C86 = "H": 6800 Series MPU interface.							
4V1supply applied is determined by the liquid crystal cell, and is changed through the use of a resistive voltage divided or through changing the impedance using an op. amp. Voltage levels are determined based on VSS, and must maintain the relative magnitudes shown below. 	3	V0								
6V3impedance using an op. amp. Voltage levels are determined based on VSS, and must maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: $V1=6/7 * V0, V2=5/7 * V0, V3=2/7 *V0, V4=1/7 * V0.$ 8C2-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.9C2+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.10C1+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.11C1-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.12C3+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.13VOUTDC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.14VSSGround.	4	V1								
7V4and must maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: V1= 6/7 * V0, V2=5/7 * V0, V3=2/7 *V0, V4=1/7 * V0.8C2-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.9C2+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.10C1+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.11C1-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.12C3+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.13VOUTDC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD.14VSSGround.	5	V2	through the use of a resistive voltage divided or through changing the							
7 $V4$ $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command. For 1/7 bias: $V1 = 6/7 * V0$, $V2 = 5/7 * V0$, $V3 = 2/7 * V0$, $V4 = 1/7 * V0$.8C2-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal.9C2+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.10C1+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.11C1-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.12C3+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.13VOUTDC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD.14VSSGround.	6	V3	impedance using an op. amp. Voltage levels are determined based on VSS,							
8 C2- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2P terminal. 9 C2+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal. 10 C1+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. 11 C1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. 11 C1- DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal. 12 C3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. 13 VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD. 14 VSS Ground.	7	V4	and must maintain the relative magnitudes shown below. $V0 \ge V1 \ge V2 \ge V3 \ge V4 \ge VSS$ When the power supply turns ON, the internal power supply circuits produce the V1 to V4 voltages shown below. The voltage settings are selected using the LCD bias set command.							
9C2+CAP2N terminal.10C1+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.11C1-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.12C3+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.13VOUTDC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD.14VSSGround.	8	C2-	DC/DC voltage converter. Connect a capacitor between this terminal and the							
10C1+CAP1N terminal.11C1-DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.12C3+DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.13VOUTDC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD.14VSSGround.	9	C2+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP2N terminal.							
II CI- CAP1P terminal. 12 C3+ DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal. 13 VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD. 14 VSS Ground.	10	C1+	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1N terminal.							
12 C3+ CAP1N terminal. 13 VOUT DC/DC voltage converter. Connect a capacitor between this terminal and VSS or VDD. 14 VSS Ground.	11	C1-	DC/DC voltage converter. Connect a capacitor between this terminal and the CAP1P terminal.							
13 VOU1 or VDD. 14 VSS Ground.	12	C3+	DC/DC voltage converter. Connect a capacitor between this terminal and the							
	13	VOUT								
15 VDD Power supply pins for logic.	14	VSS	Ground.							
	15	VDD	Power supply pins for logic.							

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Table 2(b): Pin Assignment

Pin No.	Symbol	Description
16	D7	
17	D6	This is an 8-bit bi-directional data bus that connects to an 8-bit standard MPU
18	D5	data bus. When the equiplinterface is calculated $(\mathbf{P}(\mathbf{S} - \mathbf{L})\mathbf{Q}\mathbf{W})$ then \mathbf{D}^{2} correspondence the equiplication
19	D4	When the serial interface is selected ($P/S = LOW$), then D7 serves as the serial data input terminal (SI) and D6 serves as the serial clock input terminal (SCL).
20	D3	At this time, D0 to D5 are set to high impedance.
21	D2	When the chip select is inactive, D0 to D7 are set to high impedance.
22	D1	when the emp select is macrive, bo to by the set to mgn impedance.
23	D0	
24	E(RD)	When connected to 8080 series MPU, this pin is treated as the "RD" signal of the 8080 MPU and is LOW-active. The data bus is in an output status when this signal is "L". When connected to 6800 series MPU, this pin is treated as the "E" signal of the 6800 MPU and is HIGH-active. This is the enable clock input terminal of the 6800 Series MPU.
25	R/W(WR)	When connected to 8080 series MPU, this pin is treated as the " \overline{WR} " signal of the 8080 MPU and is LOW-active. The signals on the data bus are latched at the rising edge of the \overline{WR} signal. When connected to 6800 series MPU, this pin is treated as the "R/W" signal of the 6800 MPU and decides the access type : When R/W = "H": Read. When R/W = "L": Write.
26	D/C	This is connect to the least significant bit of the normal MPU address bus, and it determines whether the data bits are data or command. D/C = "H": Indicates that D0 to D7 are display data. D/C = "L": Indicates that D0 to D7 are control data.
27	CS1	This is the chip select signal. When /CS1 = "L", then the chip select becomes active, and data/command I/O is enabled.
28	RES	When $\overline{\text{RES}}$ is set to "L", the register settings are initialized (cleared). The reset operation is performed by the /RES signal level.

Supplied by: Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

BATRON

4. Absolute Maximum Ratings

4.1 Electrical Maximum Ratings – for IC Only

Table 3

Parameter	Symbol	Min.	Max.	Unit
Power Supply voltage (Logic)	VDD	+0.3	+3.6	V
Power Supply voltage (VDD2)	VDD2	+0.3	+3.6	V
Power Supply voltage (V0, VOUT)	V0, VOUT	+0.3	+14.5	V
Power Supply voltage (V1, V2, V3, V4)	V1, V2, V3, V4	V0	+0.3	V

Note:

- 1. The VDD2, V0 to V4 and VOUT are relative to the VSS = 0V reference.
- 2. Insure that the voltage levels of V1, V2, V3, and V4 are always such that VOUT \geq V0 \geq V1 \geq V2 \geq V3 \geq V4.
- 3. Permanent damage to the LSI may result if the LSI is used outside of the absolute maximum ratings. Moreover, it is recommended that in normal operation the chip be used at the electrical characteristic conditions, and use of the LSI outside of these conditions may not only result in malfunctions of the LSI, but may have a negative impact on the LSI reliability as well.

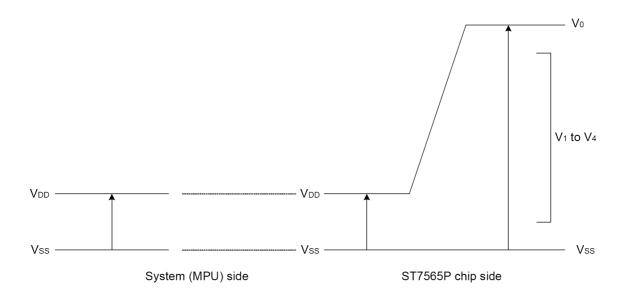


Figure 3

Supplied by: Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

4.2 Environmental Condition

Table 4

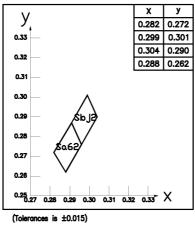
Item	Operating Temperature (Topr)		Storage Temperature (Tstg) (Note 1)		Remark	
	Min. Max.		Min.	Max.	-	
Ambient Temperature	0°C	+50°C	-20°C	+65°C	Dry	
Humidity (Note 1)		90% max. RH for Ta \leq 40°C < 50% RH for 40°C < Ta \leq Maximum operating temperature				
Vibration (IEC 68-2-6) cells must be mounted on a suitable connector	Frequency: Amplitude: Duration: 20			3 directions		
Shock (IEC 68-2-27) Half-sine pulse shape	Pulse duratio Peak accelera Number of sl perpendicula	3 directions				

Note 1: Product cannot sustain at extreme storage conditions for long time.

5. Electrical Specifications

5.1 Typical Electrical Characteristics

At Ta = +25 °C, VDD = +3.3±5%, VSS = 0V.


Table 5									
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit			
Supply voltage (Logic)	VDD-VSS		3.14	3.3	3.47	V			
Supply voltage (LCD) (built-in)	VLCD =V0-VSS	Ta = 0 °C, Character mode, VDD = $+3.3$ V, Note 1	-	8.9	-	v			
		Ta = 25 °C, Character mode, VDD = $+3.3$ V, Note 1	8.6	8.8	9.0	V			
		Ta = $+50$ °C, Character mode, VDD = $+3.3$ V, Note 1	-	8.5	-	v			
Low-level input signal voltage	V _{ILC}	Note 2	VSS	-	0.2xVDD	V			
High-level input signal voltage	V _{IHC}	Note 2	0.8xVDD	-	VDD	v			
Supply Current (Logic & LCD)	IDD	VDD = +3.3V,Note 1, Character mode	-	0.46	0.69	mA			
		VDD = +3.3V,Note 1, Checker board mode	-	0.78	1.2	mA			
Supply current of LED02 White backligh	VLED	Forward current = 2×15 mA	3.2	3.6	4.0	V			
Luminance (on the backlight surface) of backlight		Number of LED dice =2dies.	-	495	-	cd/m ²			

Note 1: There is tolerance in optimum LCD driving voltage during production and it will be within the specified range.

Note 2: D/C, D0 to D5, D6, D7, $E(\overline{RD})$, $R/W(\overline{WR})$, $\overline{CS1}$, C86, P/S, \overline{RES} terminals.

Note 3: Do not display a fixed pattern for more than 30 min. because it may cause image sticking due to LCD characteristics. It is recommended to change display pattern frequently. If customer must fix display pattern on the screen, please consider to activate screen saver.

5.2 Appendix - LED Chromatics Coordinates

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

5.3 Timing Specifications

System Bus read/Write Characteristics 1 (For the 8080 Series MPU) At Ta = 0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

<u>Table 6</u>

Itom	Signal	Signal Symbol Co		Rating		Units
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		tан8		0	-	
Address setup time	A0	tAW8		0	—	
System cycle time		tсүс8		240	—	$\left \right $
Enable L pulse width (WRITE)	WR	tCCLW		80	—]
Enable H pulse width (WRITE)		tсснw		80	_	
Enable L pulse width (READ)	RD	tCCLR		140	—	Ns
Enable H pulse width (READ)		tCCHR		80		
WRITE Data setup time		tDS8		40	—	
WRITE Address hold time	D0 to D7	tdh8		0	—]
READ access time		tACC8	C∟ = 100 pF		70	1
READ Output disable time		tонв	C∟ = 100 pF	5	50	1

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(t_r + t_f) \leq (t_{CYC8} - t_{CCLW})$ for $(t_r + t_f) \leq (t_{CYC8} - t_{CCLW})$ are specified.

 $^{\ast}2$ All timing is specified using 20% and 80% of VDD as the reference.

*3 tCCLW and tCCLR are specified as the overlap between /CS1 being "L" (CS2 = "H") and /WR and /RD being at the "L" level.

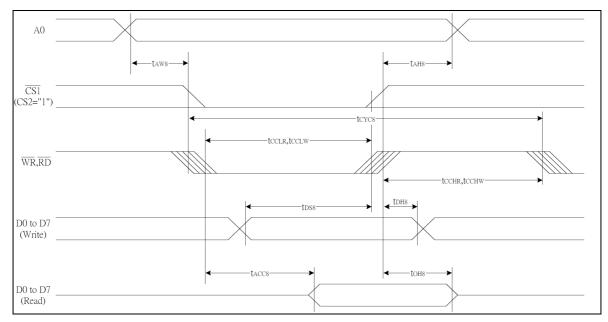


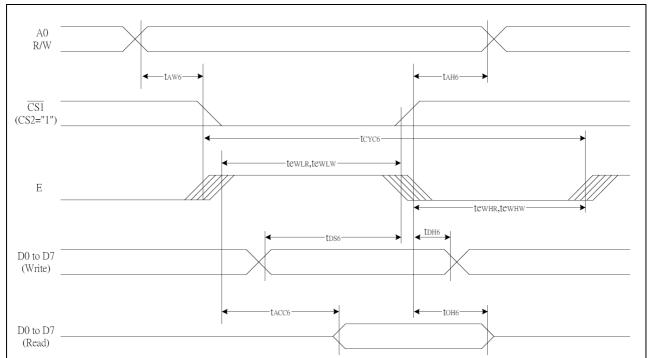
Figure 5: The timing diagram of system bus read/write (For the 8080 Series MPU)

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

System Bus read/Write Characteristics 2 (For the 6800 Series MPU)


At Ta =0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

140.00	Cianal	Cumple of	Condition	Rat	ing	11
Item	Signal	Symbol	Condition	Min.	Max.	Units
Address hold time		t AH6		0	-	
Address setup time	A0	tAW6		0	_	
System cycle time		tcyc6		240	_	
Enable L pulse width (WRITE)	WR	tewlw		80	_	
Enable H pulse width (WRITE)		tewhw		80	_	
Enable L pulse width (READ)	RD	tewlr		80	_	ns
Enable H pulse width (READ)		tewhr		140		
WRITE Data setup time		tDS6		40	_	
WRITE Address hold time		tDH6		0	_	
READ access time	- D0 to D7	tacc6	CL = 100 pF	_	70	1
READ Output disable time	1	t он6	CL = 100 pF	5	50	1

Table 7

*1 The input signal rise time and fall time (tr, tf) is specified at 15 ns or less. When the system cycle time is extremely fast, $(t_r + t_f) \leq (t_{CYC6} - t_{EWLW} - t_{EWHW})$ for $(t_r + t_f) \leq (t_{CYC6} - t_{EWLR} - t_{EWHR})$ are specified.

*2 All timing is specified using 20% and 80% of VDD as the reference.

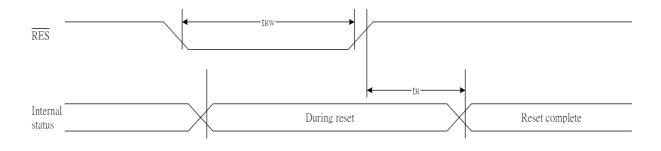
*3 tEWLW and tEWLR are specified as the overlap between CS1 being "L" (CS2 = "H") and E.

Figure 6: The timing diagram of system bus read/write (For the 6800 Series MPU) **Supplied by:**

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

BATRON


Reset Timing

At Ta =0 °C to +50 °C, VDD = +3.3V±5%, VSS = 0V.

Table 8

ltem	Signal	Symbol	Condition	````	Rating		Units
lien	Signal	Symbol	Condition	Min.	Тур.	Max.	Units
Reset time		tr		_	_	1.0	us
Reset "L" pulse width	/RES	trw		1.0	—	_	us

*1 All timing is specified with 20% and 80% of VDD as the standard.

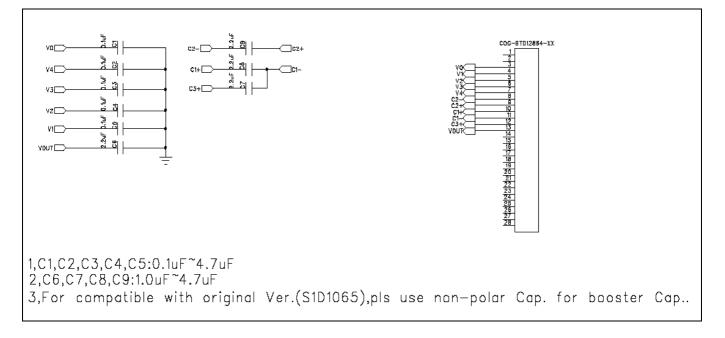
5.4 Command Table

Command Code Command Function A0 /RD /WR D7 D6 D5 D4 D3 D2 D1 D0 1 0 LCD display ON/OFF (1) Display ON/OFF 0: OFF, 1: ON Sets the display RAM display start (2) Display start line set Display start address line address Sets the display RAM page (3) Page address set Page address address (4) Column address set Most significant Sets the most significant 4 bits of the display RAM column address. upper bit column address Column address set Least significant Sets the least significant 4 bits of lower bit column address the display RAM column address. (5) Status read Status 0 0 0 Reads the status data (6) Display data write Write data Writes to the display RAM (7) Display data read Read data Reads from the display RAM Sets the display RAM address 0 0 (8) ADC select SEG output correspondence 0: normal, 1: reverse Sets the LCD display normal/ (9) Display normal/ reverse reverse 0: normal, 1: reverse Display all points (10) Display all points 1 0 0: normal display ON/OFF 1: all points ON Sets the LCD drive voltage bias (11) LCD bias set ratio 0: 1/9 bias, 1: 1/7 bias (ST7565P) Column address increment (12) Read/modify/write At write +1 At read: 0 (13) End Clear read/modify/write (14) Reset Internal reset Select COM output scan direction (15) Common output 0: normal direction mode select 1: reverse direction Operating Select internal power supply (16) Power control set mode operating mode (17) V0 voltage regulator Resistor Select internal resistor internal resistor ratio ratio(Rb/Ra) mode ratio set (18) Electronic volume 0 0 1 Set the V0 output voltage mode set Electronic volume Electronic volume value electronic volume register register set (19) Static indicator 0: OFF, 1: ON ON/OFF Static indicator 0 Mode Set the flashing mode register set select booster ratio 0 0 00: 2x,3x,4x (20) Booster ratio set step-up 01: 5x value 11: 6x Display OFF and display all (21) Power saver points ON compound command (22) NOP Command for non-operation Command for IC test. Do not * * * * (23) Test use this command

Table 9

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.


Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com

5.5 Initial code setting (for reference only)

Table 10						
Description	Setting data					
Reset	0xe2					
LCD bias set	0xa3					
ADC select	0xa0					
Common output mode select	0xc8					
V5 voltage regulator internal resistor ratio set	0x25					
Electronic volume mode set	0x81					
Electronic volume	0x13					
Power control set	0x25					
Display start line set	0x40					
Page address set	0xb0					
Column address upper bit set	0x10					
Column address lower bit set	0x04					
Display all point ON/OFF	0xa4					
Display normal or reverse	Охаб					

5.6 Reference circuit

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com


6. Electro-Optical Characteristics

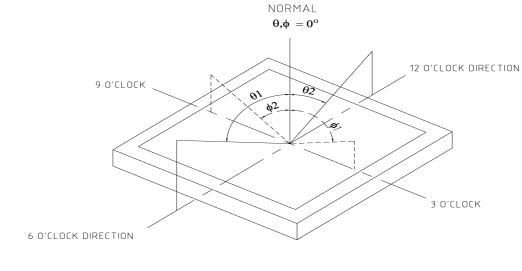
Itom	Crumb al	Temp.	o. Value			I Init	Condition	
Item	Symbol	°C	Min.	Тур.	Max.	Unit	Condition	
Driving voltage	Vop	+25	-	8.8	-	V	Vop= optimum voltage	
Response time	Ton	+25	-	220	330	msec	Vop= Optimum voltage $\theta = 0^{\circ}, \phi = 0^{\circ}$	
	Toff	+23	-	240	360			
Optimum viewing area Cr ≥ 2	$\theta 1(6 \text{ o'clock})$	+25	21	30	-	DEG	$\phi = 0^{\circ}$	Vop= Optimum voltage (Remark 1)
	$\theta 2(12 \text{ o'clock})$		35	50	-			
	<pre> \$\$\\$\\$</pre>		32	45	-		$\theta = 0^{\circ}$	
	<pre> \$\$\\$\\$</pre>		32	45	-			
Contrast ratio	Cr	+25	4	6	-	-	Vop = Optimum voltage $\theta = 0^\circ, \phi = 0^\circ$	
Transmittance		+25	19%	28%	-	-	Vop = Optimum voltage	

<u>Table 11</u>

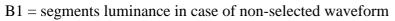
Remark 1: Due to hardware limitation, the maximum measurable angle is 50 $^{\rm O}$

6.1 ISO plot

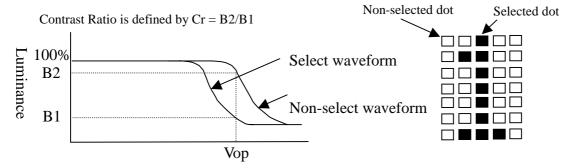
Supplied by:

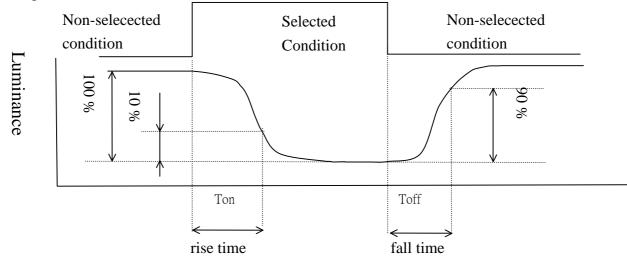

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com



6.2 Optical Characteristics Definition


a.) Viewing Angle


b.) Contrast Ratio

B2 = segments luminance in case of selected waveform

c.) Response Time

Supplied by:

Midas Displays, Sauls Wharf House, Crittens Road, Great Yarmouth, Norfolk, NR310AG.

Telephone: +44 (0)1493 602602 Website: www.midasdisplays.com