

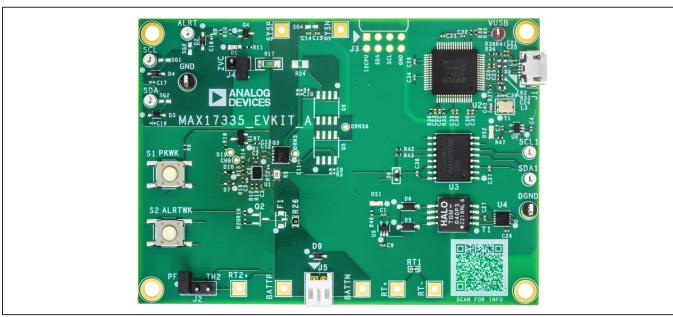
MAX17335 Evaluation Kit

General Description

The MAX17335 evaluation kit (EV kit) is a fully assembled and tested surface-mount PCB that evaluates the standalone charger, fuel gauge IC with protector and optional SHA-256 authentication for 1 cell lithium-ion/polymer batteries.

The MAX17335 EV kits include the IC evaluation board with integrated I²C interface and USB micro-B cable. Windows[®] based graphical user interface (GUI) software is available for use with the EV kit and can be downloaded from https://www.analog.com/en/products/max17335.html product page under the **Design Resources** tab. Windows 7 or newer Windows operating system is required to use with the EV kit GUI software.

MAX17335 EV Kit Files


FILE	DESCRIPTION
MAX17335EVKitGUISetup.msi	Installs all EV kit files on a computer

Benefits and Features

- ModelGauge m5 Algorithm
- Charges, Monitors, and Protects a 1S Battery
- Full Protection Solution On-Board for Evaluation
- Battery Voltage (V_{BATT}) Range of +2.16V to +4.9V with Default Hardware
- Input Voltage up to 5.7V
- Default Current Range -5A (Discharge) to +2.56A (Charge) with 10mΩ Sense Resistor (Higher Currents can be Supported by Changing to a Smaller Sense Resistor)
- Two Thermistor Measurements
- On-Board I²C Communication Interface with Built-In MAXUSB Interface
- Windows 7 or Newer Compatible Software
- Proven PCB Layout
- Fully Assembled and Tested

Ordering Information appears at end of data sheet.

MAX17335 EV Kit Photo

Windows is a registered trademark and registered service mark of Microsoft Corporation.

319-101072; Rev 0; 8/24

Quick Start

Required Equipment

- MAX17335 Evaluation kit
- Lithium-ion/Polymer cell
- Voltage source/Power supply
- Load circuit
- USB Micro B cable
- PC with Windows 7 or newer windows operating system and USB port

Procedure

Follow the steps to install the EV kit software, make required hardware connections, and start operation of the kits. The EV kit software can be launched without the hardware attached. It automatically recognizes the hardware when connections are made. Note that after communication is established with the IC, it must be configured correctly for proper operation.

- Visit https://www.analog.com/en/products/max17335.html page under the Design Resources tab to download the latest version of the MAX17335 EV kit software. Save the EV kit software to a temporary folder and unpack the ZIP file.
- 2) Install the EV kit software on a computer by running the MAX17335EVKitGUISetup.msi program inside the temporary folder. The program files are copied, and icons are created in the Windows **Start** menu.

The software requires Windows 7 or a newer operating system. The software requires the .NET Framework 4.5 or later. If you are connected to the internet, Windows automatically updates the .NET framework as needed.

Evaluates: MAX17335

- 3) Follow the prompts to complete the installation. The evaluation software can be uninstalled in the **Add/Remove Programs** tool in the **Control Panel**.
- 4) The EV kit software launches automatically after installation or alternatively, it can be launched by clicking on its icon in the Windows <u>Start</u> menu.
- Make connections to the EV kit board based on Figure 1. The cell connects between the BATTN/ BATTP pads. The load or charger circuit can be connected between the SYSN and SYSP pads at this time as well.
- 6) Connect the EV kit to a USB port on the PC using the USB cable. Press the PKWK button to wake up the MAX17335. The GUI software establishes communication automatically.
- At startup, the IC defaults to EZ Configuration. If a custom .INI file for the application is available, it should be loaded at this time.
- 8) To begin charging, connect a source at SYSP/SYSN. The MAX17335 regulates the voltage and current based on the settings in the Charging Configuration. Connect a resistor or an E-Load to begin discharging the battery.

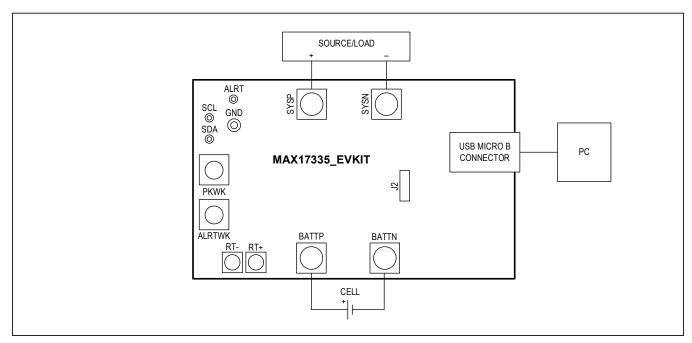


Figure 1. MAX17335 Board Connections

Detailed Description of Hardware

The MAX17335 EV kit board provides a variety of features that highlight the functionality of the IC. The following sections detail the most important aspects of the EV kit board.

Communication Connections

The USB interface on the PCB establishes I²C communication between the IC and the software GUI interface. When developing application code separately, connections to the communication lines can be made directly to the board SDA and SCL pins. The user must apply the appropriate external pullup resistors to the communication lines when not using the built-in MAXUSB interface.

Wake buttons

When the MAX17335 is first connected to a cell, the IC is in a shutdown state. To wake the device, either apply a voltage source across SYSN and SYSP, or if no source or load is connected but a cell is connected, press the PKWK button. When the Pushbutton function is used, the ALRTWK button can be used to pull down the ALRT pin to wake the IC.

External Thermistor

The MAX17335 can be configured to use temperature measurements from one or two external thermistors. All EV kit boards come with two thermistors installed as surface mount components RT1 and RT2. If the application requires direct thermal contact to the cells, RT1 can be removed and replaced with a leaded thermistor connected between the RT+/RT- solder pads. RT2 is placed close to the FET Q3 to monitor the FET temperature. J2 must be selected to TH2 setting to use the second thermistor to measure the FET temperature, or J2 can be connected to PFAIL.

Sense Resistor Options

All EV kit boards are shipped with a $10m\Omega$ 0805-size chip sense resistor installed. Oversized land pattern pads allow for different size sense resistors to be used if desired.

External I²C Interface

J3 is an unpopulated header that can be used to interface the MAX17335 USB interface to a custom board, or to interface a custom I²C master to the MAX17335 on the EV kit. Cut the traces between the two rows of headers to separate the MAXUSB interface from the MAX17335. To interface to a MAX17335 IC on another PCB using the MAXUSB and EV kit GUI, use the pins on the pin 1 side. To connect to a different I²C master, use the pins on the GND/SCL/SDA silkscreen side. An external pullup must be supplied on SDA and SCL when interfacing with a different master.

Evaluates: MAX17335

Detailed Description of Software

The MAX17335 EV kit software gives the user complete control of all functions of the MAX17335, as well as the ability to load a custom model into the IC. Separate control tabs allow the user access to view real-time updates of all monitored parameters. The software also incorporates a data-logging feature to monitor a cell over time.

After the installation is complete, open the **Program** Files (x86)\Maxim Integrated\MAX17335 folder and run MAX17335.exe or select it from the **Program** menu. Figure 2 shows a splash screen containing information about the EV kit that appears as the program is being loaded.

Figure 2. EV Kit Splash Screen

Communication Port

The EV kit software automatically finds the EV kit when connected to any USB port. Communication status is shown on the right-hand side of the bottom status bar. See Figure 3. If the EV kit cannot be found, a **No USB Adapter** message is displayed. If the EV kit is found, but the IC cannot be found, a **No Slave Device** message is displayed. If the IC is properly powered, pressing the PKWK button wakes up the IC. Otherwise, if communication is valid, a green bar updates as the software continuously reads the IC registers.

The bottom status bar also displays information on data logging status, the communication mode, power mode, selected current-sense resistor value, device serial number, and the EV kit GUI's version number.

Program Tabs

All functions of the program are distributed under various tabs in the main program window. Click on the appropriate tab to move to the desired function page.

- Located on the ModelGauge m5 tab is the primary user information measured and calculated by the IC.
- The **Charger + Protectio**n tab displays all the charger and protection settings of the IC.
- The Graphs tab visually displays fuel gauge changes over time.
- The **Registers** tab allows the user to view and modify common fuel gauge registers one at a time.
- The Commands tab allows for special operations such as initializing the fuel gauge logging and performing fuel gauge reset.
- The Configuration tab allows the user to modify the NVMemory registers one at a time, but any changes here are not written to NVMemory.
- The Authentication tab allows the user to send and verify the SHA commands.

 The History tab allows all of the history information to be recalled and viewed from the IC.

Evaluates: MAX17335

- If SBS Mode is enabled on the IC, the **SBS** tab is displayed to show the SBS Memory Map.
- The I2C Traffic Log tab maintains a log of any special communication with the IC.

All tabs are described in more detail in the following sections.

ModelGauge m5 Tab

The **ModelGauge m5** tab in <u>Figure 4</u> displays the important output information read from the IC. Information is grouped by function and each is detailed separately.

State of Charge

The **State of Charge** group box displays the main output information from the fuel gauge: state of charge of the cell, remaining capacity, time to full, and time to empty.

Cell Information

The **Cell Information** group box displays information related to the health of the cell such as the cell's age, internal resistance, present capacity, number of equivalent full cycles, and change in capacity from when it was new.

Measurements

The **Measurements** group box displays ADC measurements that are used by the fuel gauge to determine the state of charge.

Charge Status

The **Charge Status** group box displays the desired charging current and voltage for the battery state and temperature. It also indicates the charging control mode. When the mode is CC, the Pack Current matches the Charging Current register. When the CV mode is indicated, VCell matches Charging Voltage. If the Pack Current is lower than Charging Current, the reason is indicated in this group box.

Figure 3. EV Kit Bottom Status Bar

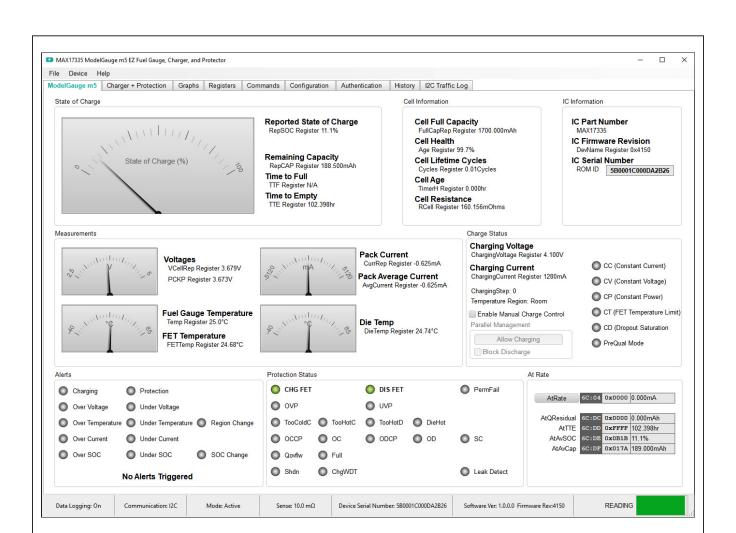


Figure 4. ModelGauge m5 Tab

Parallel Management

When the parallel management function is enabled, the **Allow Charging** button must be pressed to turn on the CHG FET while a charge source is connected. The button changes to show **Stop Charging** while charging is allowed. Press **Stop Charging** to block charging again.

The **Block Discharging** Checkbox turns on the Discharge Blocking function. If the **Block Discharging** box is pressed, the **Allow Charging** button turns off the DIS FET when any negative current is detected. Discharging is allowed when the box is checked, or while the button is blocking charging (shows Allow Charging). See <u>Table 1</u> for more details.

Table 1. Parallel Management FET Control

Evaluates: MAX17335

BUTTON TEXT	BLOCK DISCHARGE BOX	CHG FET	DIS FET
Allow Charging	Unchecked	Blocked	ON
Stop Charging	Unchecked	ON	ON
Allow Charging	Checked	Blocked	ON
Stop Charging	Checked	ON	OFF

Alerts

The **Alerts** group box tracks all possible alert trigger conditions. If any alert occurs, the corresponding LED becomes green for the user to see. The **Clear Alerts** button resets all alert flags.

Protection Status

The **Protection Status** group box displays the status of the charge and discharge FETs as well as all bits of the ProtStatus register. If the FETs LED is green, the current can flow. If the LED is red, there is a fault condition and the FET is open, preventing current flow.

At Rate

The **At Rate** group box allows the user to input a hypothetical load current (AtRate) and the fuel gauge calculates the corresponding hypothetical Qresidual, TTE, AvSOC, and AvCap values.

Charger + Protection Tab

The **Charger + Protection** tab in <u>Figure 5</u> displays the charger and protection settings read from the IC. The settings cannot be changed from this tab. Please use the **Configuration Wizard** to update these settings. Information is grouped by function and each is detailed separately.

Evaluates: MAX17335

The Measurements, Alerts, and Protection Status group boxes display the same information that is shown on the ModelGauge m5 tab.

Charging Configuration

The **Charging Configuration** group box displays the charging settings and all the protection settings related to charging as well as a graphical view of those selections across the programmable temperature ranges. By clicking the **Show Step Values** button, the step charging values settings pop up as shown in Figure 5.

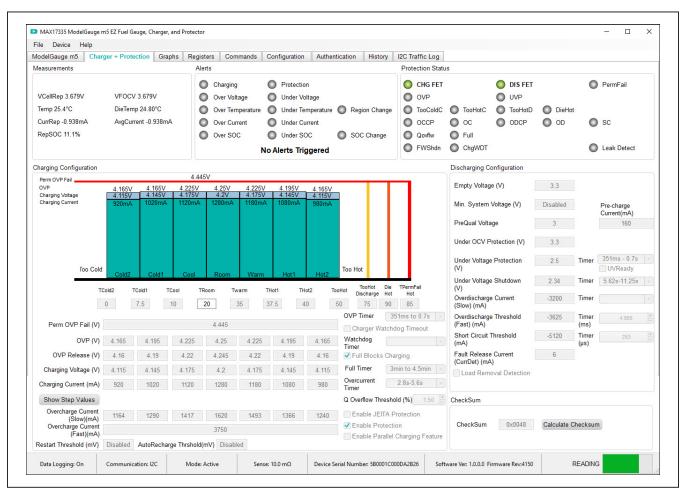


Figure 5. Protector Tab and Step Values

Discharging Configuration

The **Discharging Configuration** group box displays all the protection settings related to discharging.

Graphs Tab

<u>Figure 6</u> shows the format of the **Graphs** Tab. Graph information is grouped into four categories: **Voltages**, **Temperatures**, **Capacities**, and **Currents**. The user can turn on or off any data series using the checkboxes on

the right-hand side of the tab. The graph visible viewing area can be adjusted from 10 minutes up to 1 week. The graphs remember up to 1 week's worth of data. If the viewing area is smaller than the time range of the data already collected, the scroll bar below the graphs can be used to scroll through graph history. All graph history information is maintained by the program. Graph settings can be changed at any time without losing data. Voltages in the graph are plotted as an average cell voltage measurement.

Evaluates: MAX17335

Figure 6. Graphs Tab

Registers Tab

The **Registers** tab in <u>Figure 7</u> allows the user access to all fuel gauge-related registers of the IC. The user can sort the registers either by function or by their internal address by clicking the appropriate button at the top of the tab. Each line of data contains the register name, register address, a hexadecimal representation of the data stored in the register, and if applicable, a conversion to application units.

The MAX17335 has a **Write Protection** function that prevents accidental writing of any register. Before writing any register, the Write Protection must be disabled. The GUI provides a convenient switch at the top of the

Registers and **Configuration** tabs to lock and unlock the Write Protection. The **Write Protection** status is automatically re-enabled if there is no movement of the mouse for 10 seconds to prevent accidentally leaving the **Write Protection** disabled.

Evaluates: MAX17335

To write a register location, first toggle the **Write Protection** slider to unlocked and then click on the button containing the register name. A pop-up window allows the user to enter a new value in either hexadecimal units or application units. The main read loop temporarily pauses while the register updates. The changes made on the **Register** tab are reflected in the I²C Traffic log.

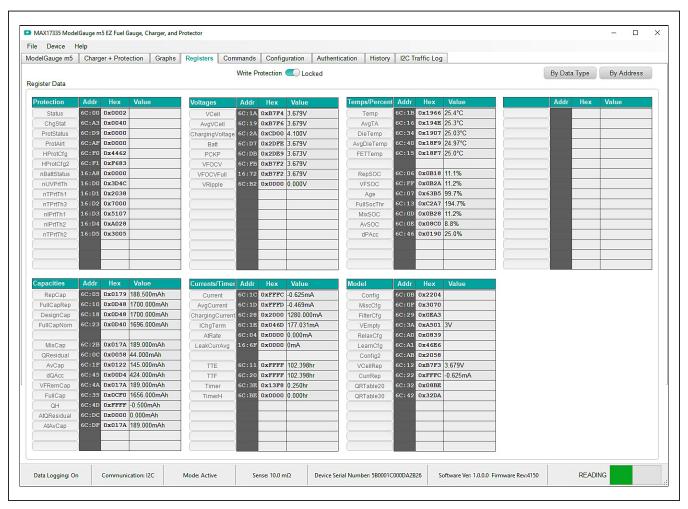


Figure 7. Registers Tab

Commands Tab

The **Commands** tab in <u>Figure 8</u> allows the user to access any general IC functions not related to normal writing and reading of register locations. Each group box of the **Commands** tab is described in detail in the following sections.

Read/Write Register

The user can read a single register location by entering the address in hex and clicking the **Read** button. The user can write a single register location by entering the address and data in hex and clicking the **Write** button. The read loop is temporarily paused each time to complete this action.

Evaluates: MAX17335

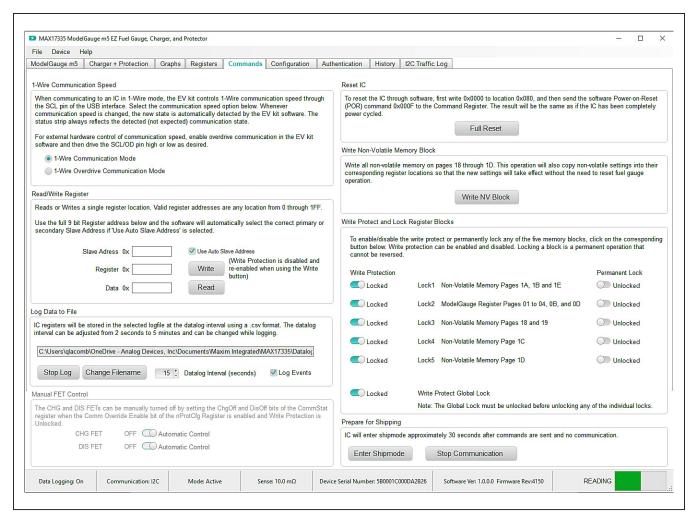


Figure 8. Commands Tab

Log Data to File

Data logging is always active when the EV kit software is started. The default data log storage location is the My Documents/Maxim Integrated/MAX17335/Datalog. csv. The user can stop data logging by clicking the Stop Log button or change the data log file name by clicking the Change Filename button. Whenever data logging is active, it is displayed on the bottom status bar of the EV kit window. All user-available IC registers are logging in a .csv formatted file. The user can adjust the logging interval at any time. The user can also enable or disable the event logging at any time. When event logging is enabled, the data log also stores any IC write or reads that are not part of the normal read data loop and indicates any time communication to the IC is lost.

Reset IC

Clicking the **Full Reset** button sends the software POR command to the command register and sets the POR_CMD bit of the Config2 register to fully reset fuel-gauge and charger operation as if the IC had been power cycled. Note that resetting the IC when the cell is not relaxed causes fuel gauge error.

Nonvolatile Memory Block

Clicking the **Write NV Block** button sends the Copy NV Block command to the command register that causes all register locations from 180h to 1EFh to be stored in nonvolatile memory. Nonvolatile memory has a limited number of copies and the user is prompted to confirm before executing the copy.

Write Protect and Lock Register Blocks

Clicking one of the six **Write Protection** sliders locks or unlocks a page or pages of memory as listed. Before unlocking any individual block, the **Global Lock** slider **must** first be unlocked.

Evaluates: MAX17335

Clicking one of the five **Permanent Lock** sliders locks a page or pages of memory as listed. This is a permanent operation, so the user is prompted to confirm the operation before setting the lock.

Configuration Tab

The Configuration tab has similar formatting to the standard Registers tab as shown in Figure 9, but there are some major differences. When the user changes a register value on the Configuration tab, only the RAM value of that location is changed. The nonvolatile value remains unchanged. Register text changes to **BLUE** to indicate the RAM and nonvolatile values do not match. The user must complete a nonvolatile burn on the Commands tab or run the Configuration Wizard to change the nonvolatile value. The nonvolatile memory has a limited number of updates that are shown in a box on the top right side of the tab. Maxim recommends using the Configuration Wizard to make any changes to nonvolatile memory instead of changing registers manually. The wizard can be launched through the Device drop-down menu at the top of the EV kit software window or by the button on the top-right of the Configuration tab. See the Configuration Wizard section for details. Note any register information that is displayed in the RED text indicates a nonvolatile write error where the data read back after a nonvolatile memory write does not match the expected value. Also note, the Write Protection must be unlocked before modifying any registers.

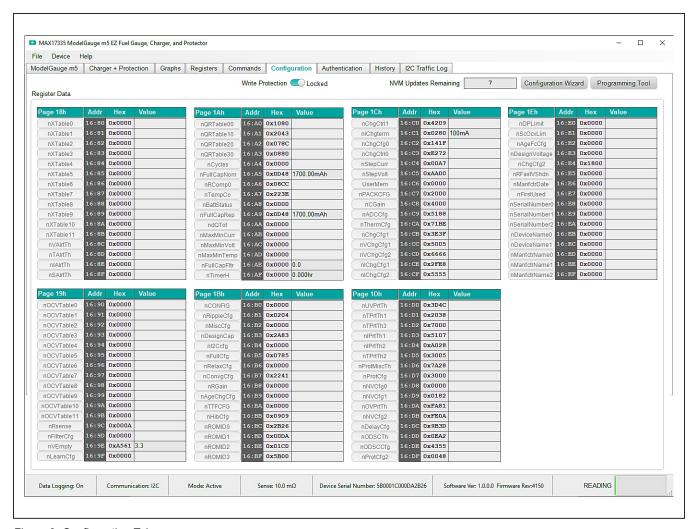


Figure 9. Configuration Tab

Authentication Tab

The **Authentication** tab in <u>Figure 10</u> allows full evaluation of the SHA-256 security feature. Each group box of the **Authentication** tab is described in detail in the following sections.

SHA Challenge/ROM ID

The 160-bit SHA-256 Challenge message consists of ten 16-bit Challenges. To manually enter the challenge message, click the hex value field of each challenge number and edit the value in the text box. Click the **Randomize Challenge** button to create a random challenge message.

SHA Secret

The 160-bit SHA-256 Secret key consists of ten 16-bit Secret values. Unless the secret is specifically programmed by Maxim Integrated for the customer, the default key value is 0. To prepare for authentication with

the IC, enter the known secret value for the IC connected to the GUI. Click **Clear Secret** to reset the key values in the IC to 0. Please note that is not possible to clear the secret if the secret is locked. Click **Lock Secret** to permanently lock the secret value for the IC. **Secret Changes Remaining** shows the remaining chances to update the SHA Secret value.

Evaluates: MAX17335

Authentication Result

This group box provides four methods to perform authentication evaluation. When the authentication process begins, the IC calculates MAC based on the challenge and stored secret value. The GUI, which represents the host-side processor, also calculates based on Challenge and known secret. If the **SHA Secret** is entered correctly matching the programmed secret state in the IC, the authentication should succeed given any challenge using any of the four methods. **Compute MAC with ROM ID**

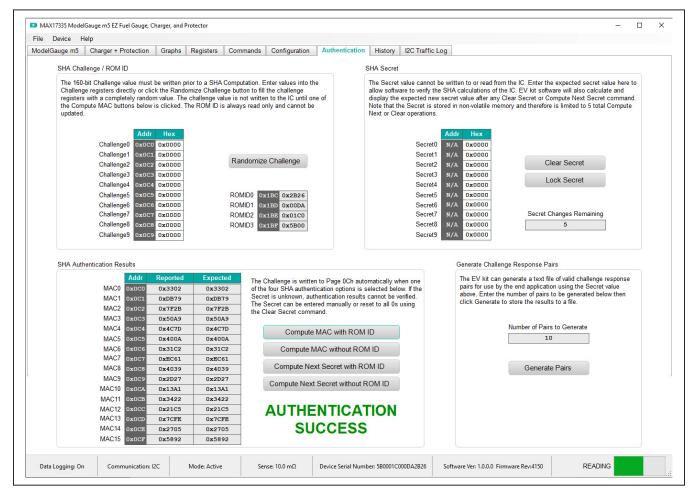


Figure 10. Authentication Tab

teristics change. This column of memory is updated by the IC through usage cycles as the IC observes changes to the battery capacity, observed MaxMin voltages, currents, temperatures, and any battery faults. The updates are saved to nonvolatile memory and can be read over I²C.

Evaluates: MAX17335

computes MAC results based on chip ROM ID that is specific to the chip. Compute MAC without ROM ID would not involve ROM ID into computation, which means the MAC result for every chip given the same challenge and secret should be the same. Compute Next Secret commands not only computes authentication result, but also updates the secret value [Secret0–Secret9] to [MAC6–MAC15]. If there are no Secret Changes Remaining displayed in the SHA Secret group or the Secret is locked, the Secret does not update.

In the **Read History** group box, click the **Read Battery History** button to initiate the nonvolatile history recall process. Once the process is initiated, it takes a while to load the nonvolatile history from the IC. Click the **Read Battery History and Save to File** to save the nonvolatile history to a .csv file in addition to initiate the nonvolatile history recall process. After the recall process is finished, enter in the page number or select the + or – sign to browse through the nonvolatile history at the **Display History Data** tool. The detailed information of the specific page selected is displayed in the **Logging History** section.

History Tab

The **History** tab visualizes all nonvolatile update history on the **0x1Ax** column of the nonvolatile memory map. Figure 11 shows the **History** Tab. This column of nonvolatile memory features the Fibonacci Saving mechanism to help the IC efficiently learn and adapt to battery charac-

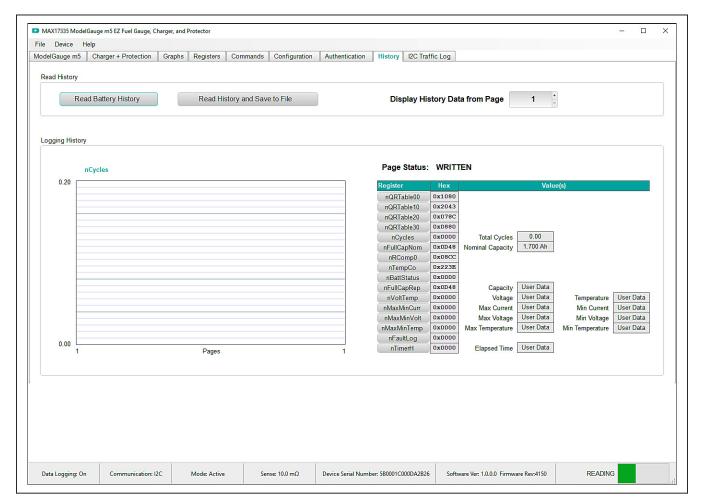


Figure 11. History Tab

Configuration Wizard

Before the IC can accurately charge or calculate the state of the battery, it must be configured with characterization information. This can be accomplished in two ways. The first is through a custom characterization procedure that can be performed by Maxim under certain conditions. The result is a model.INI summary file that contains information that can be programmed into the IC by launching the **Configuration Wizard** and selecting the model.INI file in **Step 2**. Contact Maxim for details on this procedure.

The second method is the ModelGauge m5 EZ configuration. This is the default characterization information shipped inside every IC. This default model produces accurate results for most applications under most operating conditions. It is the recommended method for new designs as it bypasses the custom cell characterization procedure. Some additional information is required from the user for EZ configuration initialization.

In the **Configuration** tab, click the **Configuration Wizard** button. The **Configuration Wizard** window pops up, as shown in <u>Figure 12</u>. Follow the description and complete all the steps in **Configuration Wizard**. Click **Next** when each step is finished.

Step 1 shows the options for how to start with non-volatile programming. For a previously unprogrammed chip, select **Start with Factory Default Values** to begin the evaluation. If there are already nonvolatile memory changes in the IC to be kept, select **Start with Existing Nonvolatile Memory Data**.

Step 2 shows the critical charging and model selection options. Enter the cell nominal voltage and select the Charge Source Voltage (Managed or Fixed input voltage). Enter the Desired Fast Charge current, Sense Resistor value into the text boxes, and select the Heat Limit of the FET from the drop-down menu. For EZ configuration without using the INI file, select the Use ModelGauge m5 EZ Model option. Enter the rated battery capacity, empty voltage (minimum safe system supply voltage), charge termination current, and check the checkbox if charge voltage is greater than 4.275V. If the .INI file is available, select Use Custom Model and load the model.INI file provided by Maxim directly.

The **Communication** interface must also be selected on this screen. To connect to an external communication device, select the slave address. The GUI software automatically tries all slave addresses and communicates with a device at any address. If multiple slave devices are connected to the same GUI, it selects the first device that responds during the address search routine.

Evaluates: MAX17335

In Step 3, charging configuration and protection-related settings need to be configured. Figure 13 shows this step. Use the Charging Voltage and Charging Current fields to set the voltage and current for each temperature zone. If the same voltage and current are desired for all temperatures, either set all fields to the same value, or just set the 2nd column (Room temperature), and deselect Enable JEITA Protection. The checkboxes at the bottom right enable or disable these features. The Enable Protection feature needs to be checked to enable protection. JEITA Charging allows the IC to calculate and report the required charging voltage and charging current base on temperature. If the JEITA Charging feature is desired. check the Enable JEITA Charging checkbox. JEITA Protection allows the IC to protect charging at different charging rates base on temperature condition. Check the Enable JEITA Protection to enable this feature. The upper section of the panel visualizes the JEITA temperature zones and protection thresholds. In the lower section, the user can edit detailed settings like the temperature zone setting, OVP setting, charging voltage setting, and charging current setting. When all the JEITA settings are completed, check the upper section graph to make sure the settings are correct.

The Voltage settings are relative to the Room temperature Charging Voltage. The settings should be done in the order below:

- 1) Room Charging Voltage
- 2) Cold/Warm/Hot Charging Voltage
- 3) OVP
- 4) OVP Release
- 5) Perm OVP Fail

The Room charging current must be set first before Cold/ Warm/Hot currents are set. Other settings can be adjusted independently.

ep 1 / 21: Starting Template				
The configurator can begin with either the exis	Andrew Control of the Control	or revert back to factory default set	tings.	
 Start with Existing Nonvolatile Memory Start with Factory Preferred Default Va 				
Start Will Factory Frerened Default va	ilues			
ep 2 / 21: Mandatory Configuration Options				
Select the charge source and cell model to be already stored in the IC's non-volatile memory,				
Nominal Battery Voltage (V)	3.6			
Charge Source Voltage	Managed DC/DC	Fixed Voltage (V) 5		
Desired Charging Voltage (V)	4.200	VScale: 5mV LSB		
Desired Fast Charge Currrent (mA)	1280.00	QScale: 20.00mALSB		
Sense Resistor (mOhms)	10.00	185mA to 3500.00mA charging supported.		
Heat Limit (mW)	816.00 🔻			
Do Not Change Model Use ModelGauge m5 EZ Model		Communication Interface Slave Address	12C + 0x6C:0x16 +	
1000.0 Cell Size (mA	h)	LiCoO2(Common)	Battery Chemistry*	
3.3 Empty Voltage	e (V per cell)	*Contact Maxim for special cell	chemistries like LiMnO2,	
Charge voltage is greate	er than 4.275V.	LiTiO3 or LiFePO4 that are not	listed.	
177.0 Charge Termi	nation Current (mA)			
Use Custom Model and Other Configu	ıration Registers from Mo	del.INI or Complete.INI File		
Select File Path		I No Or Selection (Cold III)		
Title				

Evaluates: MAX17335

Figure 12. Configuration Wizard—Front Page

Enable Parallel Charging Feature

Next

Figure 13. Configuration Wizard—Step 3

Previous

Charger configuration continues on **Step 4** and **Step 5**, as shown in <u>Figure 14</u>. In **Step 4**, Step-Charging can be enabled, and the voltage and current for each battery state can be set. These parameters are based on room temperature, and if JEITA Charging is enabled, the currents scale relative to the maximum charging current for that temperature.

Step 5 Smart Full allows users to specify the smart-full threshold by adjusting the input box. To disable the Smart-Full function, set it to be 150mV below charging voltage. The charge restart and auto charge thresholds can also be adjusted here.

Evaluates: MAX17335

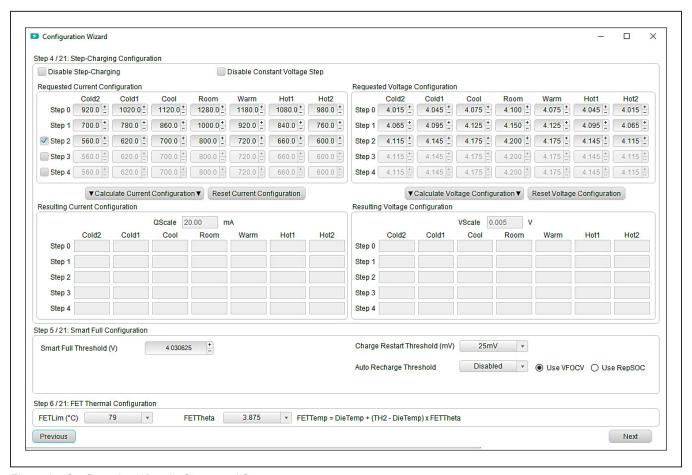


Figure 14. Configuration Wizard—Step 4 and Step 5

From **Step 7** to **Step 8**, the user can edit the Internal Self-Discharge Detection and Discharge protection parameters. See <u>Figure 15</u> and <u>Figure 16</u>. The parameters include detailed protection configurations, thresholds, and timings. **Step 9** configures permanent fail and some additional FET control options. In **Step 10**, choose the power mode for the IC. Enabling hibernate mode allows

the reduction of current consumption by lowering the rate of ADC sampling. Enabling Deepship mode opens the FETs and shuts down any protection functionality during shipping and storage conditions. In **Step 11**, check the **Battery Out** option to allow the communication stop shutdown feature. Check **Pushbutton Wakeup** to allow MAX17335 wakeup using the ALRT pin.

Evaluates: MAX17335

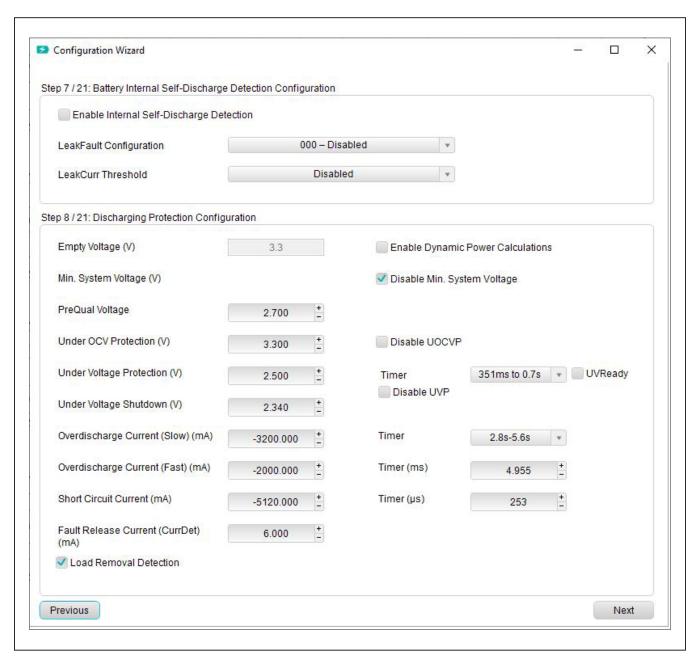
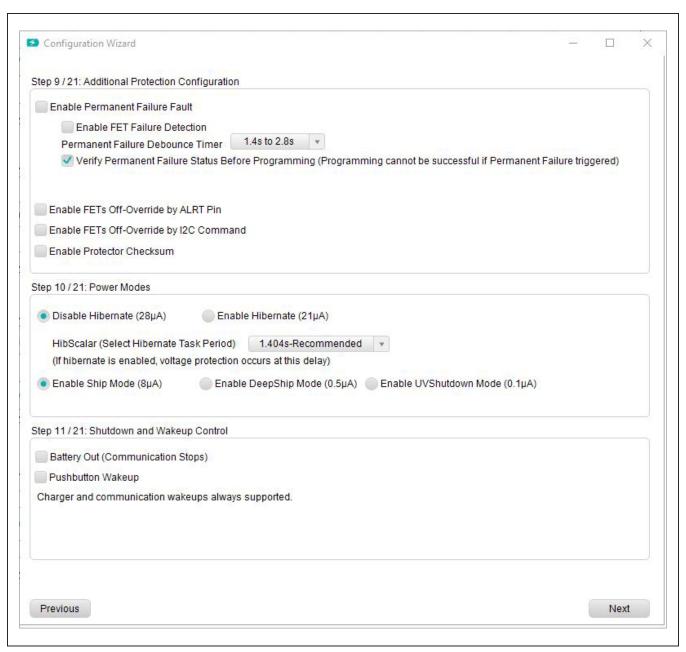



Figure 15. Internal Self-Discharge and Discharge Protection Configurations

Evaluates: MAX17335

Figure 16. Additional Protection Configuration and Power Mode Control

Step 12 sets up the temperature measurement functions of the IC. Select the thermistors and their usage in the drop-down list, and the thermistor coefficients in this step. If there is a special thermistor requirement, look for the NTC model with the closest Beta value in the drop-down list, or enter the value in the Beta field.

Evaluates: MAX17335

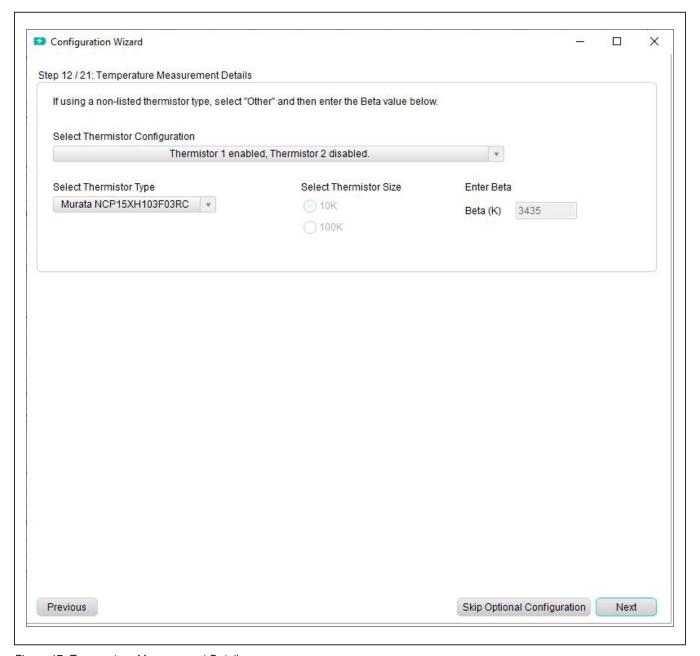


Figure 17. Temperature Measurement Details

From **Step 13** to **Step 20**, follow the step descriptions to fill out all the application-specific information. Unless needed, leave options from **Step 13** to **Step 17** as default. In **Step 18**, Age-Based Deration Configurations can be set. Voltage and current deration steps can be configured

using the drop-down menu as well as the begin, end, and cycles-per-age step. The corresponding derating behaviors, including the number of cycles to be delayed, derating steps, total cycles, final charging current, and voltage, are calculated and shown on the right. See Figure 18.

Evaluates: MAX17335

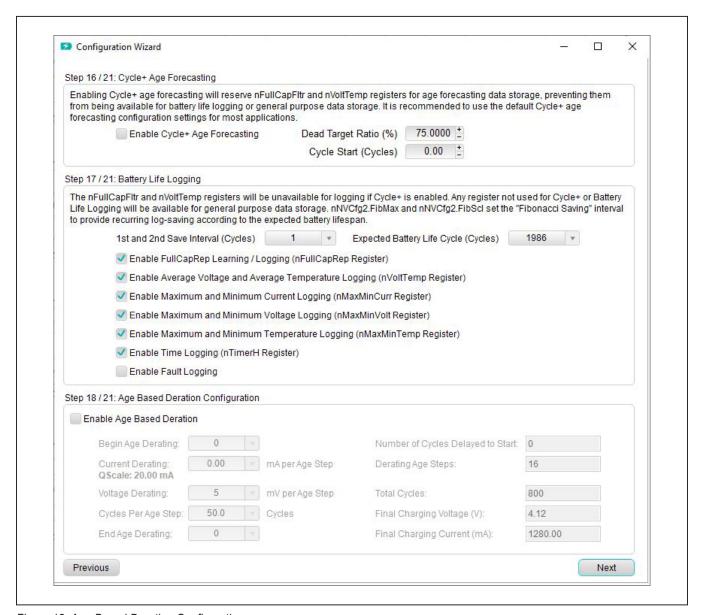


Figure 18. Age Based Deration Configuration

In **Step 21**, the GUI updates the IC based on previous configuration steps. See Figure 19. The nonvolatile configuration memory can only be updated 7 times. Users can choose to only update RAM by selecting the second option. This is a good method to evaluate previous settings without updating the nonvolatile memory. In this mode, if the IC is power cycled, the configuration is lost. If the final configuration is decided, choose the third option **Write**

New Configuration to Non-volatile Memory. It is recommended to check Save New Configuration Settings to .INI file. This allows the resulting configuration in previous steps to be recorded in a Complete.INI file. When the configuration wizard is closed, the previous configurations are not remembered. Click the Update IC button to execute the changes and save the file. Click the Close button to exit the configuration wizard without doing anything.

Evaluates: MAX17335

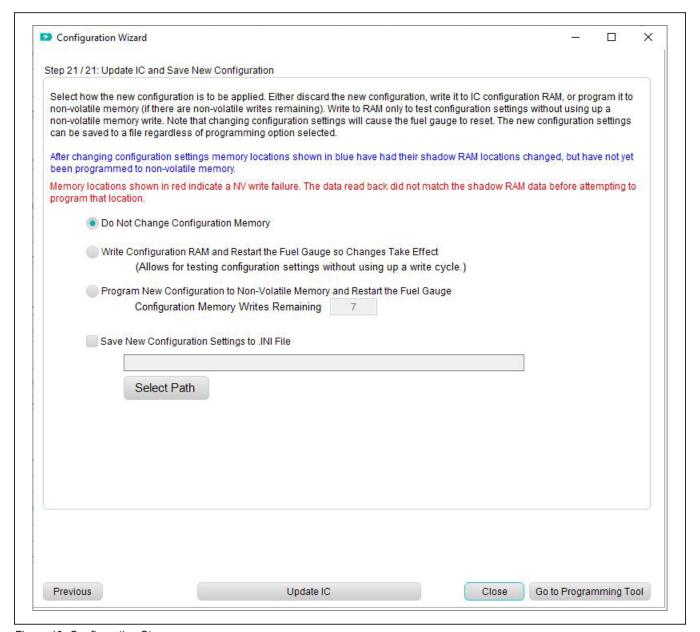


Figure 19. Configuration Step

Programming Tool

The INI file provided by Maxim includes the battery characteristic model only and is referred to as a model.INI file. It does not include custom settings for protector and device operation. The model.INI file must be used with the **Configuration Wizard** to create a complete.INI file. After completion of **Configuration Wizard**, a Complete. INI is generated with all nonvolatile register configurations. With a Complete.INI, the user doesn't need to go through the **Configuration Wizard** again. See Figure 20. In the **Programming Tool** panel, click **Select File** to

select the saved Complete.INI configuration file. The configuration file is typically saved from the configuration step in the **Configuration Wizard** as shown in Figure 20. Click **Program IC** to program nonvolatile memory directly. When there is minor change required on one or two nonvolatile registers, edit the registers inside the complete configuration INI file using the text editor, then program the IC using the programming tool. Manually editing the INI file is generally discouraged and should be done with extreme caution. Users can choose to only update RAM by checking the **Load INI to RAM** checkbox.

Evaluates: MAX17335

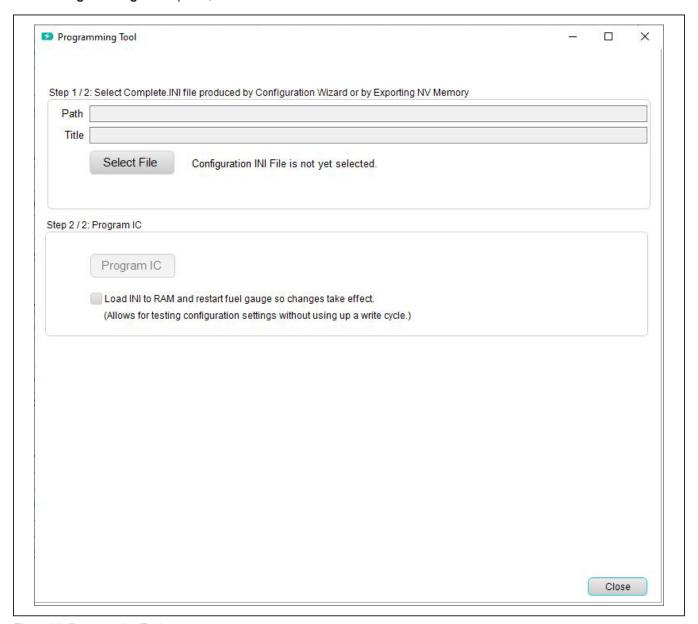


Figure 20. Programming Tool

Hardware Connection Guideline

When evaluating the MAX17335 EV kit with high current or evaluating protection functionality, use real batteries instead of power supplies. When connecting batteries, use a soldered connection instead of jumper cables. During protector switching event, the impedance (inductance) of the lab jumper cables and power supply can cause an overshoot on battery voltage. This voltage spike could potentially cause the voltage across

the BATTP pin to rise above the absolute maximum rating of 6V, damaging the IC permanently. Figure 21 and Figure 22 show good examples of battery connection using soldered connections, battery connectors, and its corresponding BATT voltage waveform during switching event. Figure 23 and Figure 24 show bad examples of battery connection using lab jumper wires and their corresponding BATT voltage waveform.

Evaluates: MAX17335

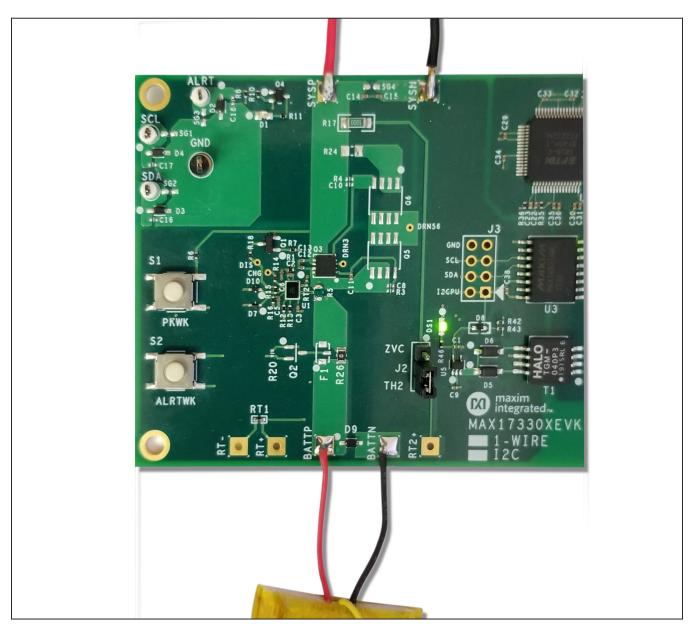


Figure 21. Good Hardware Connection Example (Use Real Batteries and Soldered Connections)

Figure 22. BATT Voltage and Battery Current Waveform at Overcurrent Protection Event with Good Connection

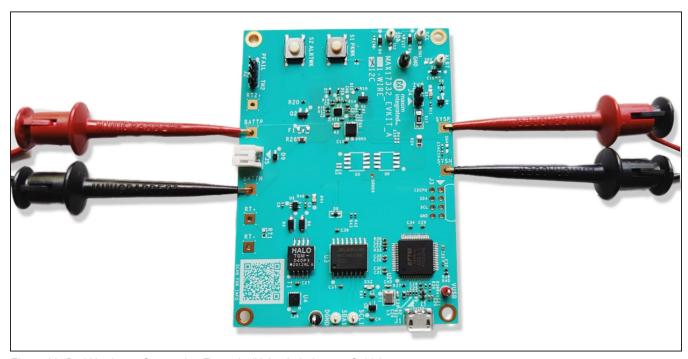


Figure 23. Bad Hardware Connection Example (Using Lab Jumper Cable)

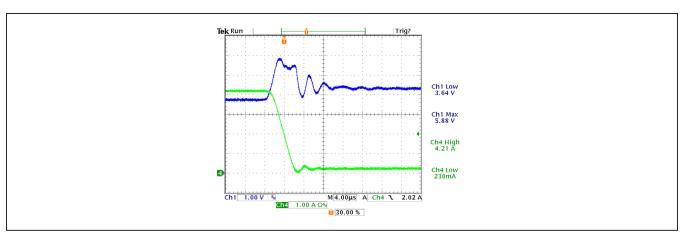


Figure 24. BATT Voltage and Battery Current Waveform at Overcurrent Protection Event with Bad Connection

Component Suppliers

SUPPLIER	PHONE	WEBSITE
Murata Electronics North America, Inc.	770-436-1300	www.murata.com/en-us
TDK Corp.	847-803-6100	www.component.tdk.com
Vishay	402-563-6866	www.vishay.com

Note: Indicate that the MAX17335 is being used when contacting these component suppliers.

Ordering Information

PART	COMMUNICATION INTERFACE	PIN- PACKAGE
MAX17335X2EVKIT#	I ² C	15 WLP

Evaluates: MAX17335

#Denotes an RoHS-compliant device.

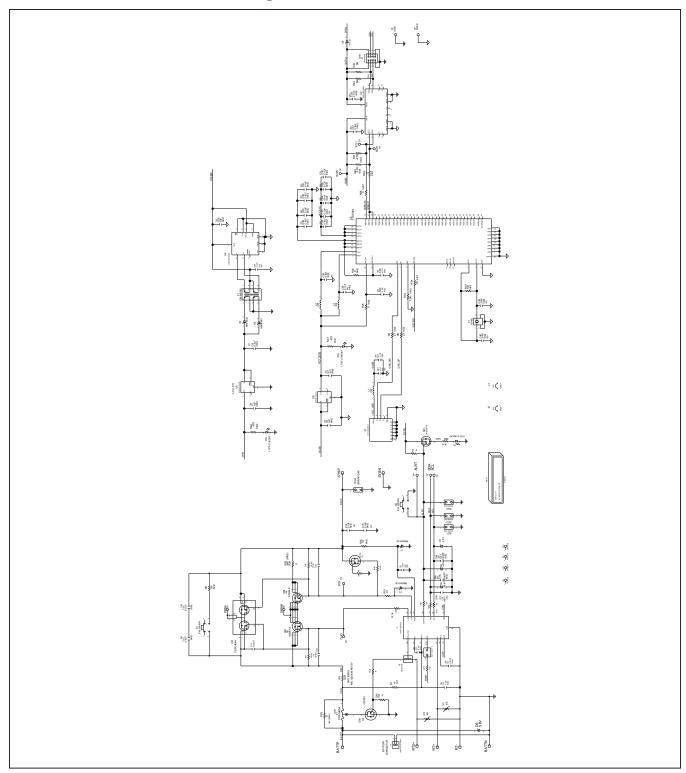
MAX17335 EV Kit Bill of Materials

IVIAA	17333 EV	IXIL L	יוונ	n materials			
ITEM	REF_DES	DNI/DNP	QTY	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION
1	ALRT, SCL, SCL1, SDA, SDA1	1	5	5002	KEYSTONE	N/A	TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; WHITE; PHOSPHOR BRONZE WIRE SILVER;
2	C1, C4, C7, C26	_	4	C0402C105K8PAC; CC0402KRX5R6BB105	KEMET;YAGEO	1UF	CAP; SMT (0402); 1UF; 10%; 10V; X5R; CERAMIC
3	C2, C12-C15, C21, C22, C24, C25, C28-C38	I	20	GRM155R71E104KE14; C1005X7R1E104K050BB; TMK105B7104KVH; CGJ2B3X7R1E104K050BB	MURATA;TDK;TAIYO YUDEN;TDK	0.1UF	CAP; SMT (0402); 0.1UF; 10%; 25V; X7R; CERAMIC
4	C3	1	1	C1005X5R1E474K050; GRT155R61E474KE01	TDK;MURATA	0.47UF	CAP; SMT (0402); 0.47UF; 10%; 25V; X5R; CERAMIC
5	C5	-	1	C0402H102J5GAC	KEMET	1000PF	CAP; SMT (0402); 1000PF; 5%; 50V; C0G; CERAMIC
6	C6, C9	_	2	GRM155R71A104JA01	MURATA	0.1UF	CAP; SMT (0402); 0.1UF; 5%; 10V; X7R; CERAMIC
7	C11	_	1	GRM155R71H223KA12	MURATA	0.022UF	CAP; SMT (0402); 0.022UF; 10%; 50V; X7R; CERAMIC
8	C20, C23, C27	1	3	ZRB15XR61A475ME01; CL05A475MP5NRN; GRM155R61A475MEAA; C1005X5R1A475M050BC	MURATA; SAMSUNG; MURATA;TDK	4.7UF	CAP; SMT (0402); 4.7UF; 20%; 10V; X5R; CERAMIC
9	C39, C40	_	2	C0402C0G500270JNP; GRM1555C1H270JA01	VENKEL LTD.;MURATA	27PF	CAP; SMT (0402); 27PF; 5%; 50V; C0G; CERAMIC
10	D1	-	1	LTST-C190CKT	LITE-ON ELECTRONICS INC.	LTST-C190CKT	DIODE; LED; STANDARD; RED; SMT (0603); PIV=5.0V; IF=0.04A; -55 DEGC TO +85 DEGC
11	D2-D4, D9	-	4	BZX384-C5V6	NXP	5.6V	DIODE; ZNR; SMT (SOD-323); Vz=5.6V; Izm=0.000001A; -65 DEGC TO +150 DEGC
12	D5, D6	I	2	MBR0520	MICRO COMMERCIAL COMPONENTS	MBR0520	DIODE; SCH; SCHOTTKY RECTIFIER; SMT (SOD-123); PIV=20V; IF=0.5A; -55 DEGC TO +150 DEGC
13	D7, D10	I	2	RB520G-30	GENERIC PART	RB520G-30	DIODE; SCH; SCHOTTKY BARRIER DIODE; SMT (SOD-723); PIV=30V; IF=0.1A
14	D8	_	1	RB751S40	FAIRCHILD SEMICONDUCTOR	RB751S40	DIODE; SCH; SMT (SOD-523F); PIV=40V; IF=0.03A
15	DGND, GND	Ι	2	5011	KEYSTONE	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;
16	DS1, DS2	ı	2	LTST-C190GKT	LITE-ON ELECTRONICS INC.	LTST-C190GKT	DIODE; LED; WATER CLEAR GREEN; SMT (0603); VF=2.1V; IF=0.03A; -55 DEGC TO +85 DEGC
17	J1	-	1	10118193-0001LF	FCI CONNECT	10118193-0001LF	CONNECTOR; FEMALE; SMT; MICRO USB B TYPE RECEPTACLE; RIGHT ANGLE; 5PINS
18	J2	-	1	PEC03SAAN	SULLINS	PEC03SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3PINS
19	J4	_	1	TSW-102-07-T-S	SAMTEC	TSW-102-07-T-S	CONNECTOR; THROUGH HOLE; TSW SERIES; SINGLE ROW; STRAIGHT; 2PINS; -55 DEGC TO +105 DEGC
20	J5	-	1	S2B-PH-K-S(LF)(SN)	JST MANUFACTURING	S2B-PH-K-S(LF)(SN)	CONNECTOR; MALE; THROUGH HOLE; 2.0MM PITCH; DISCONNECTABLE CRIMP STYLE CONNECTOR; SIDE ENTRY TYPE; RIGHT ANGLE; 2PINS

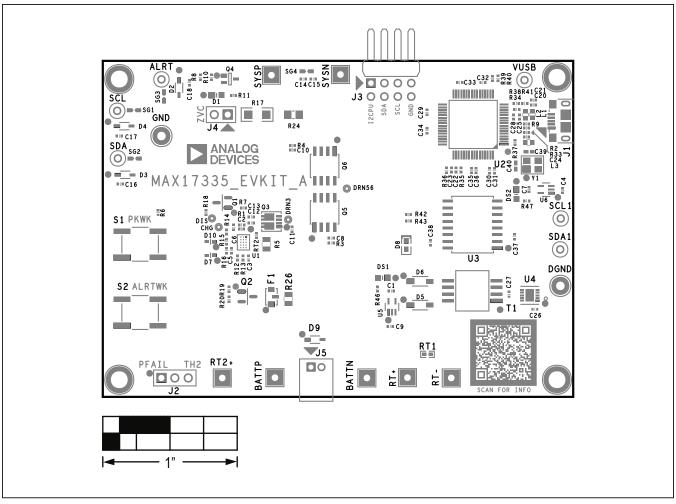
Evaluates: MAX17335

MAX17335 EV Kit Bill of Materials (continued)

ITEM	REF_DES	DNI/DNP	QTY	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION
21	L1-L3	_	3	BLM18AG601SN1	MURATA	600	INDUCTOR; SMT (0603); FERRITE-BEAD; 600; TOL=+/-; 0.5A
22	MISC1	_	1	AK67421-1-R	ASSMANN	AK67421-1-R	CONNECTOR; MALE; USB; USB2.0 MICRO CONNECTION CABLE; USB B MICRO MALE TO USB A MALE; STRAIGHT; 5PINS-4PINS
23	Q1	_	1	2N7002;2N7002; 2N7002;2N7002	DIODES INCORPORATED; ST MICROELECTRONICS; ON SEMICONDUCTOR; MICRO COMMERCIAL COMPONENTS	2N7002	TRAN; ; NCH; SOT-23; PD-(0.33W); IC-(0.5A); VCEO-(60V); -55 DEGC TO +150 DEGC
24	Q3	_	1	FDPC4044	ON SEMICONDUCTOR	FDPC4044	TRAN; COMMON DRAIN N-CHANNEL POWERTRENCH MOSFET; NCH; POWERCLIP-33; PD-(2.7W); I-(27A); V-(30V)
25	Q4	-	1	BSS223PW	INFINEON	BSS223PW	TRAN; OPTIMOS SMALL-SIGNAL-TRANSISTOR; PCH; SOT323-3; PD-(0.25W); I-(-0.39A); V-(-20V)
26	R1	_	1	CRCW040210R0JN	VISHAY DALE	10	RES; SMT (0402); 10; 5%; +/-200PPM/DEGK; 0.0630W
27	R2, R9	_	2	RC0402FR-0727RL	YAGEO	27	RES; SMT (0402); 27; 1%; +/-100PPM/DEGC; 0.0630W
28	R5	_	1	KRL1220E-M-R010-F	SUSUMU CO LTD.	0.01	RES; SMT (0805); 0.01; 1%; +/-50PPM/DEGC; 0.5W
29	R6, R16, R34	-	3	RC0402FR-071KL; MCR01MZPF1001	YAGEO;ROHM SEMICONDUCTOR	1K	RES; SMT (0402); 1K; 1%; +/-100PPM/DEGC; 0.0630W
30	R7	_	1	RC0402FR-0710KL; CR0402-FX-1002GLF	YAGEO;BOURNS	10K	RES; SMT (0402); 10K; 1%; +/-100PPM/DEGC; 0.0630W
31	R8, R12, R13	_	3	RC0402FR-07150RL	YAGEO	150	RES; SMT (0402); 150; 1%; +/-100PPM/DEGC; 0.0630W
32	R10, R19, R20, R37	_	4	CRCW04021M00FK	VISHAY DALE	1M	RES; SMT (0402); 1M; 1%; +/-100PPM/DEGC; 0.0630W
33	R11	_	1	CR0402-16W-3650FT	VENKEL LTD.	365	RES; SMT (0402); 365; 1%; +/-100PPM/DEGK; 0.0630W
34	R14	_	1	RN73C1E4K99BTG	TE CONNECTIVITY	4.99K	RES; SMT (0402); 4.99K; 0.10%; +/-10PPM/DEGC; 0.0630W
35	R15	_	1	ERA-2AEB202	PANASONIC	2K	RES; SMT (0402); 2K; 0.10%; +/-25PPM/DEGC; 0.0630W
36	R17	_	1	RN73C2B100RB	HOLSWORTHY	100	RES; SMT (1206); 100; 0.10%; +/-25PPM/DEGK; 0.2500W
37	R18	_	1	CRCW04024K02FK; ERJ-2RKF4021; RC0402FR-074K02L	VISHAY; PANASONIC;YAGEO	4.02K	RES; SMT (0402); 4.02K; 1%; +/-100PPM/DEGC; 0.0630W
38	R26	_	1	RC0805JR-070RL	YAGEO PHYCOMP	0	RES; SMT (0805); 0; 5%; JUMPER; 0.1250W
39	R33	_	1	CRCW040212K0FK; MCR01MZPF1202	VISHAY DALE; ROHM SEMICONDUCTOR	12K	RES; SMT (0402); 12K; 1%; +/-100PPM/DEGC; 0.0630W
40	R35, R36, R38, R39	_	4	ERJ-2GE0R00	PANASONIC	0	RES; SMT (0402); 0; JUMPER; JUMPER; 0.1000W
41	R40, R41	_	2	CRCW04024K70FK; MCR01MZPF4701	VISHAY DALE; ROHM SEMICONDUCTOR	4.7K	RES; SMT (0402); 4.7K; 1%; +/-100PPM/DEGC; 0.0630W
42	R42, R43	_	2	PNM0402E5001BS	VISHAY DALE	5K	RES; SMT (0402); 5K; 0.10%; +/-25PPM/DEGC; 0.0500W
43	R46, R47	_	2	CRCW0402470RFK	VISHAY DALE	470	RES; SMT (0402); 470; 1%; +/-100PPM/DEGC; 0.0630W

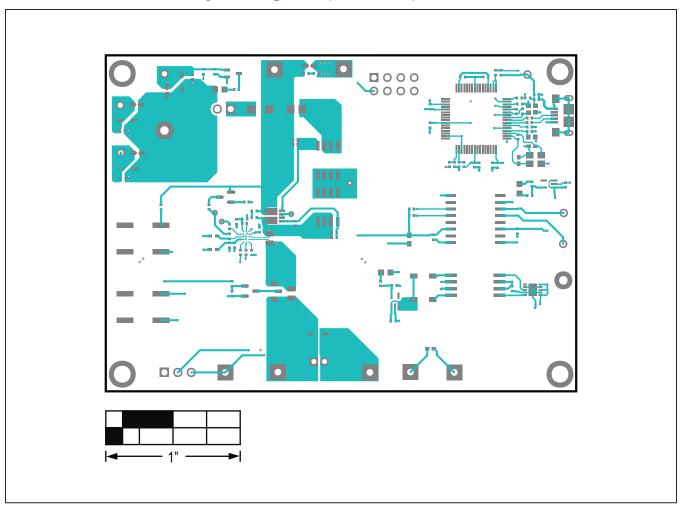

Evaluates: MAX17335

MAX17335 EV Kit Bill of Materials (continued)

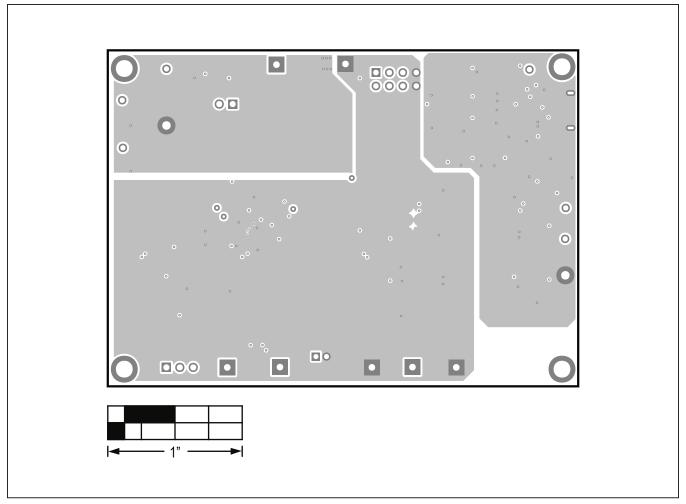

ITEM	REF_DE\$	DNI/DNP	QTY	MFG PART #	MANUFACTURER	VALUE	DESCRIPTION
44	RT1, RT2	_	2	NCP15XH103F03	MURATA	10K	THERMISTOR; SMT (0402); THICK FILM (NICKEL PLATED); 10K; TOL=+/-1%
45	S1, S2	_	2	EVQ-Q2K03W	PANASONIC	EVQ-Q2K03W	SWITCH; SPST; SMT; 15V; 0.02A; LIGHT TOUCH SWITCH; RCOIL= OHM; RINSULATION= OHM; PANASONIC
46	SU2, SU4	-	2	S1100-B;SX1100-B; STC02SYAN	KYCON;KYCON; SULLINS ELECTRONICS CORP.	SX1100-B	TEST POINT; JUMPER; STR; TOTAL LENGTH=0.24IN; BLACK; INSULATION=PBT; PHOSPHOR BRONZE CONTACT=GOLD PLATED
47	T1	_	1	TGM-040P3RL	HALO ELECTRONICS INC	TGM-040P3RL	TRANSFORMER; SMT; 1:1:1.3:1.3; PCMCIA DC/DC CONVERTER;
48	U1	_	1	MAX17335X22+	ANALOG DEVICES	MAX17335X22+	EVKIT PART - IC; MAX17335X22+; (BC30); PACKAGE OUTLINE DRAWING: 21-100450; PACKAGE CODE: W151J2+2
49	U2	_	1	FT2232HL	FUTURE TECHNOLOGY DEVICES INTL LTD.	FT2232HL	IC; MMRY; DUAL HIGH SPEED USB TO MULTIPURPOSE UART/FIFO; LQFP64
50	U3	_	1	MAX14937AWE+	MAXIM	MAX14937AWE+	IC; ISO; TWO CHANNEL; 5KVRMS I2C ISOLATOR; WSOIC16
51	U4	_	1	MAX13253ATB+	MAXIM	MAX13253ATB+	IC; DRV; 1A SPREAD-SPECTRUM; PUSH-PULL; TRANSFORMER DRIVER FOR ISOLATED POWER SUPPLIES; TDFN10-EP
52	U5, U6	_	2	MAX8511EXK33+	MAXIM	MAX8511EXK33+	IC; VREG; ULTRA-LOW-NOISE, HIGH PSRR, LOW-DROPOUT, LINEAR REGULATOR; SC70-5
53	VUSB	_	1	5000	KEYSTONE	N/A	TEST POINT; PIN DIA=0.1IN; TOTAL LENGTH=0.3IN; BOARD HOLE=0.04IN; RED; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;
54	Y1	_	1	7M-12.000MAAJ	TXC CORPORATION	12MHZ	CRYSTAL; SMT; 12MHZ; 18PF; TOL = +/-30PPM; STABILITY = +/-30PPM
55	PCB	_	1	MAX17335	MAXIM	PCB	PCB:MAX17335
56	C16-C18	DNP	0	GRM1555C1E102JA01; C1005C0G1E102J050BA	MURATA;TDK	1000PF	CAP; SMT (0402); 1000PF; 5%; 25V; C0G; CERAMIC
57	F1	DNP	0	SFR-0405A	DEXERIALS	SFR-0405A	IC; PROT; SELF CONTROL PROTECTOR; SMT;
58	J3	DNP	0	PEC04DBAN	SULLINS CONNECTOR SOLUTIONS	PEC04DBAN	CONNECTOR; MALE; THROUGH HOLE; 0.100IN CC; BREAKAWAY HEADER; RIGHT ANGLE; 8PINS
59	Q2	DNP	0	2N7002	NXP	2N7002	TRAN; N-CHANNEL TRENCH MOSFET; NCH; SOT-23; PD-(0.83W); I-(0.3A); V-(60V)
60	Q5, Q6	DNP	0	NDS8410A	FAIRCHILD SEMICONDUCTOR	NDS8410	MOSFET, N-CHANNEL, SO-8, PD=2.5W, ID=+/-10A, VDSS=30V, VGS=-20V, VSD=0.8V, RDS(ON)=0.0130hm, -55degC TO +150degC
61	R24	DNP	0	RC0805JR-070RL	YAGEO PHYCOMP	0	RES; SMT (0805); 0; 5%; JUMPER; 0.1250W
62	C8, C10	DNP	0	N/A	N/A	OPEN	CAPACITOR; SMT (0402); OPEN; FORMFACTOR
63	R3, R4	DNP	0	N/A	N/A	OPEN	RESISTOR; 0402; OPEN; FORMFACTOR
TOTAL			112				

Evaluates: MAX17335

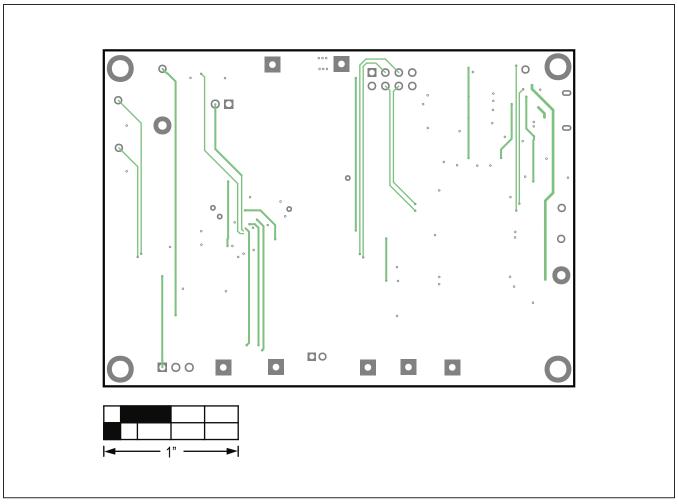
MAX17335 EV Kit Schematic Diagram


MAX17335 EV Kit PCB Layout Diagrams

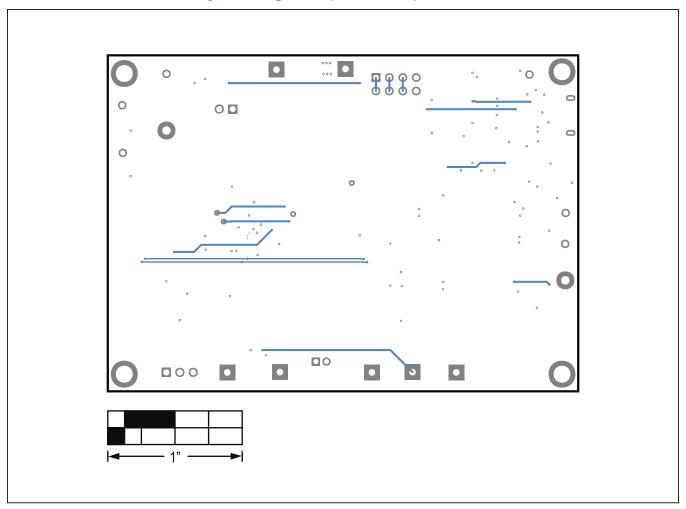
Evaluates: MAX17335


MAX17335 EV Kit Component Placement Guide—Top Silkscreen

MAX17335 EV Kit PCB Layout Diagrams (continued)


MAX17335 EV Kit PCB Layout Diagram—Top Layer

MAX17335 EV Kit PCB Layout Diagrams (continued)


MAX17335 EV Kit PCB Layout Diagram—Layer 2

MAX17335 EV Kit PCB Layout Diagrams (continued)

MAX17335 EV Kit PCB Layout Diagram—Layer 3

MAX17335 EV Kit PCB Layout Diagrams (continued)

MAX17335 EV Kit PCB Layout Diagram—Bottom Layer

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	8/24	Initial release	_

Evaluates: MAX17335