multicomp PRO

SECTION 1 Identification of the substance / mixture and of the company / undertaking

1.1. Product Identifier		
Product name	MP014782	
Synonyms	MP014782	
Other means of identification	Isopropyl Alcohol: Electronics Cleaner	
1.2 Palayant identified upon of the substance or mixture and upon edulard exclant		

1.2. Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses	Electronics cleaner
Uses advised against	Not Applicable

1.3. Details of the supplier of the safety data sheet

Registered company name	Premier Farnell plc
Address	150 Armley Road, Leeds, LS12 2QQ
Telephone	+44 (0) 8701 202530
Fax	
Website	•
1.4. Emergency telephone number	

Association / Organisation	Premier Farnell plc
Emergency telephone numbers	+44 1865 407333
Other emergency telephone numbers	-

SECTION 2 Hazards identification

2.1. Classification of the substance or mixture

Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567 [1]	H336 - Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3, H319 - Serious Eye Damage/Eye Irritation Category 2, H222+H229 - Aerosols Category 1
Legend:	1. Classified by Chemwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567

2.2. Label elements

Hazard pictogram(s)	
Signal word	Danger

Hazard statement(s)

H336	May cause drowsiness or dizziness.	
H319	Causes serious eye irritation.	
H222+H229	Extremely flammable aerosol. Pressurized container: may burst if heated.	

Supplementary statement(s)

Not Applicable

Precautionary statement(s) Prevention

P210	Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking.
P211	Do not spray on an open flame or other ignition source.
P251	Do not pierce or burn, even after use.
P271	Use only outdoors or in a well-ventilated area.
P261	Avoid breathing gas
P280	Wear protective gloves, protective clothing, eye protection and face protection.
P264	Wash all exposed external body areas thoroughly after handling.

Precautionary statement(s) Response

P305+P351+P338	IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P312	Call a POISON CENTER/doctor/physician/first aider/if you feel unwell.
P337+P313	If eye irritation persists: Get medical advice/attention.
P304+P340	IF INHALED: Remove person to fresh air and keep comfortable for breathing.

Precautionary statement(s) Storage

P405	Store locked up.
P410+P412	Protect from sunlight. Do not expose to temperatures exceeding 50 °C/122 °F.
P403+P233	Store in a well-ventilated place. Keep container tightly closed.

Precautionary statement(s) Disposal

P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

2.3. Other hazards

Inhalation and/or ingestion may produce health damage*.

Cumulative effects may result following exposure*.

May produce discomfort of the respiratory system*.

Repeated exposure potentially causes skin dryness and cracking*.

SECTION 3 Composition / information on ingredients

3.1.Substances

See 'Composition on ingredients' in Section 3.2

3.2.Mixtures

1.CAS No 2.EC No 3.Index No 4.REACH No	%[weight]	Name	Classified according to GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567	SCL / M-Factor	Nanoform Particle Characteristics
1.67-63-0 2.200-661-7 3.603-117-00-0 4.Not Available	71	isopropanol	Flammable Liquids Category 2, Serious Eye Damage/Eye Irritation Category 2, Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3; H225, H319, H336 ^[2]	Not Available	Not Available
1.68476-85-7. 2.270-704-2 270-705-8 3.649-202-00-6 649-203-00-1 4.Not Available	29	hydrocarbon propellant	Flammable Gases Category 1A, Gases Under Pressure (Liquefied Gas), Specific Target Organ Toxicity - Single Exposure (Narcotic Effects) Category 3; H220, H280, H336 ^[1]	Not Available	Not Available
Legend:	 Classified by Chernwatch; 2. Classification drawn from GB-CLP Regulation, UK SI 2019/720 and UK SI 2020/1567; 3. Classification drawn from C&L * EU IOELVs available; [e] Substance identified as having endocrine disrupting properties 				

SECTION 4 First aid measures

4.1. Description of first aid mea	asures
Eye Contact	 If aerosols come in contact with the eyes: Immediately hold the eyelids apart and flush the eye continuously for at least 15 minutes with fresh running water. Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. Transport to hospital or doctor without delay. Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

multicomp PRO

Skin Contact	If solids or aerosol mists are deposited upon the skin: Flush skin and hair with running water (and soap if available). Remove any adhering solids with industrial skin cleansing cream. DO NOT use solvents. Seek medical attention in the event of irritation.
Inhalation	If aerosols, fumes or combustion products are inhaled: Remove to fresh air. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. If breathing is shallow or has stopped, ensure clear airway and apply resuscitation, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor.
Ingestion	 Immediately give a glass of water. First aid is not generally required. If in doubt, contact a Poisons Information Centre or a doctor. If spontaneous vomiting appears imminent or occurs, hold patient's head down, lower than their hips to help avoid possible aspiration of vomitus.

4.2 Most important symptoms and effects, both acute and delayed

See Section 11

4.3. Indication of any immediate medical attention and special treatment needed

For petroleum distillates

- In case of ingestion, gastric lavage with activated charcoal can be used promptly to prevent absorption decontamination (induced emesis or lavage) is controversial and should be considered on the merits of each individual case; of course the usual precautions of an endotracheal tube should be considered prior to lavage, to prevent aspiration.
- Individuals intoxicated by petroleum distillates should be hospitalized immediately, with acute and continuing attention to neurologic and cardiopulmonary function.
- Positive pressure ventilation may be necessary
- Acute central nervous system signs and symptoms may result from large ingestions of aspiration-induced hypoxia.
- After the initial episode individuals should be followed for changes in blood variables and the delayed appearance of pulmonary oedema and chemical pneumonitis. Such patients should be followed for several days or weeks for delayed effects, including bone marrow toxicity, hepatic and renal impairment Individuals with chronic pulmonary disease will be more seriously impaired, and recovery from inhalation exposure may be complicated.
- Gastrointestinal symptoms are usually minor and pathological changes of the liver and kidneys are reported to be uncommon in acute intoxications
- Chlorinated and non-chlorinated hydrocarbons may sensitize the heart to epinephrine and other circulating catecholamines so that arrhythmias may occur. Careful
- consideration of this potential adverse effect should precede administration of epinephrine or other cardiac stimulants and the selection of bronchodilators. BP America Product Safety & Toxicology Department

Treat symptomatically.

- For acute or short term repeated exposures to isopropanol:
- Rapid onset respiratory depression and hypotension indicates serious ingestions that require careful cardiac and respiratory monitoring together with immediate intravenous access.
- Rapid absorption precludes the usefulness of emesis or lavage 2 hours post-ingestion. Activated charcoal and cathartics are not clinically useful. Ipecac is most useful when given 30 mins. post-ingestion.
- There are no antidotes
- Management is supportive. Treat hypotension with fluids followed by vasopressors.
- Watch closely, within the first few hours for respiratory depression; follow arterial blood gases and tidal volumes.
- Ice water lavage and serial haemoglobin levels are indicated for those patients with evidence of gastrointestinal bleeding.

SECTION 5 Firefighting measures

5.1. Extinguishing media

- Alcohol stable foam.
- Dry chemical powder.
- BCF (where regulations permit).
- Carbon dioxide.

Water spray or fog - Large fires only.

- SMALL FIRE:
- Water spray, dry chemical or CO2
- LARGE FIRE:

Water spray or fog.

5.2. Special hazards arising from the substrate or mixture

Fire Incompatibility + Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result

5.3. Advice for firefighters

Fire Fighting

multicomp PRO

Fire/Explosion Hazard	carbon dioxide (CO2) other pyrolysis products typical of burning organic material. Contains low boiling substance: Closed containers may rupture due to pressure buildup under fire conditions. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. BEWARE: Empty solvent, paint, lacquer and flammable liquid drums present a severe explosion hazard if cut by flame torch or welded. Even when thoroughly cleaned or reconditioned the drum seams may retain sufficient solvent to generate an explosive atmosphere in the drum. WARNING: Aerosol containers may present pressure related hazards.
-----------------------	--

SECTION 6 Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures See section 8

6.2. Environmental precautions

See section 12

6.3. Methods and material for containment and cleaning up

Minor Spills	 Clean up all spills immediately. Avoid breathing vapours and contact with skin and eyes. Wear protective clothing, impervious gloves and safety glasses. Shut off all possible sources of ignition and increase ventilation. Wipe up. If safe, damaged cans should be placed in a container outdoors, away from all ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely.
Major Spills	 Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. May be violently or explosively reactive. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water courses No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Water spray or fog may be used to disperse / absorb vapour. Absorb or cover spill with sand, earth, inert materials or vermiculite. If safe, damaged cans should be placed in a container outdoors, away from ignition sources, until pressure has dissipated. Undamaged cans should be gathered and stowed safely. Collect residues and seal in labelled drums for disposal.

6.4. Reference to other sections

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

7.1. Precautions for safe handling

 Natural gases contain a contaminant, radon-222, a naturally occurring radioactive gas. Du concentrate in liquefied petroleum streams and in product streams having similar boiling per commercial product may contain small amounts of radon-222 and its radioactive decay per radon-222 and radioactive daughters in process equipment (IE lines, filters, pumps and reap potentially damaging levels of gamma radiation. A potential external radiation hazard exist radon enriched stream or containing internal deposits of radioactive material. Field studies expose the worker to cumulative exposures in excess of general population limits. Equipm be presumed to be internally contaminated with alpha-emitting decay products which may maintenance operations that require the opening of contaminated process equipment, the enforced to allow gamma-radiation to drop to background levels. Protective equipment (Inc suitable for radionucleotides or supplied air) should be worn by personnel entering a vesse prevent skin contamination or inhalation of any residue containing alpha-radiation. Airborn and/or contaminated materials in a wet state. [<i>TEXACO</i>] Avoid all personal contact, including inhalation. Wear protective clothing when risk of exposure occurs. Use in a well-ventilated area. Prevent concentration in hollows and sumps. DO NOT enter confined spaces until atmosphere has been checked. Avoid contact with incompatible materials. 	ring subsequent processing, radon tends to oints. Industry experience indicates that the oducts (radon daughters). The actual concentration of actor units) may reach significant levels and produce s at or near any pipe, valve or vessel containing a , however, have not shown that conditions exist that ent containing gamma-emitting decay products should be hazardous if inhaled or ingested. During flow of gas should be stopped and a four hour delay cluding high efficiency particulate respirators (P3) al or working on contaminated process equipment to e contamination may be minimised by handling scale
---	---

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

multicomp PRO

	 DO NOT spray directly on humans, exposed food or food utensils. DO NOT spray directly on humans, exposed food or food utensils. Avoid physical damage to containers. Always wash hands with scap and water after handling. Work clothes should be laundered separately. Use good occupational work practice. Observe manufacturer's storage and handling recommendations contained within this SDS. Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.
Fire and explosion protection	See section 5
Other information	
. Conditions for safe storag	e, including any incompatibilities
Suitable container	 DO NOT use aluminium or galvanised containers For low viscosity materials (i) : Drums and jerry cans must be of the non-removable head type. (ii) : Where a can is to be used as an inner package, the can must have a screwed enclosure. For materials with a viscosity of at least 2680 cSL (23 deg. C) For materials with a viscosity of at least 2680 cSL (23 deg. C) Manufactured product hart requires stirring before use and having a viscosity of at least 20 cSt (25 deg. C): (i) Removable head packaging; (ii) Cans with friction closures and (iii) low pressure tubes and cartridges may be used. Where combination packages are used, and the inner packages are of glass, there must be sufficient inert cushioning material in contact with inner and outer packages are glass and contain liquids of packing group I there must be sufficient inert absorbent to absorb any spillage, unless the outer packaging is a close fitting moulded plastic box and the substances are not incompatible with the plastic. Aerosol dispenser. Check that containers are clearly labelled.
Storage incompatibility	 Isopropanol (syn: isopropyl alcohol, IPA): forms ketones and unstable peroxides on contact with air or oxygen; the presence of ketones especially methyl ethyl ketone (MEK, 2-butanone) will accelerate the rate of peroxidation reacts violently with strong oxidisers, powdered aluminium (exothermic), crotonaldehyde, diethyl aluminium bromide (ignition), dioxygenyl tetrafluoroborate (ignition/ ambient temperature), chromium trioxide (ignition), potassium-tert-butoxide (ignition), nitroform (possible explosion), oleum (pressure increased in closed container), cobalt chloride, aluminium triisopropoxide, hydrogen plus palladium dust (ignition), oxygen gas, phosgene, phosgene plus iron salts (possible explosion), sodium dichromate plus sulfuric acid (exothermic/ incandescence), triisobutyl aluminium
	 reacts with phosphorus trichloride forming hydrogen chloride gas reacts, possibly violently, with alkaline earth and alkali metals, strong acids, strong caustics, acid anhydrides, halogens, aliphatic amines, aluminium isopropoxide, isocyanates, acetaldehyde, barium perchlorate (forms highly explosive perchloric ester compound), benzoyl peroxide, chromic acid, dialkylzincs, dichlorine oxide, ethylene oxide (possible explosion), hexamethylene diisocyanate (possible explosion), hydrogen peroxide (forms explosive compound), hypochlorous acid, isopropyl chlorocarbonate, lithium aluminium hydride, lithium tetrahydroaluminate, nitric acid, nitrogen dioxide, nitrogen tetraoxide (possible explosion), pentafluoroguanidine, perchloric acid (especially hot), permonosulfuric acid, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium, trinitromethane attacks some plastics, rubber and coatings reacts with metallic aluminium at high temperature maty generate electrostatic charges Alcohols
	 are incompatible with strong acids, acid chlorides, acid anhydrides, oxidising and reducing agents. reacts, possibly violently, with alkaline metals and alkaline earth metals to produce hydrogen react with strong acids, strong caustics, aliphatic amines, isocyanates, acetaldehyde, benzoyl peroxide, chromic acid, chromium oxide, dialkylzincs, dichlorine oxide, thylene oxide, hypochlorous acid, isopropyl chlorocarbonate, lithium tetrahydroaluminate, nitrogen dioxide, pentafluoroguanidine, phosphorus halides, phosphorus pentasulfide, tangerine oil, triethylaluminium, triisobutylaluminium should not be heated above 49 deg. C. when in contact with aluminium equipment Butane/ isobutane reacts violently with strong oxidisers reacts with acetylene, halogens and nitrous oxides is incompatible with chlorine dioxide, conc. nitric acid and some plastics may generate electrostatic charges, due to low conductivity. in flow or when agitated - these may ignite the vapour.
	Segregate from nickel carbonyl in the presence of oxygen, heat (20-40 C) Propane: reacts violently with strong oxidisers, barium peroxide, chlorine dioxide, dichlorine oxide, fluorine etc. liquid attacks some plastics, rubber and coatings may accumulate static charges which may ignite its vapours Secondary alcohols and some branched primary alcohols may produce potentially explosive peroxides after exposure to light and/ or heat.

SECTION 8 Exposure controls / personal protection

8.1. Control parameters

multicomp PRO

8.1. Control parameters

Ingredient	DNELs Exposure Pattern Worker	PNECs Compartment
isopropanol	Dermal 888 mg/kg bw/day (Systemic, Chronic) Inhalation 500 mg/m ³ (Systemic, Chronic) Dermal 319 mg/kg bw/day (Systemic, Chronic) * Inhalation 89 mg/m ³ (Systemic, Chronic) * Oral 26 mg/kg bw/day (Systemic, Chronic) *	140.9 mg/L (Water (Fresh)) 140.9 mg/L (Water - Intermittent release) 140.9 mg/L (Water (Marine)) 552 mg/kg sediment dw (Sediment (Fresh Water)) 552 mg/kg sediment dw (Sediment (Marine)) 28 mg/kg soil dw (Soil) 2251 mg/L (STP) 160 mg/kg food (Oral)
hydrocarbon propellant	Dermal 23.4 mg/kg bw/day (Systemic, Chronic)	Not Available

* Values for General Population

Occupational Exposure Limits (OEL)

INGREDIENT DATA

Source	Ingredient	Material name	TWA	STEL	Peak	Notes
UK Workplace Exposure Limits (WELs)	isopropanol	Propan-2-ol	400 ppm / 999 mg/m3	1250 mg/m3 / 500 ppm	Not Available	Not Available
UK Workplace Exposure Limits (WELs)	hydrocarbon propellant	Liquefied petroleum gas	1000 ppm / 1750 mg/m3	2180 mg/m3 / 1250 ppm	Not Available	Carc (only applies if LPG contains more than 0.1% of buta-1,3-diene)

Emergency Limits

Ingredient	TEEL-1	TEEL-2		TEEL-3
isopropanol	400 ppm	2000* ppm		12000** ppm
hydrocarbon propellant	65,000 ppm	2.30E+05 ppm		4.00E+05 ppm
Ingredient	Original IDLH		Revised IDLH	
isopropanol	2,000 ppm		Not Available	
hydrocarbon propellant	2,000 ppm		Not Available	

MATERIAL DATA

For liquefied petroleum gases (LPG):

TLV TWA: 1000 ppm, 1800 mg/m3 (as LPG)

ES TWA: 1000 ppm, 1800 mg/m3 (as LPG)

OES TWA: 1000 ppm, 1750 mg/m3; STEL: 1250 ppm, 2180 mg/m3 (as LPG)

IDLH Level: 2000 ppm (lower explosive limit)

No chronic systemic effects have been reported from occupational exposure to LPG. The TLV-TWA is based on good hygiene practices and is thought to minimise the risk of fire or explosion.

Odour Safety Factor(OSF) OSF=0.16 (hydrocarbon propellant)

For butane:

Odour Threshold Value: 2591 ppm (recognition)

Butane in common with other homologues in the straight chain saturated aliphatic hydrocarbon series is not characterised by its toxicity but by its narcosis-inducing effects at high concentrations. The TLV is based on analogy with pentane by comparing their lower explosive limits in air. It is concluded that this limit will protect workers against the significant risk of drowsiness and other narcotic effects.

Odour Safety Factor(OSF)

OSF=0.22 (n-BUTANE)

Odour Threshold Value: 3.3 ppm (detection), 7.6 ppm (recognition)

Exposure at or below the recommended isopropanol TLV-TWA and STEL is thought to minimise the potential for inducing narcotic effects or significant irritation of the eyes or upper respiratory tract. It is believed, in the absence of hard evidence, that this limit also provides protection against the development of chronic health effects. The limit is intermediate to that set for ethanol, which is less toxic, and n-propyl alcohol, which is more toxic, than isopropanol

NOTE K: The classification as a carcinogen need not apply if it can be shown that the substance contains less than 0.1%w/w 1,3-butadiene (EINECS No 203-450-8). - European Union (EU) List of harmonised classification and labelling hazardous substances, Table 3.1, Annex VI, Regulation (EC) No 1272/2008 (CLP) - up to the latest ATP

8.2. Exposure controls

Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard 'physically' away from the worker and ventilation that strategically 'adds' and 'removes' air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure.
--

multicomp PRO

General exhaust is adequate under normal conditions. If risk of overexposure exists, wear SAA approved respirator. Cor obtain adequate protection. Provide adequate ventilation in warehouse or closed storage areas. Air contaminants generated in the workplace possess varying 'escape' velocities which, in turn, determine the 'capture ve circulating air required to effectively remove the contaminant.					
	Type of Contaminant:	Speed:			
8.2.1. Appropriate engineering	aerosols, (released at low velocity into zone of active gene	eration)	0.5-1 m/s		
controls	direct spray, spray painting in shallow booths, gas dischar	ge (active generation into zone of rapid air motion)	1-2.5 m/s (200-500 f/min.)		
	Within each range the appropriate value depends on:				
	Lower end of the range				
	1: Room air currents minimal or favourable to capture	1: Disturbing room air currents			
	2: Contaminants of low toxicity or of nuisance value only.	2: Contaminants of high toxicity			
	3: Intermittent, low production.	3: High production, heavy use			
	4: Large hood or large air mass in motion	4: Small hood-local control only			
	Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.				
8.2.2. Personal protection					
Eye and face protection	 Safety glasses with side shields. Chemical goggles. Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] 				
Skin protection	See Hand protection below				
Hands/feet protection	 No special equipment needed when handling small quantities. OTHERWISE: For potentially moderate exposures: Wear general protective gloves, eg. light weight rubber gloves. For potentially heavy exposures: Wear chemical protective gloves, eg. PVC. and safety footwear. Insulated gloves: NOTE: Insulated gloves should be loose fitting so that may be removed quickly if liquid is spilled upon them. Insulated gloves are not made to permit hands to be placed in the liquid; they provide only short-term protection from accidental contact with the liquid. 				
Body protection	See Other protection below				
Other protection	No special equipment needed when handling small quantities. OTHERWISE: > Overalls. > Skin cleansing cream. > Eyewash unit.				

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the: **Forsberg Clothing Performance Index'.** The effect(s) of the following substance(s) are taken into account in the *computer-generated* selection: 824-400ML Isopropyl Alcohol: Electronics Cleaner

Respiratory protection

- Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content.
- The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

multicomp PRO

Material	CPI
NEOPRENE	A
NITRILE	A
NITRILE+PVC	A
PE/EVAL/PE	A
PVC	В
NAT+NEOPR+NITRILE	С
NATURAL RUBBER	С
NATURAL+NEOPRENE	С

* CPI - Chemwatch Performance Index

A: Best Selection

B: Satisfactory; may degrade after 4 hours continuous immersion

C: Poor to Dangerous Choice for other than short term immersion

 $\ensuremath{\text{NOTE}}$ As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. -

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as 'feel' or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

8.2.3. Environmental exposure controls

See section 12

SECTION 9 Physical and chemical properties

9.1. Information on basic physical and chemical properties

 Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used
 Generally not applicable.

Aerosols, in common with most vapours/ mists, should never be used in confined spaces without adequate ventilation. Aerosols, containing agents designed to enhance or mask smell, have triggered allergic reactions in predisposed individuals.

Appearance	Colourless		
Physical state	Liquified Gas	Relative density (Water = 1)	0.785
Odour	Not Available	Partition coefficient n-octanol / water	Not Available
Odour threshold	Not Available	Auto-ignition temperature (°C)	425
pH (as supplied)	Not Available	Decomposition temperature	Not Available
Melting point / freezing point (°C)	Not Available	Viscosity (cSt)	3.1
Initial boiling point and boiling range (°C)	83	Molecular weight (g/mol)	Not Available
Flash point (°C)	12	Taste	Not Available
Evaporation rate	1.5	Explosive properties	Not Available
Flammability	HIGHLY FLAMMABLE.	Oxidising properties	Not Available
Upper Explosive Limit (%)	12	Surface Tension (dyn/cm or mN/m)	Not Available
Lower Explosive Limit (%)	2	Volatile Component (%vol)	Not Available
Vapour pressure (kPa)	Not Available	Gas group	Not Available
Solubility in water	Partly miscible	pH as a solution (Not Available%)	Not Available
Vapour density (Air = 1)	>1.5	VOC g/L	Not Available
Nanoform Solubility	Not Available	Nanoform Particle Characteristics	Not Available
Particle Size	Not Available		
9.2. Other information			

Not Available

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

SECTION 10 Stability and reactivity

10.1.Reactivity	See section 7.2	
10.2. Chemical stability	 Elevated temperatures. Presence of open flame. Product is considered stable. Hazardous polymerisation will not occur. 	
10.3. Possibility of hazardous reactions	See section 7.2	
10.4. Conditions to avoid	See section 7.2	
10.5. Incompatible materials	als See section 7.2	
10.6. Hazardous decomposition products	See section 5.3	

SECTION 11 Toxicological information

11.1. Information on toxicological effects

	The material is not thought to produce adverse health effects or irritation of the respiratory tract (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable control measures be used in an occupational setting. Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo. No health effects were seen in humans exposed at 1,000 ppm isobutane for up to 8 hours or 500 ppm for 8 hours/day for 10 days. Isobutane can have anaesthetic and asphyxiant effects at high concentrations, well above the lower explosion limit of 1.8% (18,000 ppm). Butane is a simple asphyxiant and is mildly anaesthetic at high concentrations (20-25%). 10000 ppm for 10 minutes causes drowsiness. Narcotic effects may be accompanied by exhilaration, dizziness, headache, nausea, confusion, incoordination and unconsciousness in severe cases
	The paratitin gases C1-4 are practically nontoxic below the lower flammability limit, 18,000 to 50,000 ppm; above this, low to moderate incidental effects such as CNS depression and irritation occur, but are completely reversible upon cessation of the exposure. Exposure to aliphatic alcohols with more than 3 carbons may produce central nervous system effects such as headache, dizziness, drowsiness, muscle weakness, delirium, CNS depression, coma, seizure, and neurobehavioural changes. Symptoms are more acute with higher alcohols. Respiratory tract involvement may produce irritation of the mucosa, respiratory insufficiency, respiratory depression secondary to CNS depression, pulmonary oedema, chemical pneumonitis and bronchitis. Cardiovascular involvement may result in arrhythmias and hypotension. Gastrointestinal effects may include nausea and vomiting. Kidney and liver damage may result following massive exposures. The alcohols are potential irritating than the corresponding amines, aldehydes or ketones. Alcohols and glycols (diols) rarely represent serious hazards in the workplace, because their vapour concentrations are usually less than the levels which produce significant irritation which, in turn, produce significant central nervous system effects as well. The vapour is discomforting WARNING :Intentional misuse by concentrating/inhaling contents may be lethal.
Inhaled	Material is highly volatile and may quickly form a concentrated atmosphere in confined or unventilated areas. The vapour may displace and replace air in breathing zone, acting as a simple asphyxiant. This may happen with little warning of overexposure. Acute effects from inhalation of high concentrations of vapour are pulmonary irritation, including coughing, with nausea; central nervous system depression - characterised by headache and dizziness, increased reaction time, fatigue and loss of co-ordination The odour of isopropanol may give some warning of exposure, but odour fatigue may occur. Inhalation of isopropanol may produce irritation of the nose and throat with sneezing, sore throat and runny nose. The effects in animals subject to a single exposure, by inhalation, included inactivity or anaesthesia and histopathological changes in the nasal canal and auditory canal. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Some aliphatic hydrocarbons produce axonal neuropathies. Isoparaffinic hydrocarbons produce injury to the kidneys of male rats. When albino rats were exposed to isoparaffins at 21.4 mg/l for 4 hours, all animals experienced weakness, tremors, salivation, mild to moderate convulsions, chromodacryorrhoea and taxia within the first 24 hours. Symptoms disappeared after 24 hours. Several studies have evaluated sensory irritation in laboratory animals or odor or sensory response in humans. When evaluated by a standard procedure to assess upper airway irritation, isoparaffins did not produce sensory irritation in mice exposed to up to 400 ppm isoparaffin in air. Human volunteers were exposed for six hours to 100 ppm isoparaffin. The subjects were given a self-administered questionnaire to evaluate symptoms, which included dryness of the mucous membranes, isos of appetite, nausea, vomiting, diarrhea, fatigue, headache, dizziness, feeling of inbrinstion, visual disturbances, tremor, muscula

Ingestion	Effects on the nervous system characterise over-exposure to higher aliphatic alcohols. These include headache, muscle weakness, giddiness, ataxia, (loss of muscle coordination), confusion, delinium and coma. Gastrointestinal effects may include nausea, vomiting and diarrhoea. In the absence of effective treatment, respiratory anrest is the most common cause of death in animals acutely poisoned by the higher alcohols. Aspiration of liquid alcohols produces an especially toxic response as they are able to penetrate deeply in the lung where they are absorbed and may produce pulmonary injury. Those possessing oliver viscosity elicit a greater response. The result is a high blood level and prompt death at does otherwise tolerated by ingestion without aspiration. In general the secondary alcohols are less toxic than their aliphatic analogues. In sequence of decreasing depressant potential, tertiary alcohols. The potential for overall systemic toxicity increases with molecular weight (up to C7), principally because the water solubility is dimitised and licophilicity is increased. Within the homologous series of aliphatic alcohol and rule of the aliphatic alcohols with 8 carbons are less toxic than those immediately proceeding them in the series. 10 - Carbon n-decyl alcohol has low toxicity achohols with 8 carbons are less toxic than those immediately preceding them in the series us gugests that decyl and melled dodecyl (auny) alcohols are dangerous if they enter the trachea. In the rate even a small quantity (0.2 mi) of these behaves like a hydrocarbon solvent in causing death from pulmonary ocedma. Primary alcohols are entabolised slowly and incomptely so their toxic defects are generally persistent. Swallowing of the liquid may cause aspiration of vomit into the lungs with the risk of haemotrabilic acidosis may occur. Secondary alcohols are carbolised to corresponding aldehydes and acids, a significant metabolic acidosis may occur. Secondary alcohols are entabolised slowly and incomptely sother toxic defects are gen
Skin Contact	The material is not thought to produce adverse health effects or skin irritation following contact (as classified by EC Directives using animal models). Nevertheless, good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Spray mist may produce discomfort Most liquid alcohols appear to act as primary skin irritants in humans. Significant percutaneous absorption occurs in rabbits but not apparently in man. Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. 511 jpa
Eye	Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. Isopropanol vapour may cause mild eye irritation at 400 ppm. Splashes may cause severe eye irritation, possible corneal burns and eye damage. Eye contact may cause tearing or blurring of vision.
	Long-term exposure to the product is not thought to produce chronic effects adverse to health (as classified by EC Directives using animal models); nevertheless exposure by all routes should be minimised as a matter of course. Toxic: danage to health by prolonged exposure through inhalation, in contact with skin and if swallowed. Serious damage (clear functional disturbance or morphological change which may have toxicological significance) is likely to be caused by repeated or prolonged exposure. As a rule the material produces, or contains a substance which produces severe lesions. Such damage may become apparent following direct application in subchronic (90 day) toxicity studies or following sub-acute (28 day) or chronic (two-year) toxicity tests. Repeated or prolonged exposure to mixed hydrocarbons may produce narcosis with dizziness, weakness, irritability, concentration and/or memory loss, tremor in the fingers and tongue, vertigo, olfactory disorders, constriction of visual field, paraesthesias of the extremities, weight loss and anaemia and degenerative changes in the liver and kidney. Chronic exposure by petroleum workers, to the lighter hydrocarbons, has been associated with visual disturbances, damage to the central nervous system, peripheral neuropathies (including numbness and paraesthesias), psychological and neurophysiological deficits, bone marrow toxicities (including hypoplasia possibly due to benzene) and hepatic and renal involvement. Chronic dermal exposure to perioleum hydrocarbons may result in defatting which produces localised dermatoses. Surface cracking and erosion may also increase susceptibility to infection by microorganisms. One epidemiological study of petroleum refinery workers has reported elevations in standard mortality ratios for skin cancer along with a dose-response relationship indicating an association

multicomp PRO

between routine workplace exposure to petroleum or one of its constituents and skin cancer, particularly melanoma. Other studies have been unable to confirm this finding. Chronic Hydrocarbon solvents are liquid hydrocarbon fractions derived from petroleum processing streams, containing only carbon and hydrogen atoms, with carbon numbers ranging from approximately C5-C20 and boiling between approximately 35-370 deg C. Many of the hydrocarbon solvents have complex and variable compositions with constituents of 4 types, alkanes (normal paraffins, isoparaffins, and cycloparaffins) and aromatics (primarily alkylated one- and two-ring species). Despite the compositional complexity, most hydrocarbon solvent constituents have similar toxicological properties, and the overall toxicological hazards can be characterized in generic terms. Hydrocarbon solvents can cause chemical pneumonitis if aspirated into the lung, and those that are volatile can cause acute CNS effects and/or ocular and respiratory irritation at exposure levels exceeding occupational recommendations. Otherwise, there are few toxicologically important effects. The exceptions, n-hexane and naphthalene, have unique toxicological properties Animal studies: No deaths or treatment related signs of toxicity were observed in rats exposed to light alkylate naphtha (paraffinic hydrocarbons) at concentrations of 668, 2220 and 6646 ppm for 6 hrs/day, 5 days/wk for 13 weeks. Increased liver weights and kidney toxicity (male rats) was observed in high dose animals. Exposure to pregnant rats at concentrations of 137, 3425 and 6850 ppm did not adversely affect reproduction or cause maternal or foetal toxicity. Lifetime skin painting studies in mice with similar naphthas have shown weak or no carcinogenic activity following prolonged and repeated exposure. Similar naphthas/distillates, when tested at nonirritating dose levels, did not show any significant carcinogenic activity indicating that this tumorigenic response is likely related to chronic irritation and not to dose. The mutagenic potential of naphthas has been reported to be largely negative in a variety of mutagenicity tests. The exact relationship between these results and human health is not known. Some components of this product have been shown to produce a species specific, sex hormonal dependent kidney lesion in male rats from repeated oral or inhalation exposure. Subsequent research has shown that the kidney damage develops via the formation of a alpha-2u-globulin, a mechanism unique to the male rat. Humans do not form alpha-2u-globulin, therefore, the kidney effects resulting from this mechanism are not relevant in human. Long term or repeated ingestion exposure of isopropanol may produce incoordination, lethargy and reduced weight gain. Repeated inhalation exposure to isopropanol may produce narcosis, incoordination and liver degeneration. Animal data show developmental effects only at exposure levels that produce toxic effects in the adult animals. Isopropanol does not cause genetic damage in bacterial or mammalian cell cultures or in animals. There are inconclusive reports of human sensitisation from skin contact with isopropanol. Chronic alcoholics are more tolerant of systemic isopropanol than are persons who do not consume alcohol; alcoholics have survived as much as 500 ml. of 70% isopropanol. Continued voluntary drinking of a 2.5% aqueous solution through two successive generations of rats produced no reproductive effects. NOTE: Commercial isopropanol does not contain 'isopropyl oil'. An excess incidence of sinus and laryngeal cancers in isopropanol production workers has been shown to be caused by the byproduct 'isopropyl oil'. Changes in the production processes now ensure that no byproduct is formed. Production changes include use of dilute sulfuric acid at higher temperatures. ΤΟΧΙΟΙΤΥ IRRITATION 824-400ML Isopropyl Alcohol: Electronics Cleaner Not Available Not Available ΤΟΧΙΟΙΤΥ IRRITATION Eye (rabbit): 10 mg - moderate Dermal (rabbit) LD50: 12800 mg/kg^[2] isopropanol Inhalation(Mouse) LC50; 53 mg/L4h^[2] Eye (rabbit): 100 mg - SEVERE Oral (Mouse) LD50; 3600 mg/kg^[2] Eye (rabbit): 100mg/24hr-moderate Skin (rabbit): 500 mg - mild IRRITATION ΤΟΧΙΟΙΤΥ hydrocarbon propellant Inhalation(Rat) LC50; 658 mg/l4h^[2] Not Available Leaend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances Asthma-like symptoms may continue for months or even years after exposure to the material ceases. This may be due to a non-allergenic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an irritating inhalation is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance ISOPROPANOL Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. The disorder is characterised by dyspnea, cough and mucus production The material may cause skin irritation after prolonged or repeated exposure and may produce a contact dermatitis (nonallergic). This form of dermatitis is often characterised by skin redness (erythema) and swelling epidermis. Histologically there may be intercellular oedema of the spongy layer (spongiosis) and intracellular oedema of the epidermis.

multicomp PRO

	The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or lin	nited in animal testing	
HYDROCARBON PROPELLANT	Evidence of carcinogenicity may be inadequate or lin No significant acute toxicological data identified in lite for Petroleum Hydrocarbon Gases: In many cases, there is more than one potentially tox particular endpoint for each of the petroleum hydro- toxicity values (LC50, LOAEL, etc.) and the relative of individual petroleum hydrocarbon gas, the constituent dependent upon the concentration of the different con- All Hydrocarbon Gases Category members contain p hydrogen. The inorganic components of the petroleum to both mammalian and aquatic organisms. Unlike ot inorganic and hydrocarbon constituents of hydrocarbo of the Category members Acute toxicity : No acute toxicity LC50 values have H was observed at the highest exposure levels tested (petroleum hydrocarbon gas constituents from most to C5-C6 HCs (LC50 > 1063 ppm) > C1-C4 HCs (LC50) asphyxiant gases (hydrogen, carbon dioxide, nitrogen Repeat dose toxicity : With the exception of the asp hydrocarbon gas constituents. Based upon LOAEL v the least toxic is: Benzene (LOAEL = =10 ppm) >C1-C4 HCs (LCAEL butadiene (LOAEL = =10 ppm) > C1-C4 HCs (LCAEL butadiene (LOAEL = =10 ppm) > asphyxiant gases Genotoxicity: In vitro: The majority of the Petroleum Hydrocarbon benzene and 1,3-butadiene, which are genotoxic in to In vivo: The majority of the Petroleum Hydrocarbon exceptions are benzene and 1,3-butadiene, Which are phydrocarbon fraction. No developmental effects wer hydrocarbon fraction. No developmental effects were hydrocarbon fraction. No developmental foxicity was constituents tested for this effect. The asphyxiant gases (Reproductive toxicity: Reproductive effects were hydrocarbon fraction. No developmental toxicity was constituents tested for this effect. The asphyxiant gases (Reproductive toxicity: Reproductive effects were hydrocarbon fraction. No developmental toxicity was constituents toxicity: Reproductive effects were in constituent of the the C1-C4 hydrocarbon fraction). No petroleum hydrocarbon gas consti	nited in animal testing. arature search. tic constituent in a refinery gas. In thos used to characterize the endpoint haze carbon gases is dependent upon each concentration of the constituent present it characterizing toxicity may be different instituents in each, distinct petroleum hy rimarily hydrocarbons (i.e., alkanes an m hydrocarbon gases are less toxic tha- her petroleum product categories (e.g. on gases can be evaluated for hazard been derived for the C1 -C4 and C5- C ~ 5 mg/l) for these petroleum hydrocar- b last toxic is: > 10,000 ppm) > benzene (LC50 = 13 n). hyxiant gases, repeated dose toxicity h- alues, the order of order of repeated-di- e for a for the c1 order of repeated-di- gases Category components are nega- te induced by two of the petroleum hydro observed at the highest exposure leve ses have not been tested for developm most to least toxic is: = 1,000 ppm) > C5-C6 HCs (LOAEL = : (hydrogen, carbon dioxide, nitrogen). duced by only two petroleum hydrocar lo reproductive toxicity was observed ar to reproductive toxicity as sobserved ar to reproductive toxicity as sobserved ar to reproductive toxicity as sobserved ar to reproductive toxicity was observed ar to reproductive toxi	e cases, the constituent that is most toxic for a and for that stream. The hazard potential for each petroleum hydrocarbon gas constituent endpoint ti in that gas. It should also be noted that for an int for different mammalian endpoints, again, being ydrocarbon gas. d alkenes) and occasionally asphyxiant gases like an the C1 - C4 and C5 - C6 hydrocarbon components gasoline, diesel fuel, lubricating oils, etc.), the individually to then predict the screening level hazard 6 hydrocarbon (HC) fractions because no mortality bon gas constituents. The order of acute toxicity of ,700 ppm) > butadiene (LC50 = 129,000 ppm) > has been observed in individual selected petroleum ose toxicity of these constituents from most toxic to putene) > C5-C6 HCs (LOAEL = 6,625 ppm) > ative for <i>in vitro</i> genotoxicity. The exceptions are: <i>stems.</i> tive for <i>in vitro</i> genotoxicity. The rocarbon gas constituents, benzene and the C5 -C6 is tested for the other petroleum hydrocarbon gas ental toxicity. Based on LOAEL and NOAEL values, 3,463 ppm) > C1-C4 HCs (NOAEL >=5,000 ppm; bon gas constituents, benzene and isobutane (a ti the highest exposure levels tested for the other iot been tested for reproductive toxicity. Based on st to least toxic is: >=6,521 ppm) > C1-C4 HCs (LOAEL = 9,000 ppm;
Benzene (LOAEL = 300 ppm) > butadiene (NOAEL .>~66,000 ppm) > C5-C6 HCs (NOAEL .>~65,21 ppm) > C1-C4 H assumed to be 100% isobutane) > asphyxiant gases (hydrogen, carbon dioxide, nitrogen) For isopropanol (IPA): Acute toxicity: Isopropanol has a low order of acute toxicity. It is irritating to the eyes, but not to the skin. Very high v irritating to the eyes, nose, and throat, and prolonged exposure may produce central nervous system depression and reported that exposure to 400 ppm isopropanol vapors for 3 to 5 min. caused mild irritation of the eyes, nose and throat, and prolonged exposure may produce central nervous system depression and the result of both dermal absorption and inhalation. There have been a number of cases of poisoning reported due to isopropanol, particularly among alcoholics or suicide victims. These ingestions typically result in a comatose condition nausea, vomiting, and headache accompanied by various degrees of central nervous system depression are typical. recovery usually occurred. Repeat does studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol has been evaluated in inhalation and ora lorutes. The only adverse effects-in addition to clinical signs identified from these studies were to the kidney. Reposit docs studies: The systemic (non-cancer) toxicity of repeated exposure to isopropanol exposure significant decrease in male mating index of the 17 males. It is possible that the change in this reproductive parameter significant decrease in male mating index of the file from the results of the study. However, the Is the female mating index in either generation, the absence of any adverse effect on litter size, and the lack of histopal testes of the high-dose males suggest that the observed reduction in male mating index may not be biologically mear Developmental toxicity: The developmental toxicity of isopropano		not to the skin. Very high vapor concentrations are is system depression and narcosis. Human volunteers of the eyes, nose and throat. there have been reports of isolated cases of dermal of fever has resulted in cases of intoxication, probably poisoning reported due to the intentional ingestion of ult in a comatose condition. Pulmonary difficulty, m depression are typical. In the absence of shock, anol has been evaluated in rats and mice by the eductive hazard for isopropanol associated with oral d by isopropanol exposure was a statistically this reproductive parameter was treatment related and the study. However, the lack of a significant effect of e, and the lack of histopathological findings of the y not be biologically meaningful. d in rat and rabbit developmental toxicity studies. ol produced developmental toxicity in rats, but not in onsisted of decreased foetal body weights, but no r potential. The only tumor rate increase seen was for the most frequently observed spontaneous tumor in arcinogenic potential relevant to humans. mas of the testes in the male rat, nor has isopropanol ale rats are considered of no significance in terms of	
Acute Toxicity	×	Carcinogenicity	×

multicomp PRO

Skin Irritation/Corrosion	×	Reproductivity	×
Serious Eye Damage/Irritation	×	STOT - Single Exposure	✓
Respiratory or Skin sensitisation	×	STOT - Repeated Exposure	×
Mutagenicity	×	Aspiration Hazard	×

Legend: X – Data either not available or does not fill the criteria for classification v – Data available to make classification

11.2.1. Endocrine Disruption Properties Not Available

SECTION 12 Ecological information

00ML Isopropyl Alcohol:	Endpoint	Test Duration (hr)		Species	Value	S	ource
Electronics Cleaner	Not Available	Not Available	1	Not Available	Not Available	N	ot Available
	Endpoint	Test Duration (hr)	Specie	s		Value	Source
	EC50(ECx)	24h	Algae c	or other aquatic plant	S	0.011mg/L	4
	LC50	96h	Fish			4200mg/l	4
isopropanol	EC50	72h	Algae o	or other aquatic plant	s	>1000mg/l	1
	EC50	48h	Crustad	cea		7550mg/l	4
	EC50	96h	Algae c	or other aquatic plant	s	>1000mg/l	1
	Endpoint	Test Duration (hr)	Specie	s		Value	Source
	EC50(ECx)	96h	Algae	or other aquatic plan	ts	7.71mg/l	2
hydrocarbon propellant	LC50	96h	Fish			24.11mg/l	2
	EC50	96h	Algae	or other aquatic plan	ts	7.71mg/l	2
	EC50(ECx)	96h	Algae	or other aquatic plan	ts	7.71mg/l	2
	LC50	96h	Fish			24.11mg/l	2
	EC50	96h	Algae	or other aquatic plan	ts	7.71mg/l	2

Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

For petroleum distillates:

Environmental fate:

(2) isoalkanes;

(3) alkenes;

(4) benzene, toluene, ethylbenzene, xylenes (BTEX) (when present in concentrations that are not toxic to microorganisms);

(5) monoaromatics;

(6) polynuclear (polycyclic) aromatic hydrocarbons (PAHs); and

(7) higher molecular weight cycloalkanes (which may degrade very slowly.

Three weathering processes-dissolution in water, volatilization and biodegradation-typically result in the depletion of the more readily soluble, volatile and degradable compounds and the accumulation of those most resistant to these processes in residues.

When petroleum substances are released into the environment, four major fate processes will take place: dissolution in water, volatilization, biodegradation and adsorption. These processes will cause changes in the composition of these UVCB substances. In the case of spills on land or water surfaces, photodegradation-another fate process-can also be significant.

As noted previously, the solubility and vapour pressure of components within a mixture will differ from those of the component alone. These interactions are complex for complex UVCBs such as petroleum hydrocarbons.

Each of the fate processes affects hydrocarbon families differently. Aromatics tend to be more water-soluble than aliphatics of the same carbon number, whereas aliphatics tend to be more volatile. Thus, when a petroleum mixture is released into the environment, the principal water contaminants are likely to be aromatics, whereas aliphatics will be the principal air contaminants . The trend in volatility by component class is as follows: alkenes = alkanes > aromatics = cycloalkanes.

The most soluble and volatile components have the lowest molecular weight; thus there is a general shift to higher molecular weight components in residual materials. Biodegradation:

Biodegradation is almost always operative when petroleum mixtures are released into the environment. It has been widely demonstrated that nearly all soils and sediments have populations of bacteria and other organisms capable of degrading petroleum hydrocarbons Degradation occurs both in the presence and absence of oxygen. Two key factors that determine degradation rates are oxygen supply and molecular structure. In general, degradation is more rapid under aerobic conditions. Decreasing trends in degradation rates according to structure are as follows:

⁽¹⁾ n-alkanes, especially in the C10–C25 range, which are degraded readily;

multicomp PRO

When large quantities of a hydrocarbon mixture enter the soil compartment, soil organic matter and other sorption sites in soil are fully saturated and the hydrocarbons will begin to form a separate phase (a non-aqueous phase liquid, or NAPL) in the soil. At concentrations below the retention capacity for the hydrocarbon in the soil, the NAPL will be immobile this is referred to as residual NAPL. Above the retention capacity, the NAPL becomes mobile and will move within the soil Bioaccumulation:

Bioaccumulation potential was characterized based on empirical and/or modelled data for a suite of petroleum hydrocarbons expected to occur in petroleum substances. Bioaccumulation factors (BAFs) are the preferred metric for assessing the bioaccumulation potential of substances, as the bioconcentration factor (BCF) may not adequately account

for the bioaccumulation potential of substances via the diet, which predominates for substances with log Kow > ~4.5 In addition to fish BCF and BAF data, bioaccumulation data for aquatic invertebrate species were also considered. Biota-sediment/soil accumulation factors (BSAFs), trophic

magnification factors and biomagnification factors were also considered in characterizing bioaccumulation potential. Overall, there is consistent empirical and predicted evidence to suggest that the following components have the potential for high bioaccumulation, with BAF/BCF values greater than 5000: C13–C15 isoalkanes, C12 alkenes, C12–C15 one-ring cycloalkanes, C12 and C15 two-ring cycloalkanes, C14 polycycloalkanes, C15 one-ring aromatics, C15 and C20 cycloalkane monoaromatics, C12–C13 diaromatics, C20 cycloalkane diaromatics, and C14 and C20 three-ring PAHs

These components are associated with a slow rate of metabolism and are highly lipophilic. Exposures from water and diet, when combined, suggest that the rate of uptake would exceed that of the total elimination rate. Most of these components are not expected to biomagnify in aquatic or terrestrial foodwebs, largely because a combination of metabolism, low dietary assimilation efficiency and growth dilution allows the elimination rate to exceed the uptake rate from the diet; however,

one study suggests that some alkyI-PAHs may biomagnify. While only BSAFs were found for some PAHs, it is possible that BSAFs will be > 1 for invertebrates, given that they do not have the same metabolic competency as fish.

In general, fish can efficiently metabolize aromatic compounds. There is some evidence that alkylation increases bioaccumulation of naphthalene but it is not known if this can be generalized to larger PAHs or if any potential increase in bioaccumulation due to alkylation will be sufficient to exceed a BAF/BCF of 5000.

Some lower trophic level organisms (i.e., invertebrates) appear to lack the capacity to efficiently metabolize aromatic compounds, resulting in high bioaccumulation potential for some aromatic components as compared to fish.

This is the case for the C14 three-ring PAH, which was bioconcentrated to a high level (BCF > 5000) by invertebrates but not by fish. There is potential for such bioaccumulative components to reach toxic levels in organisms if exposure is continuous and of sufficient magnitude, though this is unlikely in the water column following a spill scenario due to relatively rapid dispersal

Bioaccumulation of aromatic compounds might be lower in natural environments than what is observed in the laboratory. PAHs may sorb to organic material suspended in the water column (dissolved humic material), which decreases their overall bioavailability primarily due to an increase in size. This has been observed with fish Ecotoxicity:

Diesel fuel studies in salt water are available. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/. The values varied greatly for aquatic species such as rainbow trout and Daphnia magna, demonstrating the inherent variability of diesel fuel compositions and its effects on toxicity. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L. Most experimental acute toxicity values are above 1 mg/L. The lowest 48-hour LC50 for salmonids was 2.4 mg/L. Daphnia magna had a 24-hour LC50 of 1.8 mg/L.

The tropical mysid Metamysidopsis insularis was shown to be very sensitive to diesel fuel, with a 96-hour LC50 value of 0.22 mg/L this species has been shown to be as sensitive as temperate mysids to toxicants. However, However this study used nominal concentrations, and therefore was not considered acceptable. In another study involving diesel fuel, the effect on brown or common shrimp (Crangon crangon) a 96-hour LC50 of 22 mg/L was determined. A "gas oil" was also tested and a 96-hour LC50 of 12 mg/L was determined The steady state cell density of marine phytoplankton decreased with increasing concentrations of diesel fuel, with different sensitivities between species. The diatom Phaeodactlylum tricornutum showed a 20% decrease in cell density in 24 hours following a 3 mg/L exposure with a 24-hour no-observed effect concentration (NOEC) of 2.5 mg/L. The microalga lsochrysis galbana was more tolerant to diesel fuel, with a 24-hour lowest-observed-effect concentration (LOEC) of 26 mg/L (14% decrease in cell density), and a NOEC of 25 mg/L. Finally, the green algae Chlorella salina was relatively insensitive to diesel fuel contamination, with a 24-hour LOEC of 170 mg/L (27% decrease in cell density), and a NOEC of 160 mg/L. All populations of phytoplankton returned to a steady state within 5 days of exposure

In sandy soils, earthworm (Eisenia fetida) mortality only occurred at diesel fuel concentrations greater than 10 000 mg/kg, which was also the concentration at which sub-lethal weight loss was recorded

Nephrotoxic effects of diesel fuel have been documented in several animal and human studies. Some species of birds (mallard ducks in particular) are generally resistant to the toxic effects of petrochemical ingestion, and large amounts of petrochemicals are needed in order to cause direct mortality

For isopropanol (IPA): log Kow :-0.16-0.28 Half-life (hr) air : 33-84 Half-life (hr) H2O surface water : 130 Henry's atm m3 /mol: 8.07E-06 BOD 5: 1.19,60% COD : 1.61-2.30,97% ThOD : 2.4 BOD 20: >70% * [Akzo Nobel]

Environmental Fate

Based on calculated results from a lever 1 fugacity model, IPA is expected to partition primarily to the aquatic compartment (77.7%) with the remainder to the air (22.3%). IPA has been shown to biodegrade rapidly in aerobic, aqueous biodegradation tests and therefore, would not be expected to persist in aquatic habitats. IPA is also not expected to persist in surface soils due to rapid evaporation to the air. In the air, physical degradation will occur rapidly due to hydroxy

radical (OH) attack. Overall, IPA presents a low potential hazard to aquatic or terrestrial biota.

IPA is expected to volatilise slowly from water based on a calculated Henry s Law constant of 7.52 x 10 -6 atm.m 3 /mole. The calculated half-life for the volatilisation from surface water (1 meter depth) is predicted to range from 4 days (from a river) to 31 days (from a lake). Hydrolysis is not considered a significant degradation process for IPA. However, aerobic biodegradation of IPA has been shown to occur rapidly under non-acclimated conditions, based on a result of 49% biodegradation from a 5 day BOD test. Additional biodegradation data developed using standardized test methods show that IPA is readily biodegradable in both freshwater and saltwater media (72 to 78% biodegradation in 20 days). IPA will evaporate quickly from soil due to its high vapor pressure (43 hPa at 20°C), and is not expected to partition to the soil based on a calculated soil adsorption coefficient (log Koc) of 0.03.

IPA has the potential to leach through the soil due to its low soil adsorption

In the air, isopropanol is subject to oxidation predominantly by hydroxy radical attack. The room temperature rate constants determined by several investigators are in good agreement for the reaction of IPA with hydroxy radicals. The atmospheric half-life is expected to be 10 to 25 hours, based on measured degradation rates ranging from 5.1 to 7.1 x 10 -12 cm3 //molecule-sec, and an OH concentration of 1.5 x 106 molecule/cm3, which is a commonly used default value for calculating atmospheric half-lives. Using OH concentrations representative of polluted (3 x 106) and pristine (3 x 105) air, the atmospheric half-life of IPA would range from 9 to 126 hours, respectively. Direct photolysis is not expected to be an important transformation process for the degradation of IPA.

Ecotoxicity:

IPA has been shown to have a low order of acute aquatic toxicity. Results from 24- to 96-hour LC50 studies range from 1,400 to more than 10,000 mg/L for freshwater and saltwater fish and invertebrates. In addition, 16-hour to 8-day toxicity threshold levels (equivalent to 3% inhibition in cell growth) ranging from 104 to 4,930 mg/L have been demonstrated for various microorganisms.

multicomp PRO

Chronic aquatic toxicity has also been shown to be of low concern, based on 16- to 21-day NOEC values of 141 to 30 mg/L, respectively, for a freshwater invertebrate. Bioconcentration of IPA in aquatic organisms is not expected to occur based on a measured log octanol/water partition coefficient (log Kow) of 0.05, a calculated bioconcentration factor of 1 for a freshwater fish, and the unlikelihood of constant, long-term exposures.

Toxicity to Plants

Toxicity of IPA to plants is expected to be low, based on a 7-day toxicity threshold value of 1,800 mg/L for a freshwater algae, and an EC50 value of 2,100 mg/L from a lettuce seed germination test.

For isobutane:

Refrigerant Gas: Saturated Hydrocarbons have zero ozone depletion potential (ODP) and will photodegrade under atmospheric conditions. [Calor Gas]

Environmental Fate

Terrestrial fate: An estimated Koc value of 35 suggests that isobutane will have very high mobility in soil. Its very high Henry's Law constant, 4.08 atm-cu m/mole, (calculated from its vapor pressure and water solubility, high vapor pressure, 2611 mm Hg at 25 deg C, and low adsorptivity to soil indicate that volatilisation will be an important fate process from both moist and dry soil surfaces. Isobutane is biodegradable, especially under acclimated conditions, and may biodegrade in soil.

Aquatic fate: The estimated Koc value suggests that isobutane would not adsorb to sediment and particulate matter in the water column. Additional evidence that isobutane is not removed to sediment has been obtained from microcosm experiments. Isobutane will readily volatilise from water based on its estimated Henry's Law constant of 4.08 atm-cu m/mole. Estimated half-lives for a model river and model lake are 2.2 hr and 3.0 days, respectively. An estimated BCF value of 74 based on the log Kow suggests that isobutane will not bioconcentrate in aquatic organisms.

Results indicate that gas exchange is the dominant removal mechanism for isobutane gases from the water column following a hypothetical input. The volatilisation half-lives for isobutane from the water columns in natural estuaries are estimated to be 4.4 and 6.8 days at 20 and 10 deg C, respectively.

Isobutane also biodegrades in the microcosm at a rate that is slower than for n-butane and falls between propane and ethane in susceptibility. Biodegradation of isobutane initially occurs with a half-lives of 16-26 days at 20 deg C and 33-139 days at 10 deg C, significantly slower than the loss predicted by gas exchange from typical natural estuaries. However, after a lag of 2-4 weeks, the biodegradation rate increases markedly so that in the case of chronic inputs, biodegradation can become the dominant removal mechanism.

Atmospheric fate:: Isobutane is a gas at ordinary temperatures. It is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is 6.9 days, assuming a hydroxyl radical concn of 5x105 radicals per cubic cm. When isobutane was exposed to sunlight for 6 hr in a tedlar bag filled with Los Angeles air, 6% of the isobutane degraded The air contained 4529 ppb-C hydrocarbons and 870 ppb of NOX. The tropospheric loss of volatile hydrocarbons such as isobutane by wet and dry deposition are believed to be of minor importance. Indeed, isobutane assimilated into precipitation may evaporate during transport as well as being reemitted into the atmosphere after deposition. Isobutane is a contributor to the production of PAN (peroxyacyl nitrates) under photochemical smog conditions For propane:

Environmental Fate

Terrestrial fate:: An estimated Koc value of 460 determined from a log Kow of 2.36 indicates that propane is expected to have moderate mobility in soil. Volatilisation of propane from moist soil surfaces is expected to be an important fate process given an estimated Henry's Law constant of 7.07x10-1 atm-cu m/mole, derived from its vapor pressure, 7150 mm Hg, and water solubility, 62.4 mg/L. Propane is expected to volatilise from dry soil surfaces based upon its vapor pressure. Using cell suspensions of microorganisms isolated from soil and water, propane was oxidised to acetone within 24 hours, suggesting that biodegradation may be an important fate process in soil and sediment.

Aquatic fate: The estimated Koc value indicates that propane is expected to adsorb to suspended solids and sediment. Volatilisation from water surfaces is expected based upon an estimated Henry's Law constant. Using this Henry's Law constant volatilisation half-lives for a model river and model lake are estimated to be 41 minutes and 2.6 days, respectively. An estimated BCF of 13.1 using log Kow suggests the potential for bioconcentration in aquatic organisms is low. After 192 hr, the trace concentration of propane contained in gasoline remained unchanged for both a sterile control and a mixed culture sample collected from ground water contaminated with gasoline. This indicates that biodegradation may not be an important fate process in water.

Atmospheric fate:: According to a model of gas/particle partitioning of semivolatile organic compounds in the atmosphere and vapour pressure, propane is expected to exist solely as a gas in the ambient atmosphere. Gas-phase propane is degraded in the atmosphere by reaction with photochemically-produced hydroxyl radicals; the half-life for this reaction in air is estimated to be 14 days, calculated from its rate constant of 1.15x10-12 cu cm/molecule-sec at 25 deg C. Propane does not contain chromophores that absorb at wavelengths >290 nm and therefore is not expected to be susceptible to direct photolysis by sunlight.

DO NOT discharge into sewer or waterways.

12.2. Persistence and degradability

Ingredient	Persistence: Water/Soil	Persistence: Air
isopropanol	LOW (Half-life = 14 days)	LOW (Half-life = 3 days)

12.3. Bioaccumulative potential

Ingredie	nt	Bioaccumulation
isopropa	nol	LOW (LogKOW = 0.05)
12.4. Mol	bility in soil	

Ingredient	Mobility
isopropanol	HIGH (KOC = 1.06)

12.5. Results of PBT and vPvB assessment

	Ρ	В	т		
Relevant available data	Not Available	Not Available	Not Av	Not Available	
PBT	×	×	X	×	
vPvB	×	×	X	×	
PBT Criteria fulfilled?	No				
vPvB				No	

12.6. Endocrine Disruption Properties

Not Available

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

multicomp PRO

12.7. Other adverse effects

Not Available

SECTION 13 Disposal considerations

13.1. Waste treatment methods				
Product / Packaging disposal	 DO NOT allow wash water from cleaning or process equipment to enter drains. It may be necessary to collect all wash water for treatment before disposal. In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. Where in doubt contact the responsible authority. Consult State Land Waste Management Authority for disposal. Discharge contents of damaged aerosol cans at an approved site. Allow small quantities to evaporate. DO NOT incinerate or puncture aerosol cans. Bury residues and emptied aerosol cans at an approved site. 			
Waste treatment options	Not Available			
Sewage disposal options	Not Available			

SECTION 14 Transport information

Labels Required

Land transport (ADR-RID)

14.1. UN number	1950		
14.2. UN proper shipping name	AEROSOLS		
14.3. Transport hazard class(es)	Class 2.1 Subrisk Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Hazard identification (Kemler) Ni Classification code 5f Hazard Label 2. Special provisions 15 Limited quantity 1 Tunnel Restriction Code 2	ot Applicable 	

Air transport (ICAO-IATA / DGR)

14.1. UN number	1950		
14.2. UN proper shipping name	Aerosols, flammable		
14.3. Transport hazard class(es)	ICAO/IATA Class ICAO / IATA Subrisk ERG Code	2.1 Not Applicable 10L	
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
	Special provisions A145 A167 A802		

multicomp PRO

14.6. Special precautions for user	Cargo Only Packing Instructions	203
	Cargo Only Maximum Qty / Pack	150 kg
	Passenger and Cargo Packing Instructions	203
	Passenger and Cargo Maximum Qty / Pack	75 kg
	Passenger and Cargo Limited Quantity Packing Instructions	Y203
	Passenger and Cargo Limited Maximum Qty / Pack	30 kg G
	Passenger and Cargo Maximum Qty / Pack Passenger and Cargo Limited Quantity Packing Instructions Passenger and Cargo Limited Maximum Qty / Pack	75 kg Y203 30 kg G

Sea transport (IMDG-Code / GGVSee)

	,		
14.1. UN number	1950		
14.2. UN proper shipping name	AEROSOLS		
14.3. Transport hazard class(es)	IMDG Class 2 IMDG Subrisk N	2.1Not Applicable	
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	EMS Number Special provisions Limited Quantities	F-D, S-U 63 190 277 327 344 381 959 1000 ml	

Inland waterways transport (ADN)

14.1. UN number	1950		
14.2. UN proper shipping name	AEROSOLS		
14.3. Transport hazard class(es)	2.1 Not Applicable		
14.4. Packing group	Not Applicable		
14.5. Environmental hazard	Not Applicable		
14.6. Special precautions for user	Classification code Special provisions Limited quantity Equipment required	5F 190; 327; 344; 625 1 L PP, EX, A	
	Fire cones number	1	

14.7. Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable

14.8. Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

Product name	Group
isopropanol	Not Available
hydrocarbon propellant	Not Available

14.9. Transport in bulk in accordance with the ICG Code

Product name	Ship Type
isopropanol	Not Available
hydrocarbon propellant	Not Available

SECTION 15 Regulatory information

15.1. Safety, health and environmental regulations / legislation specific for the substance or mixture

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

multicomp PRO

isopropanol is found on the following regulatory lists

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

Europe EC Inventory

European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

hydrocarbon propellant is found on the following regulatory lists

Chemical Footprint Project - Chemicals of High Concern List

EU REACH Regulation (EC) No 1907/2006 - Annex XVII - Restrictions on the manufacture, placing on the market and use of certain dangerous substances, mixtures and articles

EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 1) Carcinogens: Category 1 A

EU REACH Regulation (EC) No 1907/2006 - Annex XVII (Appendix 4) Germ cell mutagens: Category 1 B

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI International Agency for Research on Cancer (IARC) - Agents Classified by the IARC

International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

Europe EC Inventory European Union - European Inventory of Existing Commercial Chemical Substances (EINECS)

European Union (EU) Regulation (EC) No 1272/2008 on Classification, Labelling and Packaging of Substances and Mixtures - Annex VI

This safety data sheet is in compliance with the following EU legislation and its adaptations - as far as applicable - : Directives 98/24/EC, - 92/85/EEC, - 94/33/EC, - 2008/98/EC, - 2010/75/EU; Commission Regulation (EU) 2020/878; Regulation (EC) No 1272/2008 as updated through ATPs.

15.2. Chemical safety assessment

No Chemical Safety Assessment has been carried out for this substance/mixture by the supplier.

National Inventory Status

National Inventory	Status
Australia - AIIC / Australia Non-Industrial Use	Yes
Canada - DSL	Yes
Canada - NDSL	No (isopropanol; hydrocarbon propellant)
China - IECSC	Yes
Europe - EINEC / ELINCS / NLP	Yes
Japan - ENCS	Yes
Korea - KECI	Yes
New Zealand - NZIoC	Yes
Philippines - PICCS	Yes
USA - TSCA	Yes
Taiwan - TCSI	Yes
Mexico - INSQ	Yes
Vietnam - NCI	Yes
Russia - FBEPH	Yes
Legend:	Yes = All CAS declared ingredients are on the inventory No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

Revision Date	03/11/2021
Initial Date	24/11/2020

ruii text Risk and Hazard Codes		
H220	Extremely flammable gas.	
H225	Highly flammable liquid and vapour.	
H280	Contains gas under pressure; may explode if heated.	

Other information

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. For detailed advice on Personal Protective Equipment, refer to the following EU CEN Standards:

multicomp PRO

EN 166 Personal eye-protection EN 340 Protective clothing

- EN 374 Protective gloves against chemicals and micro-organisms
- EN 13832 Footwear protecting against chemicals EN 133 Respiratory protective devices

Definitions and abbreviations

PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit。 IDLH: Immediately Dangerous to Life or Health Concentrations ES: Exposure Standard OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index AIIC: Australian Inventory of Industrial Chemicals DSL: Domestic Substances List NDSL: Non-Domestic Substances List IECSC: Inventory of Existing Chemical Substance in China EINECS: European INventory of Existing Commercial chemical Substances ELINCS: European List of Notified Chemical Substances NLP: No-Longer Polymers ENCS: Existing and New Chemical Substances Inventory KECI: Korea Existing Chemicals Inventory NZIoC: New Zealand Inventory of Chemicals PICCS: Philippine Inventory of Chemicals and Chemical Substances TSCA: Toxic Substances Control Act TCSI: Taiwan Chemical Substance Inventory INSQ: Inventario Nacional de Sustancias Químicas NCI: National Chemical Inventory FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

Reason For Change

A-2.00 - Modifications to the safety data sheet

Part Number Table

Part Number MP014025

Important Notice : This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for white any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

