

RoHS Compliant

Features

- V_{DS} (V) =30V
- ID =-5A
- R_{DS(ON)} < 65mΩ (V_{GS} =-10V)
- $R_{DS(ON)} < 100 m\Omega \text{ (Vgs =-4.5V)}$

Absolute Maximum Ratings (Ta=25°C)

Parameter	Symbol	Rating	Unit		
Drain-Source Voltage		VDS	-30	V	
Gate-Source Voltage		Vgs	±20		
Continuous Drain Current, VGS @ -10V	(Note 1a)	ID	-5		
Pulsed Drain Current	Ірм	-15	Α		
Continuous Drain-Source Diode Forward Current		Is	-2.5		
	(Note 1a)		3		
Maximum Power Dissipation	(Note 1b)	PD	1.3	W	
	(Note 1c)		1.1		
Thermal Resistance, Junction- to-Ambient	(Note 1a)	Reja	42	°C/M	
Thermal Resistance, Junction- to-Case (Note 1)		Rejc	12	°C/W	
Operating and Storage Temperature Range		TJ, TSTG	-65 to + 150	°C	

Note 1: R⁰JA is the sum of the junction-to-case and case-to-ambient thermal resistance where the case thermal reference is defined as the solder mounting surface of the drain pins. R⁰JC is guaranteed by design while R⁰CA is defined by users. For general reference: Applications on 4.5" × 5" FR-4 PCB under still air environment, typical R⁰JA is found to be:

- a. 42°C/W when mounted on a 1 in² pad of 2oz copper.
- b. 95°C/W when mounted on a 0.066in² pad of 2oz copper.
- c. 110°C/W when mounted on a 0.00123in² pad of 2oz copper.

Electrical Characteristics (TA = 25°C unless otherwise noted)

Symbol	Conditions	Min	Тур	Max	Unit	
VDSS	I _D =250µA, V _G s=0V	-30			V	
loss	V _{DS} =-24V, V _{GS} =0V			-1	μΑ	
	V_{DS} =-24V, V_{GS} =0V, T_{J} = 55°C			-10		
Igss)	V _{DS} =0V, V _{GS} =±20V			±100	nA	
VGS(th)	V _{DS} =V _{GS} I _D =-250µA	-1	-1.6	-2.8	V	
	VDSS IDSS IGSS)	V _{DSS} I _D =250μA, V _{GS} =0V V _{DS} =-24V, V _{GS} =0V V _{DS} =-24V, V _{GS} =0V, T _J = 55°C I _{GSS} V _{DS} =0V, V _{GS} =±20V	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	V _{DSS} I _{D=250μ} A, V _{GS=0} V -30 V _{DS=-24} V, V _{GS=0} V V _{DS=-24} V, V _{GS=0} V, T _J = 55°C I _{GSS} V _{DS=0} V, V _{GS=±20} V	VDSS ID=250μA, VGS=0V -30 IDSS VDS=-24V, VGS=0V -1 VDS=-24V, VGS=0V, TJ = 55°C -10 IGSS) VDS=0V, VGS=±20V ±100	

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

Characteristic	Symbol	Conditions	Min	Тур	Max	Unit	
Static Drain-Source On-Resistance		V _G s=-10V, I _D =-5A	65 130				
	RDS(On)	Vgs=-10V, Ip=-5A, TJ = 125°C			130	mΩ	
		Vgs=-4.5V, ID=-6A			100		
On-State Drain Current	la.	Vgs = -10 V , Vps = - 5 V	-15				
	ID(on)	Vgs = -4.5 V, Vps = - 5 V	-5			A	
Forward Transconductance	g FS	V _{DS} =-10V, I _D =5A		7		S	
Dynamic Characteristics (Note 2)							
Input Capacitance	Ciss			690		pF	
Output Capacitance	Coss	Vps=-15V, Vgs=0V, f=1MHz		430			
Reverse Transfer Capacitance	Crss			160			
Switching Characteristics (Note 2)							
Turn-On DelayTime	td(on)	V _{DD} = -10 V, I _D = -1 A,		9	20	nS	
Turn-On Rise Time	tr			20	30		
Turn-Off DelayTime	td(off)	$V_{GEN} = -10 \text{ V}, \text{ RGEN} = 6\Omega$		40	50		
Turn-Off Fall Time	tf			19	40		
Total Gate Charge	Qg	V _{DS} = -10 V, I _D = -5 A, V _{GS} = -10 V		22	30	nC	
Gate Source Charge	Qgs			3.2			
Gate Drain Charge	Qgd	V G3 — -10 V		5.2			
Drain-Source Diode Characteristics							
Diode Forward Voltage (Note 2)	VsD	Is=-2.5A,Vgs=0V			-1.2	V	
Reverse Recovery Time	trr	V _G s=0V, I _F =-2.5 A, dIF/dt=100 A/µs			100	nS	

NOTES:

- 1. Pulse Test: Pulse Width ≤ 300µs, Duty Cycle ≤ 2%.
- 2. Guaranteed by design, not subject to production

Typical Characterisitics

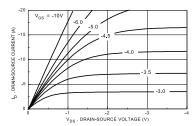


Figure 1. On-Region Characteristics.

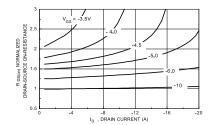


Figure 2. On-Resistance Variation with Gate Voltage and Drain Current.

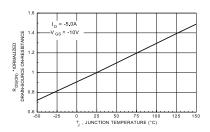


Figure 3. On-Resistance Variation with Temperature.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

multicomp PRO

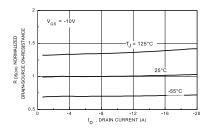


Figure 4. On-Resistance Variation with Drain Current and Temperature.

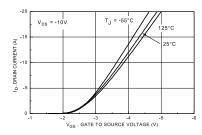


Figure 5. Transfer Characteristics.

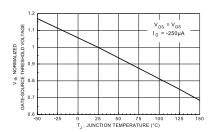


Figure 6. Gate Threshold Variation with Temperature.

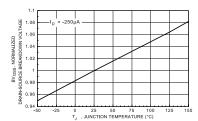


Figure 7. Breakdown Voltage Variation with Temperature.

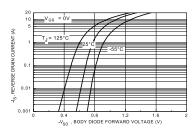


Figure 8. Body Diode Forward Voltage Variation with Current and Temperature.

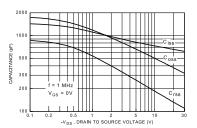


Figure 9. Capacitance Characteristics.

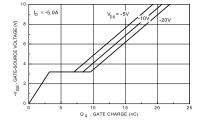


Figure 10. Gate Charge Characteristics.

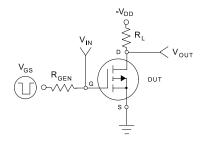


Figure 11. Switching Test Circuit.

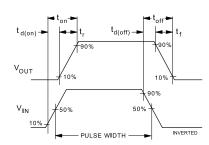


Figure 12, Switching Waveforms.

multicomp PRO

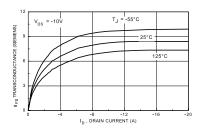


Figure 13. Transconductance Variation with Drain Current and Temperature.

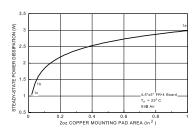


Figure 14. SOT-223 Maximum Steady- tate Power Dissipation versus Copper Mounting Pad Area.

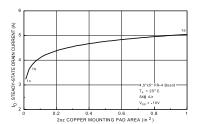


Figure 15. Maximum Steady-State Drain Current versus Copper Mounting Pad Area.

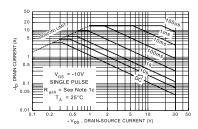


Figure 16. Maximum Safe Operating Area.

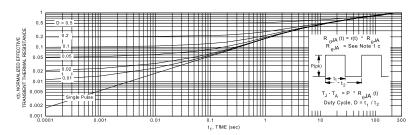
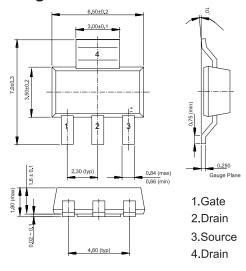



Figure 17. Transient Thermal Response Curve.

Diagram

D s

Part Number Table

Description	Part Number		
P Channel MOSFET, 5A, 30V	NDT452AP		

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for

the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

Dimensions: Millimetres

