

RoHS **Compliant**

Description

This are monolithic integrated voltage regulators with low dropout voltage, and low quiescent current. It includes many features that suitable for different applications.

Features

- Fixed output 3V, 3.3V, 5V available.
- · High accuracy output voltage.
- · Extremely low quiescent current and dropout voltage.
- · Extremely tight load and line regulation.
- Current and thermal limiting.
- · Very low temperature coefficient

Absolute Maximum Ratings (Ta=25°C)

Characteristic	Symbol	Value	Unit	
Supply voltage	Vcc	-0.3 to +30		
Feedback voltage	VFB	-1.5 to +30	V	
Shutdown voltage	Vshdn	-0.3 to +30		
Junction-to-Ambient	RthJA	160	°C/W	
Junction-to-Case	RthJC	83		
Power dissipation	Po	Internally Limited	W	
Operation junction temperature	TJ	-40 to 125	°C	
Storage temperature	Tstg	-65 to 150		

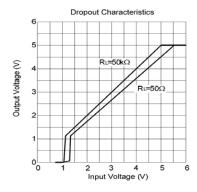
Absolute maximum ratings are those values beyond which the device could be permanently damaged. Absolute maximum ratings are stress ratings only and functional device operation is not implied.

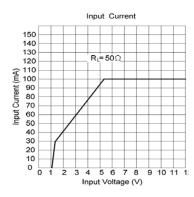
Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

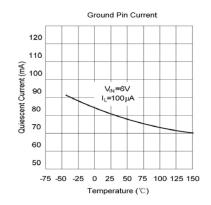
Electrical Characteristics (unless otherwise specified: VIN=Vo+1V, IL=100 μA, CL=1μF, TJ = 25)

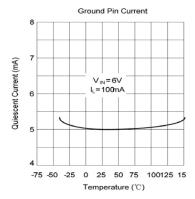
Chara	cteristic	Symbol	Conditions	Min	Тур	Max	Unit	
Output valtage		Vout	T _J = 25°C *1		Vоит	Vоит ×1.02	V	
Output voltage	VOUT	-25°C≤Tյ≤+85 *1	Vout					
Output voltage		Іоит	100μA≤l∟ 100mA Tյ Tյ(max)	×0.98				
Output voltage temperature coefficient		TcVo			50	120	ppm/°C	
Line regulation Load regulation		ΔVουτ	(Vo+1V)≤V _{IN} ≤30V	0.03		0.2	%	
		Δνοσ1	100µA≤I∟≤100mA		0.04	0.2	70	
Dropout voltage	Due no esta solto no	V _D	I∟ =100 A		50	150	m\/	
Dropout voltage		VD	IL =100mA *2		380	600	mV	
Ground current	lg -	I∟ =100 A		75	140	μA		
	IG	I∟ =100mA		8	14	mA		
Dropout ground	d current		$V_{IN} = (Vo-0.5V), I_L = 100\mu A$		110	200	μA	
Current limit		Ішміт	Vout =0	140	160	220	mA	
			CL=1µF		430			
Output noise(10Hz~10	OkHz)	eN	CL=200µF		160		μV	
110130(10112 10	OKI IZ)		CL=3.3µF		100			
Reference volta temperature co		VREF(TC)			50		ppm/°C	
Feedback bias temperature co		IFB(TC)			0.1		nA/°C	
Error Comparat	tor			•				
Output leakage current		lo(leak)	VoH=30V		0.01	1	μA	
Output low voltage		Vol	VIN=4.5V, IOL=400µA		150	250		
Threshold voltage	Upper	Vтни	40 60		60			
	Lower	VTHL	VIN=6V		75	95	mV	
Hysteresis		VHYS			15		1	
Shutdown Input	t			•				
Input logic voltage	Low	VIL	Regulator ON			0.7	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
	High	ViH	Regulator OFF	2			V	
Shutdown pin ir	nput		Vshdn=2.4V		30	50		
current		Ishdn	Vshdn=30V	1	450	600]	
Regulator outpo current shutdov		ldff	Vshdn 2V, Vin 30V, Vout=0		3	10	μΑ	

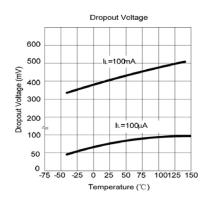
^{*1.} Additional conditions for 8-pin versions are FB pin tied to 5VTAP, Output tied to Sense (Vout=5V) and VSHDN 0.8V

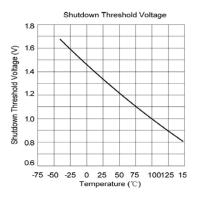


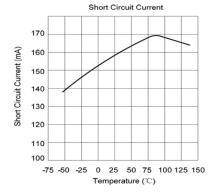

^{*2.} Dropout Voltage is defined as the input to output differential at which the output voltage drops 100mV below its nominal value measured at 1V differential.

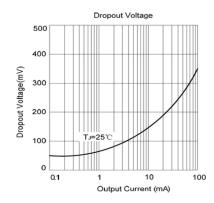

^{*3.} VREF≤VOUT≤(VIN -1V), 2.3V≤VIN≤30V, 100 µA≤IL≤100mA, TJ≤TJ (MAX)

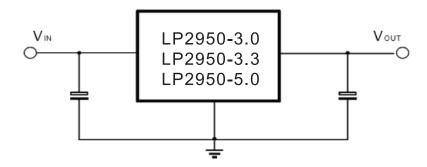


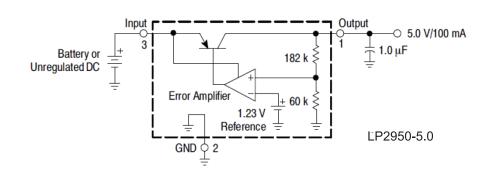

Characteristics Curve










Application Circuits

Diagram

1. OUTPUT 2. GND 3. INPUT

Block Diagram

Part Number Table

Description	Part Number		
Low Dropout Voltage Regulator, 3V, 100MA, TO92	LP2950-3.0		
Low Dropout Voltage Regulator, 3.3V, 100MA, TO92	LP2950-3.3		
Low Dropout Voltage Regulator, 5V, 100MA, TO92	LP2950-5.0		

Dimensions: Millimetres

Important Notice: This data sheet and its contents (the "Information") belong to the members of the AVNET group of companies (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. Multicomp Pro is the registered trademark of Premier Farnell Limited 2019.

Newark.com/multicomp-pro Farnell.com/multicomp-pro sg.element14.com/b/multicomp-pro

05/08/24 V1.0