
6-Channel EMI-Filter with ESD-Protection

Features

- Ultra compact LLP2513-13L package
- Low package profile of 0.6 mm
- 6-channel EMI-filter
- · Low leakage current
- Line resistance $R_S = 100 \Omega$
- Typical cut off frequency f_{3dB} = 100 MHz
- ESD-protection acc. IEC 61000-4-2
 - ± 30 kV contact discharge
 - ± 30 kV air discharge
- Lead (Pb)-free component
- "Green" molding compound
- Component in accordance to RoHS 2002/95/EC and WEEE 2002/96/EC

Marking (example only)

20720

Dot = Pin 1 marking YY = Type code (see table below) XX = Date code

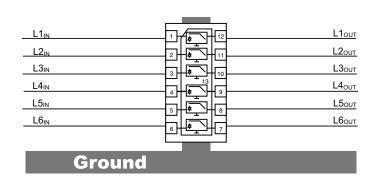
Ordering Information

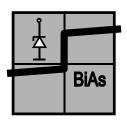
Device name Ordering code		Taped units per reel (8 mm tape on 7" reel)	Minimum order quantity	
VEMI65AA-HCI	EMI65AA-HCI VEMI65AA-HCI-GS08		15 000	

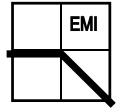
Package Data

Device name	Package name	Marking code	Weight	Molding compound flammability rating	Moisture sensitivity level	Soldering conditions
VEMI65AA-HCI	LLP2513-13L	9P	5.5 mg	UL 94 V-0	MSL level 1 (according J-STD-020)	260 °C/10 s at terminals

Absolute Maximum Ratings

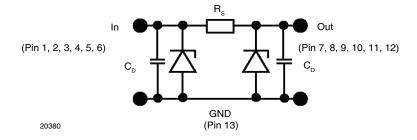

Parameter	Test conditions	Symbol	Value	Unit	
Peak pulse current	All I/O pin to pin 9; acc. IEC 61000-4-5; t _p = 8/20 μs; single shot	I _{PPM}	4	Α	
ESD immunity	Contact discharge acc. IEC61000-4-2; 10 pulses	V	± 30	kV	
	Air discharge acc. IEC61000-4-2; 10 pulses	V _{ESD}	± 30		
Operating temperature	Junction temperature	T_J	- 40 to + 125	°C	
Storage temperature		T _{STG}	- 55 to + 150	°C	


Document Number 81384 Rev. 1.4, 03-Jun-08



Application Note:

With the **VEMI65AA-HCI** 6 different signal or data lines can be filtered and clamped to ground. Due to the different clamping levels in forward and reverse direction the clamping behaviour is <u>Bi</u>directional and <u>Asymmetric</u> (**BiAs**).


20379

The 6 independent EMI-Filter are placed between

pin 1 and pin 12, pin 2 and pin 11, pin 3 and pin 10, pin 4 and pin 9, pin 5 and pin 8 and pin 6 and pin 7.

They all are connected to a common ground pin 13 on the backside of the package.

The circuit diagram of one EMI-filter-channel shows two identical Z-diodes at the input to ground and the output to ground. These Z-diodes are characterized by the breakthrough voltage level (V_{BR}) and the diode capacitance (C_D). Below the breakthrough voltage level the Z-diodes can be considered as capacitors. Together with these capacitors and the line resistance R_S between input and output the device works as a low pass filter. Low frequency signals (f < f_{3dB}) pass the filter while high frequency signals (f > f_{3dB}) will be shorted to ground through the diode capacitances C_D .

Each filter is symmetrical so that both ports can be used as input or output.

Electrical Characteristics

Ratings at 25 °C, ambient temperature unless otherwise specified

VEMI65AA-HCI

All inputs (pin 1, 2, 3, 4, 5 and 6) to ground (pin 13)

Parameter	Test conditions/remarks	Symbol	Min.	Тур.	Max.	Unit
Protection paths	Number of channels which can be protected	N _{channel}			6	channel
Reverse stand off voltage	at I _R = 1 μA	V_{RWM}	5			V
Reverse current	at V _R = V _{RWM}	I _R			1	μΑ
Reverse break down voltage	at I _R = 1 mA	V _{BR}	6			V
Pos. clamping voltage	at I _{PP} = 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}			7	V
	at $I_{PP} = I_{PPM} = 4$ A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}			8	V
Neg. clamping voltage	at I _{PP} = - 1 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1			V
	at I _{PP} = I _{PPM} = - 4 A applied at the input, measured at the output; acc. IEC 61000-4-5	V _{C-out}	- 1.2			V
Input capacitance	at V _R = 0 V; f = 1 MHz	C _{in}		60		pF
	at V _R = 2.5 V; f = 1 MHz	C _{in}		36		pF
ESD-clamping voltage	at ± 30 kV ESD-pulse acc. IEC 61000-4-2	V _{CESD}		7.5		V
Line resistance	Measured between input and output; $I_S = 10 \text{ mA}$	R _S	90	90 100 110		Ω
Cut-off frequency	V_{IN} = 0 V; measured in a 50 Ω system	f _{3dB}		100		MHz

Typical Characteristics T_{amb} = 25 °C, unless otherwise specified

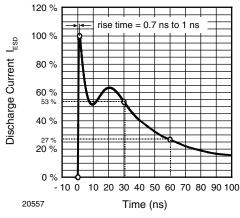


Figure 1. ESD Discharge Current Wave Form acc. IEC 61000-4-2 (330 Ω /150 pF)

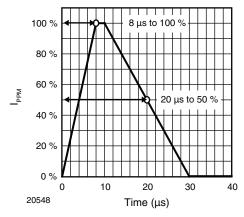


Figure 2. 8/20 µs Peak Pulse Current Wave Form acc. IEC 61000-4-5

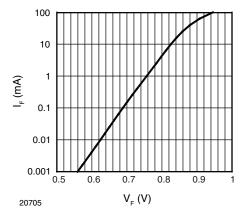


Figure 3. Typical Forward Current I_F vs. Forward Voltage V_F

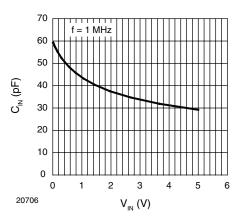


Figure 6. Typical Input Capacitance C_{IN} vs. Input Voltage V_{IN}

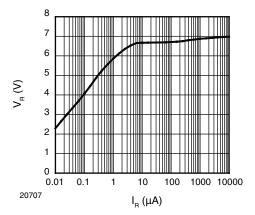


Figure 4. Typical Reverse Voltage V_R vs. Reverse Current I_R

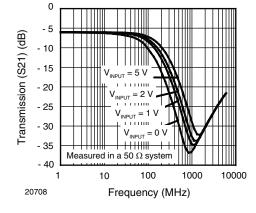
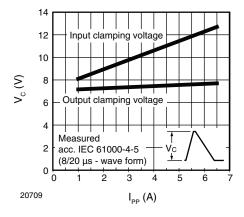
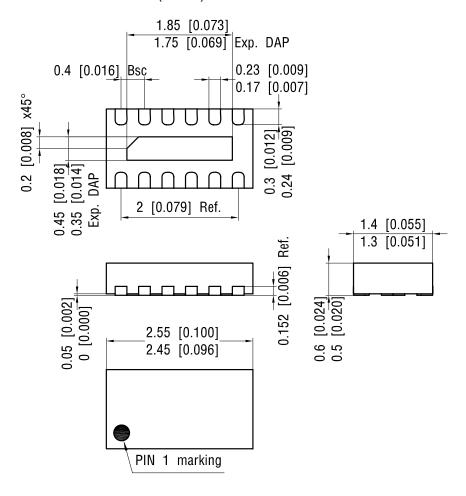
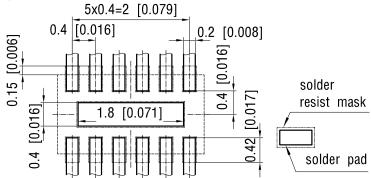


Figure 7. Typical Small Signal Transmission (S21) at $\,$ Z $_{\rm O}$ = 50 $\,$ Ω


Figure 5. Typical Peak Clamping Voltage $V_{\rm C}$ vs. Peak Pulse Current $I_{\rm PP}$

Package Dimensions in millimeters (inches): LLP2513-13L

foot print recommendation:

Document no.: S8-V-3906.04-002 (4) Created - Date: 28. August 2006 20381

VEMI65AA-HCI

Vishay Semiconductors

Ozone Depleting Substances Policy Statement

It is the policy of Vishay Semiconductor GmbH to

- 1. Meet all present and future national and international statutory requirements.
- 2. Regularly and continuously improve the performance of our products, processes, distribution and operating systems with respect to their impact on the health and safety of our employees and the public, as well as their impact on the environment.

It is particular concern to control or eliminate releases of those substances into the atmosphere which are known as ozone depleting substances (ODSs).

The Montreal Protocol (1987) and its London Amendments (1990) intend to severely restrict the use of ODSs and forbid their use within the next ten years. Various national and international initiatives are pressing for an earlier ban on these substances.

Vishay Semiconductor GmbH has been able to use its policy of continuous improvements to eliminate the use of ODSs listed in the following documents.

- 1. Annex A, B and list of transitional substances of the Montreal Protocol and the London Amendments respectively.
- 2. Class I and II ozone depleting substances in the Clean Air Act Amendments of 1990 by the Environmental Protection Agency (EPA) in the USA.
- 3. Council Decision 88/540/EEC and 91/690/EEC Annex A, B and C (transitional substances) respectively.

Vishay Semiconductor GmbH can certify that our semiconductors are not manufactured with ozone depleting substances and do not contain such substances.

We reserve the right to make changes to improve technical design and may do so without further notice.

Parameters can vary in different applications. All operating parameters must be validated for each customer application by the customer. Should the buyer use Vishay Semiconductors products for any unintended or unauthorized application, the buyer shall indemnify Vishay Semiconductors against all claims, costs, damages, and expenses, arising out of, directly or indirectly, any claim of personal damage, injury or death associated with such unintended or unauthorized use.

Vishay Semiconductor GmbH, P.O.B. 3535, D-74025 Heilbronn, Germany

Legal Disclaimer Notice

Vishay

Notice

Specifications of the products displayed herein are subject to change without notice. Vishay Intertechnology, Inc., or anyone on its behalf, assumes no responsibility or liability for any errors or inaccuracies.

Information contained herein is intended to provide a product description only. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Vishay's terms and conditions of sale for such products, Vishay assumes no liability whatsoever, and disclaims any express or implied warranty, relating to sale and/or use of Vishay products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications. Customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Vishay for any damages resulting from such improper use or sale.

www.vishay.com Revision: 08-Apr-05