

GP2W0004XP0F

IrDA Compliant Transceiver Module 9.6 to 115.2 kb/s (SIR) Low Profile Low Consumption Current

■ Description

The **GP2W0004XP0F** is an infrared transceiver module for IrDA ver. 1.4 (SIR).

The transceiver consisits of a pin-photo diode, infrared emitter and control IC in a single package.

■ Features

Compliant with the IrDA 1.4 (SIR)
 Transmission speed: 9.6 to 115.2 kb/s
 Transmission distance: 1 m

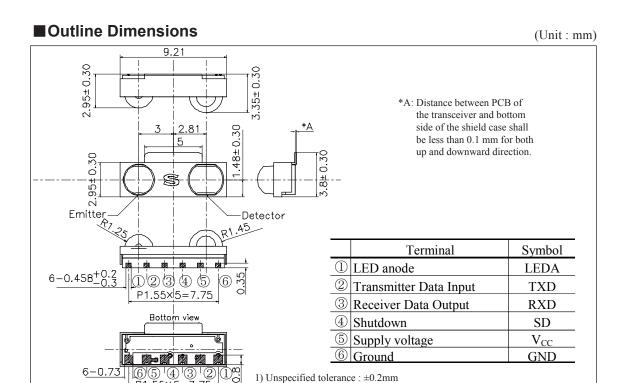
2. Small package

 $L 9.21 \times W 3.35 \times H 3.8 mm$

- 3. Peak emission wavelength: 870 nm
- 4. Top view type
- 5. Soldering reflow type
- 6. Shield type
- 7. Low consumption current due to shutdown function (Consumption current at shutdown mode: Max. 1.0 μA)
- 8. Operates from 2.4 to 5.5 V

■ Agency approvals/Compliance

- 1. Compliant with IEC60825-1 class 1 eye safety standard
- 2. Compliant with RoHS directive (2002/95/EC)
- 3. Content status of six substances specified in "Management Methods for Control of Pollution Caused by Electronic Information Products Regulation" (popular name: *China RoHS*)


(Chinese: 电子信息产品污染控制管理办法)

; refer to page 13 4. Lead (Pb) free device

■Applications

- 1. Mobile equipment (Cellular phone, Pager, Smart phone, PDAs, Portable printer, etc.)
- 2. Digital imaging equipment (Digital camera, Photo imaging printer)
- 3. POS equipment

2) [[[[]]] : Au plating

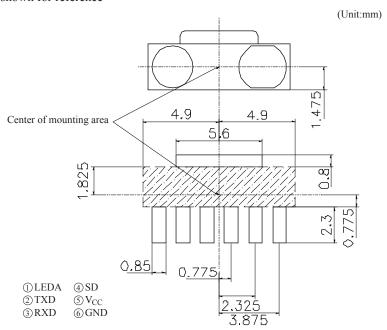
3) Adhesion of resin to the terminal area shall be allowed Max. 0.2 mm

Product mass: aprox. 0.13g

■ Recommended PCB Foot Pattern

Dimensions are shown for reference

4 SD

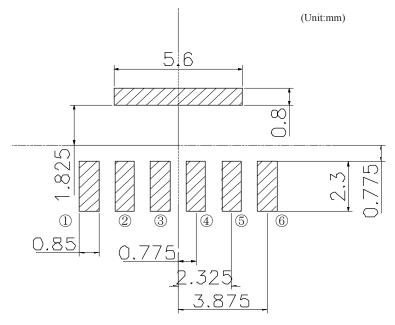

⑤ V_{CC}

@GND

①LEDA

②TXD

③RXD


: Wiring prohibition area.

^{*}Don't wiring in the territory where a mounting side touches the back of the product except for the product terminal part.

■ Recommended Size of Solder Creamed Paste (Reference)

Dimensions are shown for reference. Please open the solder mask as below so that the size of solder creamed paste for this device before reflow soldering must be as large as one of the foot pattern land indicated for reference.

Solder paste area

■ Absolute Maximum Ratings

 $(T_a=25^{\circ}C)$

	Parameter	Symbol	Rating	Unit
	Supply voltage	V_{CC}	0 to 6.0	V
	LED Supply voltage	V_{LEDA}	0 to 7.0	V
*1	Peak forward current	I_{FM}	600	mA
	Operating temperature	Topr	-25 to +85	$^{\circ}$ C
	Storage temperature	T _{stg}	-25 to +85	$^{\circ}$ C
*2	Soldering temperature	T_{sol}	255	$^{\circ}\!\mathbb{C}$

^{*1} Pulse width: 78.1µs, Duty ratio: 3/16 *2 Soldering reflow time for MAX. 10s

■Electrical Characteristics

 $(T_a=25^{\circ}C, V_{CC}=3.3V)$

	(1 - 2) + 60 - 12 - 1							
	Parameter	Symbol	Rating	MIN.	TYP.	MAX.	Unit	
	Current consumption at no input signal	I_{CC}	No input signal, output terminal open, V_{ILSD} =0V	_	110	130	μΑ	
	Current consumption at shutdown mode	$I_{\text{CC-S}}$ No input signal, output terminal open, $V_{\text{ISD}} = V_{\text{CC}}$		_	0.01	1.0	μΑ	
	TT' 1 1 1 1 1 1 1	V_{OH1}	$V_{CC}=5.0V, I_{OH}=500\mu A^{*3}$	4.3	4.6	_	V	
	High level output voltage	V_{OH2}	$V_{CC}=2.4V, I_{OH}=500\mu A^{*3}$	1.5	1.7	_	V	
	I am land antunt make as	V_{OL1}	$V_{CC}=5.0V, I_{OH}=500\mu A^{*3}$		0.22	0.4	V	
	Low level output voltage	V_{OL2}	V_{CC} =2.4V, I_{OH} =500 μ A*3		0.17	0.3	V	
e		t_{r1} , t_{f1}	V_{CC} =5.0V, C_L =15pF		18	27	ns	
Receiver side	Rise time/Fall time	t_{r2} , t_{f2}	$V_{CC} = 5.0 V, C_L = 50 pF$	_	60	80	ns	
		t_{r3} , t_{f3}	$V_{CC}=2.4V, C_{L}=15pF$		36	55	ns	
cei		t_{r4} , t_{f4}	V_{CC} =2.4V, C_L =50pF	_	63	94	ns	
Re	Pulse width	$t_{\rm w}$	BR=9.6kb/s, 115.2 kb/s, $\phi \le 15^{\circ *3}$	1.0	2.4	3.6	μs	
	Maximum reception distance	L	BR=9.6kb/s, 115.2kb/s, $\phi \le 15^{\circ *3}$	1.0	_	_	m	
	Receiver viewing angle	$2\theta_{1/2}$		15.0	_	_	0	
	Transmit Receiver Latency	t _l	No disturbing light	_	100	200	μs	
	Receiver wake up time	$t_{\rm sdw}$	No disturbing light	_	100	200	μs	
	SD terminal Input voltage Logic High	V_{IHSD}	Shutdown mode	V _{CC} -0.5	_	V_{CC}	V	
	SD terminal Input voltage Logic Low	$V_{\rm ILSD}$	Normal mode	0	_	0.5	V	
ide	Radiant intensity	I_E	4 < 150 M - M - 2 2M *4	40	_	_	mW/sr	
Transmitter side	LED peak current	V_{LED}	$\phi \le 15^{\circ}, V_{CC} = V_{LED} = 3.3V,^{*4}$	_	370	_	mA	
nitt	Peak emission wavelength	$\lambda_{ m p}$		850	870	900	nm	
ansı	TX high input voltage	V_{IHTX}	LED ON *5	$2/3 \times V_{CC}$	_	V_{CC}	V	
Tr	TX low input voltage	V_{ILTX}	LED OFF *5	0	_	$1/3 \times V_{CC}$	V	

■Recommended Operating Conditions

Parameter	Symbol	Rating	Unit
Supply voltage	V_{CC}	2.4 to 5.5	V
LED Supply voltage	V_{LEDA}	2.4 to 7.0	V
Operating temperature	Topr	-25 to +85	$^{\circ}\! \mathbb{C}$
Data rate	BR	9.6 to 115.2	kb/s

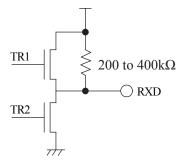
^{*3} Refer to Fig. 2, 3, 4 *4 Refer to Fig. 5, 6, 7 *5 Refer to Fig. 7

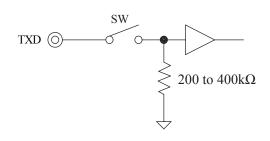
■Truth table

SD	SW	TXD	LED	Receiver	TR1	TR2	RXD
Н	Off	Don't Care	Off	Don't Care	Off	Off	200 to $400 \mathrm{k}\Omega$ pull-up
L	On	Н	On	Don't Care			Н
L	On	L	Off	IrDA Signal	Off	On	L
T	On	T	Off	No Signal	On	Off	Н

· Echo cancel function: When TX input is applied high(normal data input),

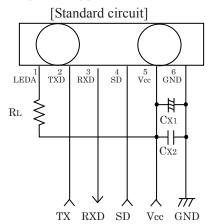
The RXD output is held high, which is the normal No Data state.


When the TX input has been low for 200µs, the RXD output will again become active.


H : High L : Low

 \cdot Shut down : When the SD pin is held high, the RXD output is held in the 200 to $400k\Omega$ pull-up condition. Also, the TX output is disabled and will not operate with the application of a TX input signal.

* TXD Equipment circuit



SD input	Performance
Low	Normal mode
High	Shutdown mode

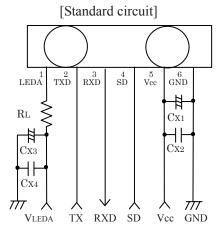
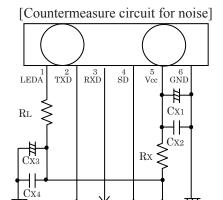


Fig. 1 Recommended External Circuit

1,VLED power supply is shared.


2, With independent VLED power supply

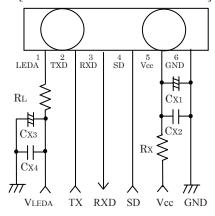
Components	Recommended values
C_{X1}	22μF(Note)
C_{X2} , C_{X4}	0.1μF(Note)
C_{X3}	6.8µF(Note)
$R_{\rm L}$	(Table 1)

(Table 1)

$ m V_{LEDA}$	R_{L}
$2.4V \leq V_{LEDA} \leq 3.6V$	0Ω±5%,0.5W
$3.5V \leq V_{LEDA} \leq 4.8V$	1.3Ω±5%,0.5W
$4.5V \leq V_{LEDA} \leq 5.5V$	2.7Ω±5%,0.5W

When there is a noise ingredient, which cannot be removed only by Cx_1 and Cx_2 , please insert Rx (1 to 10Ω), and Cx_3 and Cx_4 by the set, and use them after a check. In this case, please avoid insertion of only Rx.

SD


Vcc

GND

RXD

TX

[Countermeasure circuit for noise]

When there is a noise ingredient, which cannot be removed only by Cx_1 and Cx_2 , please insert Rx (1 to 10Ω) and use it after a check.

(Note) Component chooses the most suitable constant of Cx1, Cx2, Cx3, and Cx4 according to the noise level and noise frequency of a power supply.
Depending on the noise level of a power supply, and noise frequency, a noise may be unable to be removed only by Cx of a standard circuit.
At this time, pulses other than a signal may be outputted from a RXD terminal in a specific communication distance. Please confirm with the system that it is satisfactory with each transmission speed in all communication distance at the time of examination. When there is a problem, please use it after a check as a noise measure circuit. Responding to the Vcc voltage, please choose the resistance value of Rx.

And please set the resistance value of Rx in ranges where the Vcc voltage of this product does not absolutely drop below 2.4V by a voltage descent with Rx.

Fig. 2 Input Signal Waveform(Receiver side)

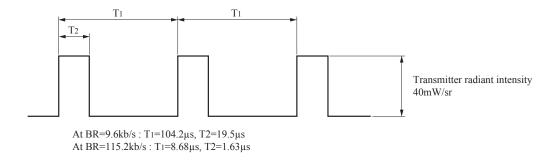


Fig. 3 Output Waveform Specification(Receiver side)

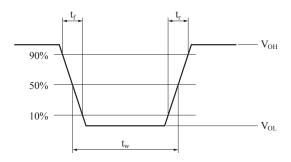
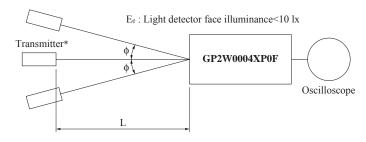



Fig. 4 Standard Optical System(Receiver side)

 $\boldsymbol{\varphi}$: Indicates horizontal and vertical directions.

^{*}Transmitter shall use GP2W0004XP0F (λ_p =870nm TYP.) which is adjusted the radiation intensity at 40mW/sr

Fig. 5 Output Waveform Specification(Transmitter side)

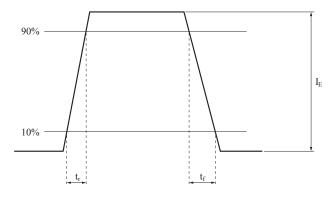


Fig. 6 Standard Optical System(Transmitter side)

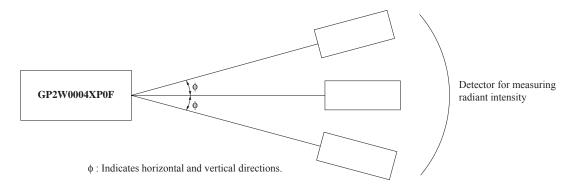
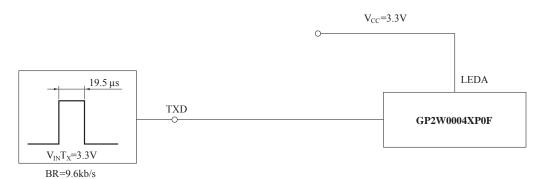
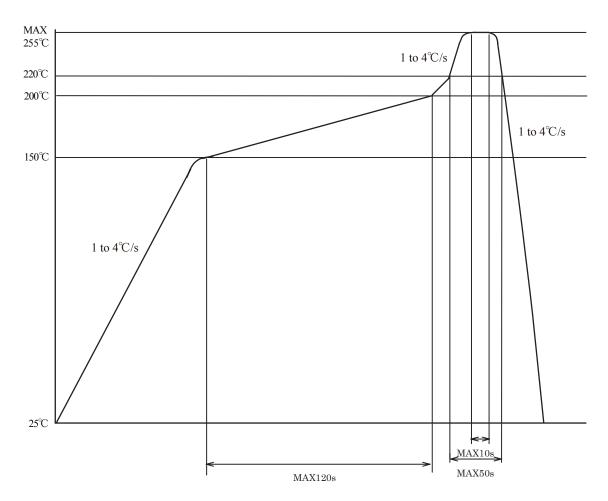



Fig. 7 Recommended Circuit of Transmitter side

■Notes


- (1) When the system (program) is designed, the Turn Around Time shall be secured by considering 500 μ s or more that is specified to IrDA.
 - Then, this Turn Around Time means the time when this device does not temporarily detect the signal light, since the transmitted light form the transceiver reaches the detector side of the transceiver.
- (2) As it is necessary 200 μs or more (at Ta =25 °C, no input signal) to return from shut-down mode to readyoperation mode, please consider this point at the system (program) designing. Also, please confirm thoroughly the operation in actual application.
- (3) When there is much external disturbing light source is located near this transceiver and the detector face resceiver much external disturbing light, there is case that the pulse other than signal output is generated as noise on output terminal of this transceiver. Please consider the lay-out and structure to reduce disturbing light on the detector face.
- (4) In case that this sensor is adopted in IR communication system, please use it according to the signal method which is specified by [Serial Infrared Physical Layer Link Specification Version 1.4] published by Infrared Data Association. False operation may happen if the different signal method is used.
- (5) In circuit designing, make allowance for the degradation of light emitting diode output that results from long continuous operation. (50 % degradation/5 years)

■Soldering Method

1. In case of solder reflow

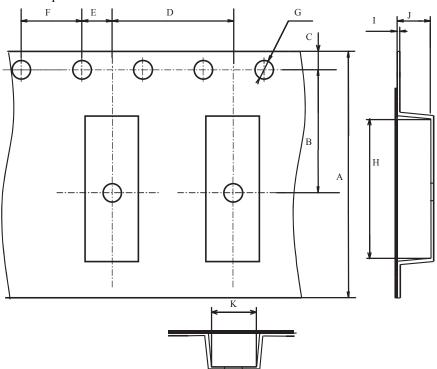
Please carry out only two times soldering at the temperature and the time within the temperature profile as shown in the figure below. Reflow interval shall be within 3 days under conditions, 10 to 30°C, 70%RH or less.

2. Other precautions

An infrared lamp used to heat up for soldering may cause a localized temperature rise in the resin. So keep the package temperature within that specified in Item 1. Also avoid immersing the resin part in the solder. Even if within the temperature profile above, there is the possibility that the gold wire in package is broken in case that the deformation of PCB gives the affection to lead pins. Please use after confirming the conditions fully by actual solder reflow machine.

3. Soldering

- Soldering iron shall be less than 25W, and temperature of point of soldering iron shall use at 300°C or less.
- Soldering time shall be within 5s.
- Soldered product shall treat at normal temperature.

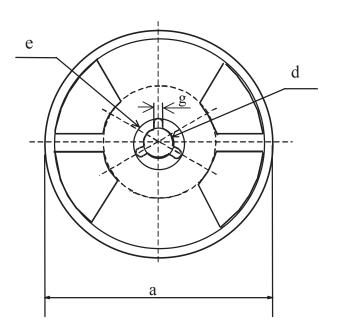

■Package specification

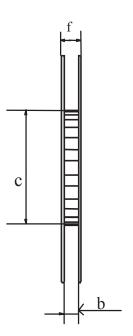
● Tape and Reel package 2000 pcs/reel

Package materials

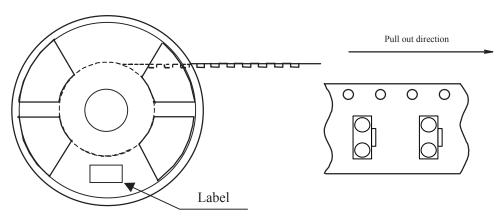
Name	Material	Counter measure for ESD
Reel	PPE	Coped(Conductivity)
Carrier tape	PC	Coped(Conductivity)
Cover tape	PET	Coped(Conductivity)

Carrier tape structure and Dimensions




Dimension List (Unit: mm)

A	В	С	D	Е	F
16.0±0.3	7.5±0.1	1.75±0.1	8.0±0.1	2.0±0.1	4.0±0.1
G	Н	I	J	K	
$\phi 1.5^{+0.1}_{-0.0}$	9.56±0.1	0.33±0.05	3.06±0.1	4.04±0.1	


Reel structure and Dimensions

Dimension List (Unit: mm								
a	b	с	d					
φ 330±2	17.5±1	φ 100±1	φ 13±0.2					
e	f	g						
φ 21±0.8	22.5±0.1	2±0.5						

Direction of product insertion

Cleaning Instructions

Solvent cleaning:

Solvent temperature 45°C or less, Immersion for 3 min or less

Ultrasonic cleaning:

The effect to device by ultrasonic cleaning differs by cleaning bath size, ultrasonic power output, cleaning time, PCB size or device mounting condition etc.

Please test it in actual using condition and confirm that doesn't occur any defect before starting the ultrasonic cleaning. The cleaning shall be carried out with solvent below.

Recommended Solvent materials:

Ethyl alcohol, Methyl alcohol, Isopropyl alcohol

● Presence of ODC etc.

This product shall not contain the following materials.

And they are not used in the production process for this product.

Regulation substances: CFCs, Halon, Carbon tetrachloride, 1.1.1-Trichloroethane (Methylchloroform)

Specific brominated flame retardants such as the PBB and PBDE are not used in this product at all.

• The RoHS directive (2002/95/EC)

This product complies with the RoHS directive (2002/95/EC).

Object substances: lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE)

• Content of six substances specified in "Management Methods for Control of Pollution Caused by Electronic Information Products Regulation" (Chinese: 电子信息产品污染控制管理办法)

			Toxic	and hazardo	us substances	
Category	Lead (Pb)	Mercury (Hg)	Cadmium (Cd)	Hexavalent chromium (Cr ⁶⁺)	Polybrominated biphenyls (PBB)	Polybrominated diphenyl ethers (PBDE)
Infrared data communication device	>	√	✓	>	√	✓

^{✓:} indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is below the concentration limit requirement as described in SJ/T 11363-2006 standard.

■Important Notices

- · The circuit application examples in this publication are provided to explain representative applications of SHARP devices and are not intended to guarantee any circuit design or license any intellectual property rights. SHARP takes no responsibility for any problems related to any intellectual property right of a third party resulting from the use of SHARP's devices.
- · Contact SHARP in order to obtain the latest device specification sheets before using any SHARP device. SHARP reserves the right to make changes in the specifications, characteristics, data, materials, structure, and other contents described herein at any time without notice in order to improve design or reliability. Manufacturing locations are also subject to change without notice.
- · Observe the following points when using any devices in this publication. SHARP takes no responsibility for damage caused by improper use of the devices which does not meet the conditions and absolute maximum ratings to be used specified in the relevant specification sheet nor meet the following conditions:
- (i) The devices in this publication are designed for use in general electronic equipment designs such as:
 - --- Personal computers
 - --- Office automation equipment
 - --- Telecommunication equipment [terminal]
 - --- Test and measurement equipment
 - --- Industrial control
 - --- Audio visual equipment
 - --- Consumer electronics
- (ii) Measures such as fail-safe function and redundant design should be taken to ensure reliability and safety when SHARP devices are used for or in connection

with equipment that requires higher reliability such as:

- --- Transportation control and safety equipment (i.e., aircraft, trains, automobiles, etc.)
- --- Traffic signals
- --- Gas leakage sensor breakers
- --- Alarm equipment
- --- Various safety devices, etc.
- (iii) SHARP devices shall not be used for or in connection with equipment that requires an extremely high level of reliability and safety such as:
 - --- Space applications
 - --- Telecommunication equipment [trunk lines]
 - --- Nuclear power control equipment
 - --- Medical and other life support equipment (e.g., scuba).
- · If the SHARP devices listed in this publication fall within the scope of strategic products described in the Foreign Exchange and Foreign Trade Law of Japan, it is necessary to obtain approval to export such SHARP devices.
- This publication is the proprietary product of SHARP and is copyrighted, with all rights reserved. Under the copyright laws, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose, in whole or in part, without the express written permission of SHARP. Express written permission is also required before any use of this publication may be made by a third party.
- · Contact and consult with a SHARP representative if there are any questions about the contents of this publication.