ACPL-C797 Optically Isolated Sigma-Delta Modulator

Preliminary Data Sheet

Description

The ACPL-C797 is a 1-bit, second-order sigma-delta (Σ - Δ) modulator converts an analog input signal into a highspeed data stream with galvanic isolation based on optical coupling technology. The ACPL-C797 operates from a 5 V power supply with dynamic range of 80 dB with an appropriate digital filter. The differential inputs of ±200 mV (full scale ±320 mV) are ideal for direct connection to shunt resistors or other low-level signal sources in applications such as motor phase current measurement.

The analog input is continuously sampled by a means of sigma-delta over-sampling using an on-board clock. The signal information is contained in the modulator data, as a density of ones with data rate of 10 MHz, and the data are encoded and transmitted across the isolation boundary where they are recovered and decoded into high-speed data stream of digital ones and zeros. The original signal information can be reconstructed with a digital filter. The serial interface for data and clock has a wide supply range of 3 V to 5.5 V.

Combined with superior optical coupling technology, the modulator delivers high noise margins and excellent immunity against isolation-mode transients. With 0.5 mm minimum distance through insulation (DTI), the ACPL-C797 provides reliable reinforced insulation and high working insulation voltage, which is suitable for fail-safe designs. This outstanding isolation performance is superior to alternatives including devices based on capacitive- or magnetic-coupling with DTI in micro-meter range. Offered in a Stretched SO-8 (SSO-8) package, the isolated ADC delivers the reliability, small size, superior isolation and over-temperature performance motor drive designers need to accurately measure current at much lower price compared to traditional current transducers.

The external clock version modulator ACPL-796J (SO-16 package) is also available.

Features

- 10 MHz internal clock
- 1-bit, second-order sigma-delta modulator
- 16 bits resolution no missing codes (12 bits ENOB)
- 78 dB SNR
- 4.5 μV/°C maximum offset drift
- ±1% gain error
- Internal reference voltage
- ±200 mV linear range with single 5 V supply (±320 mV full scale)
- 3 V to 5.5 V wide supply range for digital interface
- -40°C to +105°C operating temperature range
- SSO-8 package
- 25 kV/µs common-mode transient immunity
- Safety and regulatory approval (pending):
 - IEC/EN/DIN EN 60747-5-5: 1140 Vpeak working insulation voltage
 - UL 1577: 5000 Vrms/1min isolation voltage
 - CSA: Component Acceptance Notice #5

Applications

- Motor phase and rail current sensing
- Power inverter current and voltage sensing
- Industrial process control
- Data acquisition systems
- General purpose current and voltage sensing
- Traditional current transducer replacements

This preliminary data is provided to assist you in the evaluation of product(s) currently under development. Until Avago Technologies releases this product for general sales, Avago Technologies reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.

CAUTION: It is advised that normal static precautions be taken in handling and assembly of this component to prevent damage and/or degradation which may be induced by ESD.

Functional Block Diagram

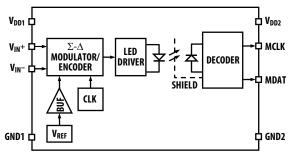


Figure 1.

Pin Configuration and Descriptions

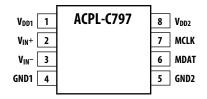


Figure 2. Pin configuration.

Table 1. Pin descriptions.

Pin No.	No. Symbol Description						
1	V _{DD1}	Supply voltage for signal input side (analog side), relative to GND1					
2	V _{IN+}	Positive analog input, recommended input range $\pm 200 \text{ mV}$					
3	V _{IN-}	Negative analog input, recommended input range ± 200 mV (normally connected to GND1)					
4	GND1	Supply ground for signal input side					
5	GND2	Supply ground for data/clock output side (digital side)					
6	MDAT	Modulator data output					
7	MCLK	Modulator clock output					
8	V _{DD2}	Supply voltage for data output side, relative to GND2					

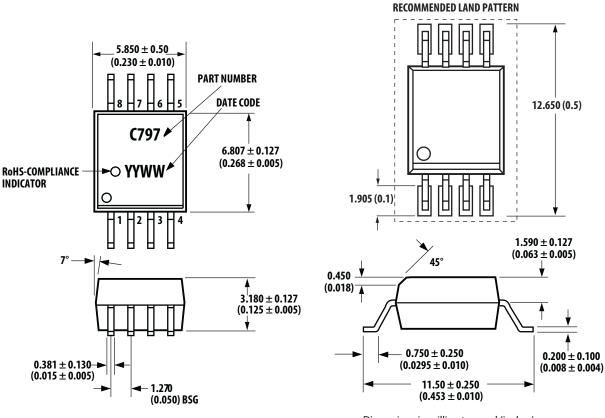
Ordering Information

ACPL-C797 is UL recognized with 5000 Vrms/1 minute rating per UL 1577 (pending).

Table 2.

	Option				IEC/EN/DIN EN	
Part number	(RoHS Compliant)	Package	Surface Mount	Tape & Reel	60747-5-5	Quantity
ACPL-C797	-000E	Stretched SO-8	Х		Х	80 per tube
	-500E		Х	Х	Х	1000 per reel

To order, choose a part number from the part number column and combine with the desired option from the option column to form an order entry.


Example:

ACPL-C797-500E to order product of Surface Mount package in Tape and Reel packaging with IEC/EN/DIN EN 60747-5-5 Safety Approval and RoHS compliance.

Option datasheets are available. Contact your Avago sales representative or authorized distributor for information.

Package Outline Drawings

Stretched SO-8 Package (SSO-8)

Dimensions in millimeters and (inches). Lead coplanarity = 0.1 mm (0.004 inches).

Figure 3.

Recommended Pb-Free IR Profile

Recommended reflow condition as per JEDEC Standard, J-STD-020 (latest revision). Non- Halide Flux should be used.

Regulatory Information

The ACPL-C797 is pending for approvals by the following organizations:

IEC/EN/DIN EN 60747-5-5

Approved with Maximum Working Insulation Voltage V_{IORM} = 1140 Vpeak.

UL

Approval under UL 1577, component recognition program up to $V_{ISO} = 5000 \text{ Vrms/1min}$. File E55361.

CSA

Approval under CSA Component Acceptance Notice #5, File CA 88324.

Table 3. IEC/EN/DIN EN 60747-5-5 Insulation Characteristics^[1]

Description	Symbol	Value	Unit
Installation classification per DIN VDE 0110/1.89, Table 1			
for rated mains voltage \leq 150 V _{rms}		I – IV	
for rated mains voltage \leq 300 V _{rms}		I – IV	
for rated mains voltage \leq 450 V _{rms}		I – III	
for rated mains voltage \leq 600 V _{rms}		I – III	
for rated mains voltage \leq 1000 V _{rms}		I – II	
Climatic Classification		55/105/21	
Pollution Degree (DIN VDE 0110/1.89)		2	
Maximum Working Insulation Voltage	VIORM	1140	Vpeak
Input to Output Test Voltage, Method b	V _{PR}	2137	Vpeak
$V_{IORM} \times 1.875 = V_{PR}$, 100% Production Test with $t_m = 1$ sec, Partial discharge < 5 pC			
Input to Output Test Voltage, Method a	V _{PR}	1824	Vpeak
$V_{IORM} \times 1.6 = V_{PR}$, Type and Sample Test, $t_m = 10$ sec, Partial discharge < 5 pC			
Highest Allowable Overvoltage (Transient Overvoltage $t_{ini} = 60$ sec)	VIOTM	8000	Vpeak
Safety-limiting values (Maximum values allowed in the event of a failure)			
Case Temperature	Τ _S	175	°C
Input Current ^[2]	I _{S, INPUT}	230	mA
Output Power ^[2]	Ps, output	600	mW
Insulation Resistance at T_{S} , $V_{IO} = 500 V$	Rs	>10 ⁹	Ω

Notes:

1. Insulation characteristics are guaranteed only within the safety maximum ratings, which must be ensured by protective circuits within the application.

2. Safety-limiting parameters are dependent on ambient temperature. The Input Current, I_{S,INPUT}, derates linearly above 25°C free-air temperature at a rate of 2.53 mA/°C; the Output Power, P_{S,OUTPUT}, derates linearly above 25°C free-air temperature at a rate of 4 mW/°C.

Table 4. Insulation and Safety Related Specifications

Parameter	Symbol Value			Conditions
Minimum External Air Gap (Clearance)	L(101)	8.0	mm	Measured from input terminals to output terminals, shortest distance through air.
Minimum External Tracking (Creepage)	L(102)	8.0	mm	Measured from input terminals to output terminals, shortest distance path along body.
Minimum Internal Plastic Gap (Internal Clearance)		0.5	mm	Through insulation distance, conductor to conductor, usually the direct distance between the photoemitter and photodetector inside the optocoupler cavity
Tracking Resistance (Comparative Tracking Index)	CTI	> 175	V	DIN IEC 112/VDE 0303 Part 1
Isolation Group		Illa		Material Group (DIN VDE 0110, 1/89, Table 1)

Table 5. Absolute Maximum Ratings

Parameter	Symbol	Min.	Max.	Units	
Storage Temperature	Τ _S	-55	+125	°C	
Ambient Operating Temperature	T _A	-40	+105	°C	
Supply Voltage	V _{DD1} , V _{DD2}	-0.5	6.0	V	
Steady-State Input Voltage ^[1,3]	$V_{IN}+, V_{IN}-$	-2	V _{DD1} + 0.5	V	
Two-Second Transient Input Voltage ^[2]	V _{IN} +, V _{IN} -	-6	V _{DD1} + 0.5	V	
Digital Output Voltages	MCLK, MDAT	-0.5	V _{DD2} +0.5	V	
Lead Solder Temperature	260°C for 10 sec	., 1.6 mm belo	w seating plane		

Notes:

DC voltage of up to -2 V on the inputs does not cause latch-up or damage to the device; tested at typical operating conditions.
Transient voltage of 2 seconds up to -6 V on the inputs does not cause latch-up or damage to the device; tested at typical operating conditions.

3. Absolute maximum DC current on the inputs = 100 mA, no latch-up or device damage occurs.

Table 6. Recommended Operating Conditions

Parameter	Symbol	Min.	Max.	Units
Ambient Operating Temperature	T _A	-40	+105	°C
V _{DD1} Supply Voltage	V _{DD1}	4.5	5.5	V
V _{DD2} Supply Voltage	V _{DD2}	3	5.5	V
Analog Input Voltage ^[1]	V _{IN} +, V _{IN} -	-200	+200	mV

Notes:

1. Full scale signal input range ±320 mV.

Table 7. Electrical Specifications

Unless otherwise noted, $T_A = -40^{\circ}$ C to $+105^{\circ}$ C, $V_{DD1} = 4.5$ V to 5.5 V, $V_{DD2} = 3$ V to 5.5 V, $V_{IN} + = -200$ mV to +200 mV, and $V_{IN} - = 0$ V (single-ended connection); tested with Sinc³ filter, 256 decimation ratio.

Parameter	Symbol	Min.	Typ. ^[1]	Max.	Units	Test Conditions/Notes Fig
STATIC CHARACTERISTICS						
Resolution		16			Bits	Decimation filter output set to 16 bits
Integral Nonlinearity	INL	-15	3	15	LSB	$T_A = -40^{\circ}C$ to $+85^{\circ}C$; see Definitions section
		-25	3	25	LSB	T _A = 85°C to 105°C
Differential Nonlinearity	DNL	-0.9		0.9	LSB	No missing codes, guaranteed by design; see Definitions section
Offset Error	V _{OS}	-1	0.3	2	mV	T _A = -40°C to +105°C; see Definitions section
Offset Drift vs. Temperature	TCV _{OS}		1.5	4.5	μV/°C	$V_{DD1} = 5 V$
Offset Drift vs. V _{DD1}			250		μV/V	
Internal Reference Voltage	V _{REF}		320		mV	
Reference Voltage Tolerance	G _E	-1		1	%	$T_A = 25^{\circ}C$, $V_{IN} + = -320$ to $+320$ mV; see Definitions section
		-2		2	%	$T_A = -40^{\circ}C \text{ to } +105^{\circ}C,$ $V_{IN}+ = -320 \text{ to } +320 \text{ mV}$
V _{REF} Drift vs. Temperature	TCG _E		60		ppm/°C	
V _{REF} Drift vs. V _{DD1}			110		μV/V	
ANALOG INPUTS						
Full-Scale Differential Voltage Input Range	FSR		±320		mV	$V_{IN} = V_{IN} + - V_{IN} -$; Note 2
Average Input Bias Current	I _{INA}		-0.3		μΑ	V _{DD1} = 5V, V _{DD2} = 5V, V _{IN} + = 0 V; Note 3
Average Input Resistance	R _{IN}		24		kΩ	Across V _{IN} + or V _{IN} – to GND1; Note 3
Input Capacitance	CINA		8		pF	Across V_{IN} + or V_{IN} - to GND1
DYNAMIC CHARACTERISTICS						V _{IN} + = 400 mVpp, 1 kHz sine wave
Signal-to-Noise Ratio	SNR	68	78		dB	$T_A = -40^{\circ}C$ to $+105^{\circ}C$; see Definitions section
Signal-to-(Noise + Distortion) Ratio	SNDR	65	75		dB	$T_A = -40^{\circ}C$ to $+105^{\circ}C$; see Definitions section
Effective Number of Bits	ENOB		12		Bits	see Definitions section
Isolation Transient Immunity	CMR		25		kV/μV	$V_{CM} = 1$ kV; See Definitions section
Common-Mode Rejection Ratio	CMRR		74		dB	
DIGITAL OUTPUTS						
Output High Voltage	V _{OH}	V _{DD2} – 0.2	V _{DD2} – 0.1		V	I _{OUT} = -200 μA
Output Low Voltage	V _{OL}			0.6	V	I _{OUT} = +1.6 mA
POWER SUPPLY						
V _{DD1} Supply Current	I _{DD1}		9	14	mA	V_{IN} + = -320 mV to +320 mV
V _{DD2} Supply Current	I _{DD2}		5.2	8	mA	$V_{DD2} = 5 V supply$
vDD2 supply current	-002					

Notes:

1. All Typical values are at $T_A = 25^{\circ}C$, $V_{DD1} = 5 V$, $V_{DD2} = 5 V$.

2. Beyond the full-scale input range the data output is either all zeroes or all ones.

3. Because of the switched-capacitor nature of the isolated modulator, time averaged values are shown.

Table 8. Timing Specifications

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions/Notes	Fig.
Modulator Clock Output Frequency	f _{MCLK}	9	10	11	MHz	Clock duty cycle 40% to 60%	
Data Delay After Rising Edge of MCLK	t _D	14	25	35	ns	C _L = 15 pF	4
MDAT		$\mathbf{\lambda}_{\mathbf{z}}$					

Unless otherwise noted, $T_A = -40^{\circ}$ C to $+105^{\circ}$ C, $V_{DD1} = 4.5$ V to 5.5 V, $V_{DD2} = 3$ V to 5.5 V.

Figure 4. Data timing.

Table 9. Package Characteristics

Parameter	Symbol	Min.	Тур.	Max.	Units	Test Conditions	Note
Input-Output Momentary Withstand Voltage	V _{ISO}	5000			Vrms	RH < 50%, t = 1 min, T _A = 25°C	1, 2
Input-Output Resistance	R _{I-O}		>10 ¹²		Ω	$V_{I-O} = 500 \text{ Vdc}$	3
Input-Output Capacitance	CI-O		0.5		pF	f=1 MHz	3

Notes:

1. In accordance with UL 1577, each optocoupler is proof tested by applying an insulation test voltage ≥ 6000 Vrms for 1 second (leakage detection current limit, I_{I-O} ≤ 5 µA). This test is performed before the 100% production test for partial discharge (method b) shown in IEC/EN/DIN EN 60747-5-5 Insulation Characteristic Table.

2. The Input-Output Momentary Withstand Voltage is a dielectric voltage rating that should not be interpreted as an input-output continuous voltage rating. For the continuous voltage rating, refer to the IEC/EN/DIN EN 60747-5-5 insulation characteristics table and your equipment level safety specification.

3. This is a two-terminal measurement: pins 1–4 are shorted together and pins 5–8 are shorted together.

This preliminary data is provided to assist you in the evaluation of product(s) currently under development. Until Avago Technologies releases this product for general sales, Avago Technologies reserves the right to alter prices, specifications, features, capabilities, functions, release dates, and remove availability of the product(s) at anytime.

For product information and a complete list of distributors, please go to our web site: www.avagotech.com

Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries. Data subject to change. Copyright © 2005-2010 Avago Technologies. All rights reserved. AV02-2581EN - July 16, 2010

