CMOS

Low Voltage 4Ω Dual SPST Switches

ADG721/ADG722/ADG723

FEATURES
1.8 V to 5.5 V Single Supply 4Ω (Max) On Resistance
Low On Resistance Flatness
-3 dB Bandwidth > $\mathbf{2 0 0} \mathbf{~ M H z}$
Rail-to-Rail Operation
8-Lead MSOP Package
Fast Switching Times
$t_{\text {ON }} 20$ ns
$\mathrm{t}_{\text {OFF }} \quad 10 \mathrm{~ns}$
Low Power Consumption (<0.1 $\mu \mathrm{W}$)
TTL/CMOS Compatible

APPLICATIONS

USB 1.1 Signal Switching Circuits
Cell Phones
PDAs
Battery-Powered Systems
Communication Systems
Sample Hold Systems
Audio Signal Routing
Video Switching
Mechanical Reed Relay Replacement

GENERAL DESCRIPTION

The ADG721, ADG722, and ADG723 are monolithic CMOS SPST switches. These switches are designed on an advanced submicron process that provides low power dissipation yet gives high switching speed, low on resistance, and low leakage currents.

The ADG721, ADG722, and ADG723 are designed to operate from a single 1.8 V to 5.5 V supply, making them ideal for use in battery-powered instruments and with the new generation of DACs and ADCs from Analog Devices.
The ADG721, ADG722, and ADG723 contain two independent single-pole/single-throw (SPST) switches. The ADG721 and ADG722 differ only in that both switches are normally open and normally closed, respectively. While in the ADG723, Switch 1 is normally open and Switch 2 is normally closed.
Each switch of the ADG721, ADG722, and ADG723 conducts equally well in both directions when on. The ADG723 exhibits break-before-make switching action.

FUNCTIONAL BLOCK DIAGRAMS

SWITCHES SHOWN FOR A LOGIC "0" INPUT

PRODUCT HIGHLIGHTS

1. 1.8 V to 5.5 V Single-Supply Operation.

The ADG721, ADG722, and ADG723 offer high performance, including low on resistance and fast switching times, and are fully specified and guaranteed with 3 V and 5 V supply rails.
2. Very Low $\mathrm{R}_{\mathrm{ON}}(4 \Omega \max$ at $5 \mathrm{~V}, 10 \Omega$ max at 3 V$)$.

At 1.8 V operation, R_{ON} is typically 40Ω over the temperature range.
3. Low On Resistance Flatness.
4. -3 dB Bandwidth $>200 \mathrm{MHz}$.
5. Low Power Dissipation.

CMOS construction ensures low power dissipation.
6. Fast $\mathrm{t}_{\mathrm{ON}} / \mathrm{t}_{\mathrm{OFF}}$.
7. 8-Lead MSOP.
$\left(V_{D D}=5 \mathrm{~V} \pm 10 \%, G N D=0 \mathrm{~V}\right.$. All specifications $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$, unless otherwise noted.)

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On Resistance Flatness ($\mathrm{R}_{\mathrm{FLAT}(\mathrm{ON})}$)	4 0.3 0.85	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 5 \\ & \\ & 1.0 \\ & 1.5 \end{aligned}$	V Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA},$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage IS (OFF) Drain OFF Leakage $I_{D}(O F F)$ Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	nA typ nA max nA typ $n A \max$ nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=4.5 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 4.5 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } \mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=4.5 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.4 \\ & 0.8 \\ & \\ & \pm 0.1 \end{aligned}$	V min V max $\mu \mathrm{A}$ typ $\mu \mathrm{A} \max$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG723 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth -3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	14 6 7 2 -60 -80 -77 -97 200 7 7 18	20 10 1	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=3 \mathrm{~V}$, Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$ Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF} \text {, Test Circuit } 9$
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=5.5 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 5 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature range: B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & \text { ion } \\ & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (R_{ON}) On Resistance Match between Channels ($\Delta \mathrm{R}_{\mathrm{ON}}$) On Resistance Flatness ($\mathrm{R}_{\text {FLat(ON) }}$)	$\begin{aligned} & 6.5 \\ & 0.3 \end{aligned}$	$\begin{aligned} & 0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}} \\ & 10 \\ & \\ & 1.0 \\ & 3.5 \end{aligned}$	V Ω typ Ω max Ω typ Ω max Ω typ	$\mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA}$ Test Circuit 1 $\begin{aligned} & \mathrm{V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}, \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source OFF Leakage $I_{S}(O F F)$ Drain OFF Leakage I_{D} (OFF) Channel ON Leakage $\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	$\begin{aligned} & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \\ & \pm 0.01 \\ & \pm 0.25 \end{aligned}$	$\begin{aligned} & \pm 0.35 \\ & \pm 0.35 \\ & \pm 0.35 \end{aligned}$	nA typ nA max nA typ nA max nA typ $n A \max$	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V} \end{aligned}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=3 \mathrm{~V} / 1 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=1 \mathrm{~V} / 3 \mathrm{~V}$ Test Circuit 2 $\mathrm{V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}=1 \mathrm{~V} \text {, or } 3 \mathrm{~V}$ Test Circuit 3
DIGITAL INPUTS Input High Voltage, $\mathrm{V}_{\text {INH }}$ Input Low Voltage, VINL Input Current $\mathrm{I}_{\text {INL }}$ or $\mathrm{I}_{\text {INH }}$	0.005	$\begin{aligned} & 2.0 \\ & 0.4 \\ & \\ & \pm 0.1 \end{aligned}$	V min $\mathrm{V} \max$ $\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {INL }}$ or $\mathrm{V}_{\text {INH }}$
DYNAMIC CHARACTERISTICS ${ }^{2}$ t_{ON} $\mathrm{t}_{\mathrm{OFF}}$ Break-Before-Make Time Delay, t_{D} (ADG723 Only) Charge Injection Off Isolation Channel-to-Channel Crosstalk Bandwidth - 3 dB C_{S} (OFF) C_{D} (OFF) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	16 7 7 2 -60 -80 -77 -97 200 7 7 18	24 11	ns typ ns max ns typ ns max ns typ ns min pC typ dB typ dB typ dB typ dB typ MHz typ pF typ pF typ pF typ	$\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$ $\mathrm{V}_{\mathrm{S}}=2 \mathrm{~V}$, Test Circuit 4 $\mathrm{R}_{\mathrm{L}}=300 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF}$, $\mathrm{V}_{\mathrm{S} 1}=\mathrm{V}_{\mathrm{S} 2}=2 \mathrm{~V}$, Test Circuit 5 $\mathrm{V}_{\mathrm{S}}=1.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{S}}=0 \Omega, \mathrm{C}_{\mathrm{L}}=1 \mathrm{nF}$, Test Circuit 6 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Test Circuit 7 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=10 \mathrm{MHz}$ $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz}$, Test Circuit 8 $\mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$, Test Circuit 9
POWER REQUIREMENTS I_{DD}	0.001	1.0	$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=3.3 \mathrm{~V} \\ & \text { Digital Inputs }=0 \mathrm{~V} \text { or } 3 \mathrm{~V} \end{aligned}$

NOTES

${ }^{1}$ Temperature range: B Version, $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.
${ }^{2}$ Guaranteed by design, not subject to production test.
Specifications subject to change without notice.

ADG721/ADG722/ADG723

ABSOLUTE MAXIMUM RATINGS ${ }^{1}$
$\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right.$ unless otherwise noted)
V V_{DD} to GND . -0.3 V to +7 V
Analog, Digital Inputs ${ }^{2}$. -0.3 V to $\mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V}$ or 30 mA , Whichever Occurs First
Continuous Current, S or D . 30 mA
Operating Temperature Range
Industrial (B Version) $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
Storage Temperature Range $-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature . $+150^{\circ} \mathrm{C}$
MSOP Package, Power Dissipation 450 mW
θ_{JA} Thermal Impedance . $206^{\circ} \mathrm{C} / \mathrm{W}$
$\theta_{\text {JC }}$ Thermal Impedance . $44^{\circ} \mathrm{C} / \mathrm{W}$
Lead Temperature, Soldering
Vapor Phase (60 sec) . $215^{\circ} \mathrm{C}$
Infrared (15 sec) . $220^{\circ} \mathrm{C}$
ESD . 2 kV
NOTES
${ }^{1}$ Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those listed in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Only one absolute maximum rating may be applied at any one time.
${ }^{2}$ Overvoltages at IN, S, or D will be clamped by internal diodes. Current should be limited to the maximum ratings given.

Table I. Truth Table (ADG721/ADG722)

ADG721 In	ADG722 In	Switch Condition
0	1	OFF
1	0	ON

Table II. Truth Table (ADG723)

Logic	Switch 1	Switch 2
0	OFF	ON
1	ON	OFF

ORDERING GUIDE

Model	Temperature Range	Branding ${ }^{1}$	Package Description	Package Option
ADG721BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S6B	MSOP	RM-8
ADG721BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S6B	MSOP	RM-8
ADG721BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S6B	MSOP	RM-8
ADG721BRMZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S6B	MSOP	RM-8
ADG721BRMZ-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S6B	MSOP	RM-8
ADG721BRMZ-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S6B	MSOP	RM-8
ADG722BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	MSOP	RM-8
ADG722BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	MSOP	RM-8
ADG722BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	MSOP	RM-8
ADG722BRMZ ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	MSOP	RM-8
ADG722BRMZ-REEL ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	MSOP	RM-8
ADG722BRMZ-REEL7 ${ }^{2}$	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S7B	MSOP	RM-8
ADG723BRM	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S8B	MSOP	RM-8
ADG723BRM-REEL	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S8B	MSOP	RM-8
ADG723BRM-REEL7	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	S8B	MSOP	RM-8

NOTES
${ }^{1}$ Branding = Due to package size limitations, these three characters represent the part number.
${ }^{2} \mathrm{Z}=\mathrm{Pb}$-free part.

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADG721/ADG722/ADG723 feature proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

PIN CONFIGURATION

8-Lead MSOP (RM-8)

TERMINOLOGY

V_{DD}	Most Positive Power Supply Potential.
GND	Ground (0 V) Reference.
S	Source Terminal. May be an input or output.
D	Drain Terminal. May be an input or output.
IN	Logic Control Input.
R_{ON}	Ohmic resistance between D and S.
$\Delta \mathrm{R}_{\mathrm{ON}}$	On resistance match between any two channels i.e., $\mathrm{R}_{\mathrm{ON}} \mathrm{max}-\mathrm{R}_{\mathrm{ON}} \mathrm{min}$.
$\mathrm{R}_{\text {FLAT(ON) }}$	Flatness is defined as the difference between the maximum and minimum value of on resitance as measured over the specified analog signal range.
$\mathrm{I}_{\mathrm{S}}(\mathrm{OFF})$	Source leakage current with the switch OFF.
I_{D} (OFF)	Drain leakage current with the switch OFF.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I}_{\mathrm{S}}(\mathrm{ON})$	Channel leakage current with the switch ON.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{S}}\right)$	Analog voltage on terminals D, S.
C_{S} (OFF)	OFF Switch Source Capacitance.
C_{D} (OFF)	OFF Switch Drain Capacitance.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{S}}(\mathrm{ON})$	ON Switch Capacitance.
t_{ON}	Delay between applying the digital control input and the output switching on.
$\mathrm{t}_{\text {OFF }}$	Delay between applying the digital control input and the output switching off.
t_{D}	OFF time or ON time measured between the 90% points of both switches, when switching from one address state to another (ADG723 Only).
Crosstalk	A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.
Off Isolation	A measure of unwanted signal coupling through an OFF switch.
Charge Injection	A measure of the glitch impulse transferred during switching.

ADG721/ADG722/ADG723-Typical Performance Characteristics

Figure 1. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ Single Supplies

Figure 2. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=3 \mathrm{~V}$

Figure 3. On Resistance as a Function of $V_{D}\left(V_{S}\right)$ for Different Temperatures, $V_{D D}=5 \mathrm{~V}$

Figure 4. Supply Current vs. Input Switching Frequency

Figure 5. Off Isolation vs. Frequency

Figure 6. Crosstalk vs. Frequency

Figure 7. On Response vs. Frequency

Test Circuits

Test Circuit 1. On Resistance

Test Circuit 2. Off Leakage

Test Circuit 3. On Leakage

Test Circuit 4. Switching Times

Test Circuit 5. Break-Before-Make Time Delay, t_{D} (ADG723 Only)

Test Circuit 6. Charge Injection

Test Circuit 7. Off Isolation

Test Circuit 9. Bandwidth

Test Circuit 8. Channel-to-Channel Crosstalk

APPLICATIONS INFORMATION

The ADG721/ADG722/ADG723 belong to Analog Devices' new family of CMOS switches. This series of general-purpose switches has improved switching times, lower on resistance, higher bandwidths, low power consumption, and low leakage currents.

ADG721/ADG722/ADG723 Supply Voltages

Functionality of the ADG721/ADG722/ADG723 extends from 1.8 V to 5.5 V single supply, which makes it ideal for batterypowered instruments, where important design parameters are power efficiency and performance.
It is important to note that the supply voltage affects the input signal range, the on resistance, and the switching times of the part. By taking a look at the typical performance characteristics and the specifications, the effects of the power supplies can be clearly seen.
For $\mathrm{V}_{\mathrm{DD}}=1.8 \mathrm{~V}$, on resistance is typically 40Ω over the temperature range.

On Response vs. Frequency

Figure 8 illustrates the parasitic components that affect the ac performance of CMOS switches (the switch is shown surrounded by a box). Additional external capacitances will further degrade some performance. These capacitances affect feedthrough, crosstalk, and system bandwidth.

Figure 8. Switch Represented by Equivalent Parasitic Components
The transfer function that describes the equivalent diagram of the switch (Figure 8) is of the form $(A) s$ shown below.

$$
A(s)=R_{T}\left[\frac{s\left(R_{O N} C_{D S}\right)+1}{s\left(R_{O N} C_{T} R_{T}\right)+1}\right]
$$

where:

$$
\begin{aligned}
& C_{T}=C_{L O A D}+C_{D}+C_{D S} \\
& R_{T}=R_{L O A D} /\left(R_{L O A D}+R_{O N}\right)
\end{aligned}
$$

The signal transfer characteristic is dependent on the switch channel capacitance, $C_{D S}$. This capacitance creates a frequency zero in the numerator of the transfer function A(s). Because the switch on resistance is small, this zero usually occurs at high frequencies. The bandwidth is a function of the switch output capacitance combined with C_{DS} and the load capacitance. The frequency pole corresponding to these capacitances appears in the denominator of $\mathrm{A}(\mathrm{s})$.
The dominant effect of the output capacitance, C_{D}, causes the pole breakpoint frequency to occur first. Therefore, in order to maximize bandwidth, a switch must have a low input and output capacitance and low on resistance. See Figure 7.

Off Isolation

Off isolation is a measure of the input signal coupled through an off switch to the switch output. The capacitance, C_{DS}, couples the input signal to the output load, when the switch is off as shown in Figure 9.

Figure 9. Off Isolation Is Affected by External Load Resistance and Capacitance
The larger the value of C_{DS}, the larger the values of feedthrough that are produced. The typical performance characteristic graph of Figure 5 illustrates the drop in off isolation as a function of frequency. From dc to roughly 1 MHz , the switch shows better than -80 dB isolation. Up to frequencies of 10 MHz , the off isolation remains better than -60 dB . As the frequency increases, more and more of the input signal is coupled through to the output. Off isolation can be maximized by choosing a switch with the smallest $C_{D S}$ as possible. The values of load resistance and capacitance also affect off isolation, as they contribute to the coefficients of the poles and zeros in the transfer function of the switch when open.

$$
A(s)=\left[\frac{s\left(R_{L O A D} C_{D S}\right)}{s\left(R_{L O A D}\right)\left(C_{L O A D}+C_{D}+C_{D S}\right)+1}\right]
$$

OUTLINE DIMENSIONS

8-Lead Mini Small Outline Package [MSOP] (RM-8)

Dimensions shown in millimeters

Revision History

Location Page
3/04-Data Sheet changed from REV. 0 to REV. A.
Additions to APPLICATIONS . 1
Changes to ORDERING GUIDE . 4
Updated OUTLINE DIMENSIONS . 10

