9.5Ω Ron $\pm 15 \mathrm{~V} /+12 \mathrm{~V} / \pm 5 \mathrm{~V}$ iCMOS Serially-Controlled Octal SPST Switches

FEATURES

SPI interface

Supports daisy-chain mode
9.5Ω on resistance @ $25^{\circ} \mathrm{C}$
1.6Ω on-resistance flatness
Fully specified at $\pm 15 \mathrm{~V},+12 \mathrm{~V}, \pm 5 \mathrm{~V}$
3 V logic-compatible inputs
Rail-to-rail operation
24-lead TSSOP and 24-lead $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP

APPLICATIONS

Automatic test equipment
Data acquisition systems
Battery-powered systems
Sample-and-hold systems
Audio signal routing
Video signal routing
Communication systems

GENERAL DESCRIPTION

The ADG1414 is a monolithic complementary metal-oxide semiconductor (CMOS) device containing eight independently selectable switches designed on an industrial CMOS (iCMOS*) process. iCMOS is a modular manufacturing process combining high voltage CMOS and bipolar technologies. iCMOS components can tolerate high supply voltages while providing increased performance, dramatically lower power consumption, and reduce the package size.

The ADG1414 is a set of octal SPST (single-pole, single-throw) switches controlled via a 3-wire serial interface. On resistance is closely matched between switches and is very flat over the full signal range. Each switch conducts equally well in both directions and the input signal range extends to the supplies.

FUNCTIONAL BLOCK DIAGRAM

Figure 1.

Data is written to these devices in the form of eight bits; each bit corresponds to one channel.

The ADG1414 utilizes a versatile 3-wire serial interface that operates at clock rates of up to 50 MHz and is compatible with standard SPI, QSPI ${ }^{\mathrm{mow}}$, MICROWIRE ${ }^{\mathrm{mo}}$, and DSP interface standards. The output of the shift register, SDO, enables a number of these parts to be daisy chained.

On power-up, all switches are in the off condition, and the internal registers contain all zeros.

PRODUCT HIGHLIGHTS

1. 50 MHz serial interface.
2. 9.5Ω on resistance.
3. 1.6Ω on-resistance flatness.
4. 24 -lead TSSOP and $4 \mathrm{~mm} \times 4 \mathrm{~mm}$ LFCSP packages.

Rev. 0
Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

ADG1414

TABLE OF CONTENTS

Features 1
Applications. 1
Functional Block Diagram 1
Product Highlights 1
Revision History 2
Specifications 3
± 15 V Dual Supply 3
12 V Single Supply 4
± 5 V Dual Supply 6
Continuous Current per Channel 7
Timing Characteristics 8
Absolute Maximum Ratings 10
Thermal Resistance 10
ESD Caution 10
Pin Configurations and Function Descriptions 11
Typical Performance Characteristics 13
Test Circuits 16
Terminology 18
Theory of Operation 19
Serial Interface 19
Input Shift Register 19
Power-On Reset 19
Daisy Chaining 19
Outline Dimensions 20
Ordering Guide 20

REVISION HISTORY

10/09—Revision 0: Initial Version

SPECIFICATIONS

± 15 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-15 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 1.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \mathrm{tc} \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflation)	$\begin{aligned} & 9.5 \\ & 11.5 \\ & 0.55 \\ & 1 \\ & 1.6 \\ & 1.9 \end{aligned}$	14 1.5 2.15	$\mathrm{V}_{S S}$ to V_{DD} 16 1.7 2.3	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}=$ -10 mA ; see Figure 23 $\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}= \\ & -10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-13.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}= \\ & -10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, IS (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, Io, Is (On)	$\begin{aligned} & \pm 0.05 \\ & \pm 0.15 \\ & \pm 0.05 \\ & \pm 0.15 \\ & \pm 0.1 \\ & \pm 0.3 \end{aligned}$	± 1 ± 1 ± 2	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 4 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-16.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 10 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 10 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 10 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VinL Input Current Digital Input Capacitance, Cin	$\begin{aligned} & \pm 0.001 \\ & 4 \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{GND}}$ or V_{L}
LOGIC OUTPUTS (SDO) Output Low Voltage, Vol ${ }^{1}$ High Impedance Leakage Current High Impedance Output Capacitance ${ }^{1}$	0.001 4		$\begin{gathered} 0.4 \\ 0.6 \\ \pm 1 \end{gathered}$	\checkmark max V max μA typ $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion (THD + N) -3 dB Bandwidth Insertion Loss $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (Off) $C_{D}, C_{s}(O n)$	75 93 25 35 10 -73 -75 0.05 256 0.55 8 32	110 35	120 35	ns typ ns max ns typ ns max pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ	$\begin{aligned} & \mathrm{R}_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, \mathrm{C}_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=10 \mathrm{~V} ; \text { see Figure } 30 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} ; \text { see Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 15 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \text { see } \end{aligned}$ Figure 29 $R_{L}=50 \Omega, C_{L}=5 p F$; see Figure 28 $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, f=1 \mathrm{MHz}$; see Figure 28 $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$

ADG1414

Parameter	$+25^{\circ} \mathrm{C}$		$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments	
POWER REQUIREMENTS	0.001			$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+16.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-16.5 \mathrm{~V}$	
IdD				Digital inputs $=0 \mathrm{~V}$ or V_{L}		
			1			
IL Inactive	0.3		1		$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
				$\mu \mathrm{A}$ max		
ILActive @ 30 MHz	0.26			mA typ	Digital inputs toggle between 0 V and V_{L}	
		0.3	0.35	mA max		
ILActive @ 50 MHz	0.42			mA typ	Digital inputs toggle between 0 V and V_{L}	
Iss		0.5	0.55	mA max		
	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}	
			1	$\mu \mathrm{A}$ max		
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	V min/max		

${ }^{1}$ Guaranteed by design, not subject to production test.

12 V SINGLE SUPPLY

$\mathrm{V}_{\mathrm{DD}}=12 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 2.

[^0]
ADG1414

± 5 V DUAL SUPPLY

$\mathrm{V}_{\mathrm{DD}}=+5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{SS}}=-5 \mathrm{~V} \pm 10 \%, \mathrm{~V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{DD}}, \mathrm{GND}=0 \mathrm{~V}$, unless otherwise noted.
Table 3.

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments
ANALOG SWITCH Analog Signal Range On Resistance (Ron) On-Resistance Match Between Channels (Δ Ron) On-Resistance Flatness (Rflat(on)	$\begin{aligned} & 21 \\ & 25 \\ & 0.6 \\ & 1.3 \\ & 5.2 \\ & 6.4 \end{aligned}$	29 1.7 7.3	V_{SS} to V_{DD} 32 1.9 7.6	V Ω typ Ω max Ω typ Ω max Ω typ Ω max	$\begin{aligned} & \mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{S}}= \\ & -10 \mathrm{~mA} \text {; see Figure } 23 \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{I}_{\mathrm{s}}= \\ & -10 \mathrm{~mA} \\ & \mathrm{~V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V} ; \\ & \mathrm{I}_{\mathrm{S}}=-10 \mathrm{~mA} \end{aligned}$
LEAKAGE CURRENTS Source Off Leakage, Is (Off) Drain Off Leakage, I_{D} (Off) Channel On Leakage, Io, Is (On)	$\begin{aligned} & \pm 0.02 \\ & \pm 0.15 \\ & \pm 0.02 \\ & \pm 0.15 \\ & \pm 0.05 \\ & \pm 0.3 \end{aligned}$	± 1 ± 1 ± 2	$\begin{aligned} & \pm 2 \\ & \pm 2 \\ & \pm 4 \end{aligned}$	nA typ nA max nA typ nA max nA typ nA max	$\begin{aligned} & V_{D D}=+5.5 \mathrm{~V}, \mathrm{~V}_{S S}=-5.5 \mathrm{~V} \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}= \pm 4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{D}}=\mp 4.5 \mathrm{~V} \text {; see Figure } 24 \\ & \mathrm{~V}_{\mathrm{S}}=\mathrm{V}_{\mathrm{D}}= \pm 4.5 \mathrm{~V} \text {; see Figure } 25 \end{aligned}$
DIGITAL INPUTS Input High Voltage, Vinh Input Low Voltage, VINL Input Current Digital Input Capacitance, C_{IN}	$\begin{aligned} & \pm 0.001 \\ & 4 \\ & \hline \end{aligned}$		$\begin{gathered} 2.0 \\ 0.8 \\ \pm 0.1 \end{gathered}$	V min V max μA typ $\mu \mathrm{A}$ max pF typ	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {GND }}$ or V_{L}
LOGIC OUTPUTS (SDO) Vol, Output Low Voltage ${ }^{1}$ High Impedance Leakage Current High Impedance Output Capacitance ${ }^{1}$	4		$\begin{aligned} & 0.4 \\ & 0.6 \\ & \pm 1 \end{aligned}$	V max V max $\mu \mathrm{A}$ max pF typ	$\begin{aligned} & \mathrm{I}_{\mathrm{SINK}}=3 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{SINK}}=6 \mathrm{~mA} \end{aligned}$
DYNAMIC CHARACTERISTICS ${ }^{1}$ ton toff Charge Injection Off Isolation Channel-to-Channel Crosstalk Total Harmonic Distortion, THD + N -3 dB Bandwidth Insertion Loss C_{D}, C_{S} (Off) $\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}(\mathrm{On})$	$\begin{aligned} & 190 \\ & 250 \\ & 45 \\ & 60 \\ & 7 \\ & -70 \\ & -75 \\ & 0.14 \\ & \\ & 256 \\ & 1 \\ & 11 \\ & 35 \\ & \hline \end{aligned}$	$\begin{aligned} & 290 \\ & 65 \end{aligned}$	$\begin{aligned} & 320 \\ & 70 \end{aligned}$	ns typ ns max ns typ ns max pC typ dB typ dB typ \% typ MHz typ dB typ pF typ pF typ	$\begin{aligned} & R_{L}=100 \Omega, C_{L}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \text {; see Figure } 30 \\ & \mathrm{R}_{\mathrm{L}}=100 \Omega, C_{\mathrm{L}}=35 \mathrm{pF} \\ & \mathrm{~V}_{\mathrm{S}}=3 \mathrm{~V} \text {; see Figure } 30 \\ & \mathrm{~V}_{\mathrm{S}}=0 \mathrm{~V}, \mathrm{R}_{\mathrm{S}}=0 \Omega, C_{\mathrm{L}}=1 \mathrm{nF} \text {; see Figure } 31 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 26 \\ & \mathrm{R}_{\mathrm{L}}=50 \Omega, \mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 27 \\ & \mathrm{R}_{\mathrm{L}}=110 \Omega, 5 \mathrm{~V} \mathrm{p}-\mathrm{p}, \mathrm{f}=20 \mathrm{~Hz} \text { to } 20 \mathrm{kHz} ; \text { see } \end{aligned}$ $\text { Figure } 29$ $R_{L}=50 \Omega, C_{L}=5 p F ; \text { see Figure } 28$ $R_{L}=50 \Omega, C_{L}=5 \mathrm{pF}, \mathrm{f}=1 \mathrm{MHz} \text {; see Figure } 28$ $\mathrm{f}=1 \mathrm{MHz}$ $\mathrm{f}=1 \mathrm{MHz}$

Parameter	$+25^{\circ} \mathrm{C}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +85^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & -40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$	Unit	Test Conditions/Comments	
POWER REQUIREMENTS	0.001			$\mu \mathrm{A}$ typ $\mu \mathrm{A}$ max	$\mathrm{V}_{\mathrm{DD}}=+5.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-5.5 \mathrm{~V}$	
ldD			1		Digital inputs $=0 \mathrm{~V}$ or V_{L}	
IL Inactive	0.3			1	$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}
			$\mu \mathrm{A}$ max			
LL Active @ 30 MHz	0.26			mA typ	Digital inputs toggle between 0 V and V_{L}	
IL Active @ 50 MHz		0.3	0.35	mA max		
	0.42			mA typ	Digital inputs toggle between 0 V and V_{L}	
		0.5	0.55	mA max		
Iss	0.001			$\mu \mathrm{A}$ typ	Digital inputs $=0 \mathrm{~V}$ or V_{L}	
			1	$\mu \mathrm{A}$ max		
$\mathrm{V}_{\mathrm{DD}} / \mathrm{V}_{\text {SS }}$			$\pm 4.5 / \pm 16.5$	\checkmark min/max		

${ }^{1}$ Guaranteed by design, not subject to production test.

CONTINUOUS CURRENT PER CHANNEL

Table 4. Eight Channels On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL¹					
15 V Dual Supply					$V_{\text {DD }}=+13.5 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=-13.5 \mathrm{~V}$
$24-$ Lead TSSOP $\left(\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	67	46	31	mAmax	
$24-L e a d$ LFCSP ($\left.\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	121	75	42	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{S S}=0 \mathrm{~V}$
24-Lead TSSOP ($\theta_{\text {JA }}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	64	44	30	mA max	
$24-L e a d$ LFCSP ($\left.\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	115	72	41	mA max	
5 V Dual Supply					$V_{D D}=+4.5 \mathrm{~V}, \mathrm{~V}_{S S}=-4.5 \mathrm{~V}$
$24-$ Lead TSSOP ($\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}$)	48	35	22	mA max	
$24-L e a d$ LFCSP ($\left.\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}\right)$	86	57	36	mAmax	

${ }^{1}$ Guaranteed by design, not subject to production test.

Table 5. One Channel On

Parameter	$25^{\circ} \mathrm{C}$	$85^{\circ} \mathrm{C}$	$125^{\circ} \mathrm{C}$	Unit	Test Conditions/Comments
CONTINUOUS CURRENT PER CHANNEL¹					
15 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+13.5 \mathrm{~V}, \mathrm{~V}_{S S}=-13.5 \mathrm{~V}$
24 -Lead TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	169	97	48	mA max	
	295	139	55	mA max	
12 V Single Supply					$\mathrm{V}_{\mathrm{DD}}=10.8 \mathrm{~V}, \mathrm{~V}_{\text {SS }}=0 \mathrm{~V}$
24 -Lead TSSOP ($\left.\theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	161	93	47	mA max	
24-Lead LFCSP ($\left.\theta_{\text {JA }}=30.4{ }^{\circ} \mathrm{C} / \mathrm{W}\right)$	281	135	54	mA max	
5 V Dual Supply					$\mathrm{V}_{\mathrm{DD}}=+4.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=-4.5 \mathrm{~V}$
24-Lead TSSOP ($\left.\Theta_{\mathrm{JA}}=112.6^{\circ} \mathrm{C} / \mathrm{W}\right)$	122	76	43	mA max	
24-Lead LFCSP ($\theta_{\mathrm{JA}}=30.4^{\circ} \mathrm{C} / \mathrm{W}$)	214	114	51	mA max	

[^1]
ADG1414

TIMING CHARACTERISTICS

All input signals are specified with $t_{R}=t_{F}=1 \mathrm{~ns} / \mathrm{V}\left(10 \%\right.$ to 90% of $\left.\mathrm{V}_{\mathrm{DD}}\right)$ and timed from a voltage level of $\left(\mathrm{V}_{\mathrm{II}}+\mathrm{V}_{\mathrm{IH}}\right) / 2$ (see Figure 2). $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to $16.5 \mathrm{~V} ; \mathrm{V}$ SS $=-16.5 \mathrm{~V}$ to $0 \mathrm{~V} ; \mathrm{V}_{\mathrm{L}}=2.7 \mathrm{~V}$ to 5.5 V or V_{DD} (whichever is less); $\mathrm{GND}=0 \mathrm{~V}$; all specifications $\mathrm{T}_{\mathrm{MIN}}$ to $\mathrm{T}_{\mathrm{MAX}}$, unless otherwise noted. ${ }^{1}$

Table 6.

Parameter	Limit at $\mathbf{T}_{\text {MIN, }} \mathbf{T}_{\text {MAX }}$	Unit	Conditions/Comments
$\mathrm{t}_{1}{ }^{2}$	20	ns min	SCLK cycle time
t_{2}	9	ns min	SCLK high time
t_{3}	9	ns min	SCLK low time
t_{4}	5	ns min	$\overline{\text { SYNC to SCLK active edge setup time }}$
t_{5}	5	ns min	Data setup time
t_{6}	5	ns min	Data hold time
t_{7}	5	ns min	SCLK active edge to $\overline{\text { SYNC } \text { rising edge }}$
t_{8}	15	ns min	Minimum $\overline{\text { SYNC } \text { high time }}$
t_{9}	5	ns min	$\overline{\text { SYNC rising edge to next SCLK active edge ignored }}$
t_{10}	5	ns min	SCLK active edge to $\overline{\text { SYNC falling edge ignored }}$
$\mathrm{t}_{11}{ }^{3}$	40	ns max	SCLK rising edge to SDO valid
t_{12}	15	ns min	Minimum $\overline{\text { RESET pulse width }}$

${ }^{1}$ Guaranteed by design and characterization, not production tested.
${ }^{2}$ Maximum SCLK frequency is 50 MHz at $\mathrm{V}_{\mathrm{DD}}=4.5 \mathrm{~V}$ to 16.5 V ; $\mathrm{V}_{S S}=-16.5 \mathrm{~V}$ to $0 \mathrm{~V}, \mathrm{~V}=2.7 \mathrm{~V}$ to 5.5 V or V_{DD} (whichever is less); $\mathrm{GND}=0 \mathrm{~V}$.
${ }^{3}$ Measured with the $1 \mathrm{k} \Omega$ pull-up resistor to V_{L} and 20 pF load. t_{11} determines the maximum SCLK frequency in daisy-chain mode.

Timing Diagrams

Figure 2. Serial Write Operation

Figure 3. Daisy-Chain Timing Diagram

ADG1414

ABSOLUTE MAXIMUM RATINGS

$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$, unless otherwise noted.
Table 7.

Parameter	Rating
$\mathrm{V}_{\text {D }}$ to $\mathrm{V}_{S S}$	35 V
$V_{\text {DD }}$ to GND	-0.3 V to +25 V
$V_{\text {ss }}$ to GND	+0.3 V to -25 V
VL to GND	-0.3 V to +7 V
Analog Inputs ${ }^{1}$	$V_{S S}-0.3 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{DD}}+0.3 \mathrm{~V} \text { or }$ 30 mA , whichever occurs first
Digital Inputs ${ }^{1}$	GND - 0.3 V to $\mathrm{V}+0.3 \mathrm{~V}$ or 30 mA , whichever occurs first
Continuous Current, Sx or Dx Pins	Table 4 specifications + 15\%
Peak Current, Sx or Dx (Pulsed at $1 \mathrm{~ms}, 10 \%$ Duty Cycle Max)	
TSSOP Package	300 mA
LFCSP Package	400 mA
Operating Temperature Range Industrial (B Version)	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
Storage Temperature Range	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
Junction Temperature	$150^{\circ} \mathrm{C}$
Reflow Soldering Peak Temperature, Pb free	$260^{\circ} \mathrm{C}$
Time at Peak Temperature	10 sec to 40 sec

[^2]Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Only one absolute maximum rating may be applied at any one time.

THERMAL RESISTANCE
Table 8. Thermal Resistance

Package Type	$\boldsymbol{\theta}_{\mathrm{JA}}$	$\boldsymbol{\theta}_{\mathbf{\prime} \mathbf{c}}$	Unit
24-Lead TSSOP 1	112.6	50	${ }^{\circ} \mathrm{C} / \mathrm{W}$
24-Lead LFCSP ${ }^{2}$	30.4		${ }^{\circ} \mathrm{C} / \mathrm{W}$

${ }^{1}$ 4-layer board.
${ }^{2}$ 4-layer board and exposed paddle soldered to $\mathrm{V}_{5 s}$.

ESD CAUTION

	ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Figure 4. TSSOP Pin Configuration

Figure 5. LFCSP Pin Configuration

Table 9. Pin Function Descriptions

Pin No.		Mnemonic	Description
TSSOP	LFCSP		
1	22	SCLK	Serial Clock Input. Data is clocked into the input shift register on the falling edge of the serial clock input. Data can be transferred at rates of up to 50 MHz .
2	23	VDD	Most Positive Power Supply Potential.
3	24	DIN	Serial Data Input. This device has an 8-bit shift register. Data is clocked into the register on the falling edge of the serial clock input.
4	1	GND	Ground (0V) Reference.
5	2	S1	Source Terminal 1. This pin can be an input or an output.
6	3	D1	Drain Terminal 1. This pin can be an input or an output.
7	4	S2	Source Terminal 2. This pin can be an input or an output.
8	5	D2	Drain Terminal 2. This pin can be an input or an output.
9	6	S3	Source Terminal 3. This pin can be an input or an output.
10	7	D3	Drain Terminal 3. This pin can be an input or an output.
11	8	S4	Source Terminal 4. This pin can be an input or an output.
12	9	D4	Drain Terminal 4. This pin can be an input or an output.
13	10	D5	Drain Terminal 5. This pin can be an input or an output.
14	11	S5	Source Terminal 5. This pin can be an input or an output.
15	12	D6	Drain Terminal 6. This pin can be an input or an output.
16	13	S6	Source Terminal 6. This pin can be an input or an output.
17	14	D7	Drain Terminal 7. This pin can be an input or an output.
18	15	S7	Source Terminal 7. This pin can be an input or an output.
19	16	D8	Drain Terminal 8. This pin can be an input or an output.
20	17	S8	Source Terminal 8. This pin can be an input or an output.
21	18	$\mathrm{V}_{\text {ss }}$	Most Negative Power Supply Potential. In single-supply applications, it can be connected to ground.
22	19	SDO	Serial Data Output. This pin can be used for daisy-chaining a number of these devices together or for reading back the data in the shift register for diagnostic purposes. The serial data is transferred on the rising edge of SCLK and is valid on the falling edge of the clock. Pull this open-drain output to the supply with an external resistor.
23	20	$\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$	$\overline{\mathrm{RESET}} /$ Logic Power Supply Input $\left(\mathrm{V}_{\mathrm{L}}\right)$. When this pin is low $(<0.8 \mathrm{~V})$, this pin acts as $\overline{\mathrm{RESET}}$, all switches are open, and appropriate registers are cleared to 0 . Otherwise, it is the logic power supply input that operates from 2.7 V to 5.5 V .

ADG1414

Pin No.			
TSSOP	LFCSP	Mnemonic	Description
24	21	SYNC	Active Low Control Input. This is the frame synchronization signal for the input data. When $\overline{\text { SYNC }}$ goes low, it powers on the SCLK and DIN buffers and enables the input shift register. Data is transferred in on the falling edges of the following clocks. Taking $\overline{\text { SYNC }}$ high updates the switch condition. N/A

[^3]
TYPICAL PERFORMANCE CHARACTERISTICS

Figure 6. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Dual Supply

Figure 7. On Resistance as a Function of $V_{D}(V s)$, Dual Supply

Figure 8. On Resistance as a Function of $V_{D}\left(V_{s}\right)$, Single Supply

Figure 9. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, for Different Temperatures, 15 V Dual Supply

Figure 10. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, for Different Temperatures, 5 V Dual Supply

Figure 11. On Resistance as a Function of $V_{D}\left(V_{S}\right)$, for Different Temperatures, 12 V Single Supply

ADG1414

Figure 12. Leakage Current as a Function of Temperature, 15 V Dual Supply

Figure 13. Leakage Current as a Function of Temperature, 5 V Dual Supply

Figure 14. Leakage Current as a Function of Temperature, 12 V Single Supply

Figure 15. IDD vs. Logic Level

Figure 16. Charge Injection vs. Source Voltage

Figure 17. Transition Time vs. Temperature

Figure 18. Off Isolation vs. Frequency

Figure 19. On Response vs. Frequency

Figure 20. Crosstalk vs. Frequency

Figure 21. THD $+N$ vs. Frequency, 15 V Dual Supply

Figure 22. ACPSRR vs. Frequency

ADG1414

TEST CIRCUITS

Figure 23. On Resistance

Figure 24. Off Leakage

Figure 25. On Leakage

Figure 26. Off Isolation

Figure 27. Channel-to-Channel Crosstalk

Figure 28. Insertion Loss

Figure 29. THD + Noise

Figure 30. Switching Times

Figure 31. Charge Injection

ADG1414

TERMINOLOGY

I_{DD}
The positive supply current.
Iss
The negative supply current.
$\mathrm{V}_{\mathrm{D}}\left(\mathrm{V}_{\mathrm{s}}\right)$
The analog voltage on Terminal Dx or Terminal Sx.
$\mathrm{R}_{\text {on }}$
The ohmic resistance between Terminal Dx and Terminal Sx.
Δ RoN $_{\text {on }}$
The difference between the Ron of any two channels.

$\mathbf{R}_{\text {flat }}$ (ON)

Flatness is defined as the difference between the maximum and minimum value of on resistance, as measured over the specified analog signal range.

I_{s} (Off)

The source leakage current with the switch off.
I_{D} (Off)
The drain leakage current with the switch off.
$\mathrm{I}_{\mathrm{D}}, \mathrm{I} \mathrm{I}$ (On)
The channel leakage current with the switch on.
$V_{\text {INL }}$
The maximum input voltage for Logic 0 .
$\mathrm{V}_{\text {INH }}$
The minimum input voltage for Logic 1.
$\mathrm{I}_{\text {INL }}$ ($\mathrm{I}_{\text {INH }}$)
The input current of the digital input.
Cs (Off)
The off switch source capacitance, measured with reference to ground.
C_{D} (Off)
The off switch drain capacitance, measured with reference to ground.
$\mathrm{C}_{\mathrm{D}}, \mathrm{C}_{\mathrm{s}}$ (On)
The on switch capacitance, measured with reference to ground.
$\mathrm{C}_{\text {IN }}$
The digital input capacitance.
$t_{\text {ON }}$
The delay between applying the digital control input and the output switching on. See Figure 30.
toff
The delay between applying the digital control input and the output switching off. See Figure 30.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Off Isolation

A measure of unwanted signal coupling through an off switch.

Crosstalk

A measure of unwanted signal that is coupled through from one channel to another as a result of parasitic capacitance.

Bandwidth

The frequency at which the output is attenuated by 3 dB .
On Response
The frequency response of the on switch.

Insertion Loss

The loss due to the on resistance of the switch.
THD + N
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p -p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

THEORY OF OPERATION

The ADG1414 is a set of serially controlled, octal SPST switches. Each of the eight bits of the 8-bit write corresponds to one switch of the device. A Logic 1 in the particular bit position turns the switch on, whereas a Logic 0 turns the switch off. Because each switch is independently controlled by an individual bit, this provides the option of having any, all, or none of the switches turned on.

SERIAL INTERFACE

The ADG1414 has a 3-wire serial interface ($\overline{\text { SYNC }}$, SCLK, and DIN pins) that is compatible with SPI, QSPI, and MICROWIRE interface standards, as well as most DSPs. See Figure 2 for a timing diagram of a typical write sequence.
The write sequence begins by bringing the SYNC line low. This enables the input shift register. Data from the DIN line is clocked into the 8 -bit input shift register on the falling edge of SCLK. The serial clock frequency can be as high as 50 MHz , making the ADG1414 compatible with high speed DSPs.

Data can be written to the shift register in more or less than eight bits. In each case, the shift register retains the last eight bits that were written. When all eight bits have been written into the shift register, the SYNC line is brought high again. The switches are updated with the new configuration, and the input shift register is disabled. With SYNC held high, the input shift register is disabled; therefore, further data or noise on the DIN line has no effect on the shift register.

Data appears on the SDO pin on the rising edge of SCLK suitable for daisy chaining or readback, delayed by eight bits.

INPUT SHIFT REGISTER

The input shift register is eight bits wide (see Table 10). Each bit controls one switch. These data bits are transferred to the switch register on the rising edge of SYNC.

Table 10. ADG1414 Input Shift Register Bit Map ${ }^{1}$
MSB

DB7	DB6	DB5	DB4	DB3	DB2	DB1	DB0
S8	S7	S6	S5	S4	S3	S2	S1

[^4]
POWER-ON RESET

The ADG1414 contains a power-on reset circuit. On power-up of the device, all switches are in the off condition and the internal shift register is filled with zeros and remains so until a valid write takes place.
The part also has a $\overline{\operatorname{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin. When the $\overline{\mathrm{RESET}} / \mathrm{V}_{\mathrm{L}}$ pin is low, all switches are off and the appropriate registers are cleared to 0 .

DAISY CHAINING

For systems that contain several switches, the SDO pin can be used to daisy-chain several devices together. The SDO pin can also be used for diagnostic purposes and provide serial readback, wherein the user can read back the switch contents.
SDO is an open-drain output that should be pulled to the V_{L} supply with an external resistor.
The SCLK is continuously applied to the input shift register when $\overline{\text { SYNC }}$ is low. If more than eight clock pulses are applied, the data ripples out of the shift register and appears on the SDO line. This data is clocked out on the rising edge of SCLK and is valid on the falling edge. By connecting this line to the DIN input on the next device in the chain, a multiswitch interface is constructed. Each device in the system requires eight clock pulses; therefore, the total number of clock cycles must equal 8 N , where N is the total number of devices in the chain.
When the serial transfer to all devices is complete, $\overline{\text { SYNC }}$ is taken high. This prevents any further data from being clocked into the input shift register.
The serial clock can be a continuous or a gated clock. A continuous SCLK source can be used only if SYNC can be held low for the correct number of clock cycles. In gated clock mode, a burst clock containing the exact number of clock cycles must be used, and SYNC must be taken high after the final clock to latch the data. Gated clock mode reduces power consumption by reducing the active clock time.

ADG1414

OUTLINE DIMENSIONS

0.10 COPLANARITY

COMPLIANT TO JEDEC STANDARDS MO-153-AD
Figure 32. 24-Lead Thin Shrink Small Outline Package [TSSOP]
($R U-24$)
Dimensions shown in millimeters

馬
Figure 33. 24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]
$4 \mathrm{~mm} \times 4 \mathrm{~mm}$ Body, Very Thin Quad
(CP-24-3)
Dimensions shown in millimeters

ORDERING GUIDE

Model	Temperature Range	Package Description	Package Option
ADG1414BRUZ 1	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
${\text { ADG1414BRUZ-REEL7 }{ }^{1}}^{\text {ADS }}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Thin Shrink Small Outline Package [TSSOP]	RU-24
ADG1414BCPZ-REEL7 ${ }^{1}$	$-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	24-Lead Lead Frame Chip Scale Package [LFCSP_VQ]	CP-24-3

${ }^{1} Z=$ RoHS Compliant Part.

[^0]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^1]: ${ }^{1}$ Guaranteed by design, not subject to production test.

[^2]: ${ }^{1}$ Overvoltages at the analog and digital inputs are clamped by internal diodes. Limit the current to the maximum ratings given.

[^3]: ${ }^{1}$ N/A means not applicable.

[^4]: ${ }^{1}$ Logic $0=$ switch off and Logic $1=$ switch on.

