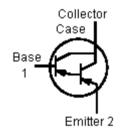

High-current complementary silicon transistors.

For use output devices in complementary general purpose amplifier applications.

Features:

- High DC current gain h_{FE} = 1000 (minimum) at I_C 20A dc.
- Monolithic construction with built-in base emitter shunt resistor.
- Junction temperature to +200°C.



Style 1: Pin 1. Base 2. Emitter Collector (Case)

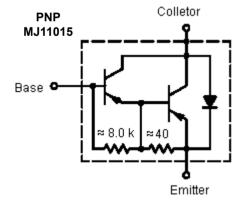
Dimensions	Minimum	Maximum	
А	1.550 (39.37) Reference		
В	-	1.050 (26.67)	
С	0.250 (6.35)	0.335 (8.51)	
D	0.038 (0.97)	0.043 (1.09)	
E	0.055 (1.40)	0.070 (1.77)	
G	0.430 (10.92) BSC		
Н	0.215 (5.46) BSC		
К	0.440 (11.18)	0.480 (12.19)	
L	0.665 (16.89) BSC		
N	-	0.830 (21.08)	
Q	0.151 (3.84) 0.165 (4.1		
U	1.187 (30.15) BSC		
V	0.131 (3.33)	0.188 (4.77)	

Dimensions : Inches (Millimetres)

30 Ampere Darlington Power Transistors Complementary Silicon 60 - 120 Volts, 200 Watts

(TO-3) Case 1-07 Style 1

Maximum Ratings

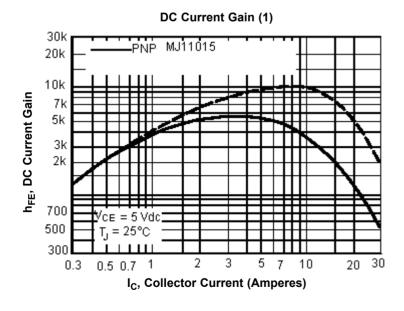

Rating	Symbol	Value	Unit	
Collector-Emitter Voltage MJ11015	V _{CEO}	120	V dc	
Collector-Base Voltage MJ11015	V _{CB}	120		
Emitter-Base Voltage	V _{EB}	5		
Collector Current	I _C	30		
Base Current	I _B	1	- A dc	
Total Device Dissipation at T _C = 25°C Derate above 25°C at TC = 100°C	P _D	200 1.15	W W/°C	
Operating and Storage Junction Temperature Range	$T_{J_{i}}T_{stg}$	-55 to +200	°C	

Thermal Characteristics

Characteristics	Symbol	Maximum	Unit
Thermal Resistance, Junction-to-Case	$R_{ heta JC}$	1.17	°C/W
Maximum Lead Temperature for Soldering Purposes for ≤10 Seconds	T _L	275	°C

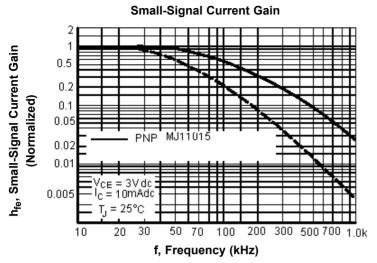
Stresses exceeding maximum ratings may damage the device. Maximum ratings are stress ratings only. Functional operation above the recommended operating conditions is not implied. Extended exposure to stresses above the recommended operating conditions may affect device reliability.

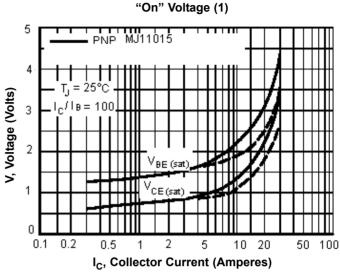
Darlington Circuit Schematic

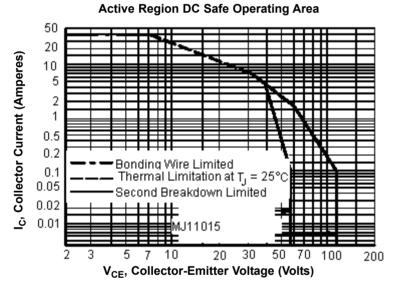


Electrical Characteristics (T_C = 25°C unless otherwise noted)

Characteristic		Symbol	Minimum	Maximum	Unit
Off Characteristics				1	
Collector-Emitter Brakdown Voltage (1) $(I_C = 100 \text{mA dc}, I_B = 0)$	MJ11015	V _{(BR) CEO}	120	-	V dc
Collector-Emitter Leakage Current (V_{CE} = 120V dc, R_{BE} = 1k Ω) (V_{CE} = 120V dc, R_{BE} = 1k Ω , T_{C} = 150°C)	MJ11015 MJ11015	I _{CER}	-	1 5	mA dc
Emitter Cut off Current (V _{BE} = 5.0V dc, I _C = 0)		I _{EBO}	-	5	
Collector-Emitter Leakage Current $(V_{CE} = 5.0 \text{V dc}, I_B = 0)$		I _{CEO}	-	1	
On Characteristics (1)					
DC Current Gain ($I_C = 20A dc$, $V_{CE} = 5V dc$ ($I_C = 30A dc$, $V_{CE} = 5V dc$)		h _{FE}	1000 200		-
Collector-Emitter Saturation Voltage ($I_C = 20A \text{ dc}, I_B = 200\text{mA dc}$) ($I_C = 30A \text{ dc}, I_B = 300\text{mA dc}$)		V _{CE (sat)}	-	3 4	V dc
Base-Emitter Saturation Voltage $(I_C = 20A \text{ dc}, I_B = 200\text{mA dc})$ $(I_C = 30A \text{ dc}, I_B = 300\text{mA dc})$		V _{BE (sat)}	-	3.5 5	v uc
Dynamic Characteristics		·			
Current-Gain Bandwidth Product ($I_C = 10A$, $V_{CE} = 3V$ dc, $f = 1MHz$)		h _{fe}	4	-	MHz


⁽¹⁾ Pulse Test: Pulse Width = 300µS, Duty Cycle ≤2.0%.




http://www.farnell.com http://www.newark.com http://www.cpc.co.uk

There are two limitations on the power handling ability of a transistor average junction temperature and secondary breakdown. Safe operating area curves indicate I_{C} - V_{CE} limits of the transistor that must be observed for reliable operations e.g., the transistor must not be subjected to greater dissipation than the curves indicate.

At high case temperatures, thermal limitations will reduce the power that can be handled to values less than the limitations imposed by secondary breakdown.

Part Number Table

Description	Part Number
Darlington Transistor, TO-3	MJ11015

Disclaimer This data sheet and its contents (the "Information") belong to the Premier Farnell Group (the "Group") or are licensed to it. No licence is granted for the use of it other than for information purposes in connection with the products to which it relates. No licence of any intellectual property rights is granted. The Information is subject to change without notice and replaces all data sheets previously supplied. The Information supplied is believed to be accurate but the Group assumes no responsibility for its accuracy or completeness, any error in or omission from it or for any use made of it. Users of this data sheet should check for themselves the Information and the suitability of the products for their purpose and not make any assumptions based on information included or omitted. Liability for loss or damage resulting from any reliance on the Information or use of it (including liability resulting from negligence or where the Group was aware of the possibility of such loss or damage arising) is excluded. This will not operate to limit or restrict the Group's liability for death or personal injury resulting from its negligence. SPC Multicomp is the registered trademark of the Group. © Premier Farnell plc 2008.

http://www.farnell.com http://www.newark.com http://www.cpc.co.uk

