

Features:

- 5,000 Vrms electrical isolation
- Choice of a Single and Dual LED
- Choice of Phototransistor or Photologic[®] Sensor
- Low-cost plastic Dual-In-Line (DIP) package

Agency Approvals:

- UL Certification No: E58730
- VDE pending

Description:

The OPIA800D through OPID804D optocouplers are designed for applications that utilize a digital output (Phototlogic[®]) in a dual-in-line package. Isolation voltage from 2,500 to 5,000 Volts RMS product are designed for some of the most stringent power system isolation requirements.

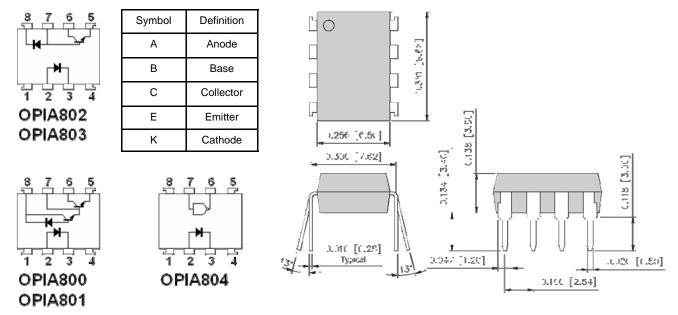
Theory of operation: The LED transmitter is used to illuminate the Photosensor providing electrical isolation between two power systems while maintaining the ability to transmit information from one power system to the other. In many applications, analog or digital signals may be required to be transmitted between two power systems while maintaining isolation between the power systems up to 5,000 volts RMS. A variety of LED and photosensor configurations are available depending on the system requirements

 $CTR = \frac{Photosenso r - Current}{LED - Current} = \frac{20 mA}{10 mA} * 100 = 200$

All DIP product is shipped in a shipping tube with "TU" identified on the end of the part number. Example: OPI800DTU is a 8-Pin DIP shipped in a tube (TU).

Applications:

- High voltage isolation
- PCBoard power system isolation


Medical equipment power isolationOffice equipment

Industrial equipment power isolation

Analog Output Devices Ordering Information											
Part Number	Isolation Max. (\		CTR Min/Typ/N			Tplh / Tph R _L = ohms		P	ackage	Co	nfiguration
OPIA800	2,50	00	300 / 1,600)/-	7	7 / 2 [2.2 k	(]	8	Pin DIP	A K—ł	〈 A B C E (Dar)
OPIA801	2,50	00	500 / 1,600)/-	1(0 / 5 [4.7	K]	8	Pin DIP	A K—ł	KABCE (Dar)
OPIA802	2,50	00	15 / 43 /	-	0.3	3 / 0.3 [1.9	9 K]	8	Pin DIP	AI	K—KACE
OPIA803	5,00	00	5 / 43 /	-	0.4	4 / 0.3 [4.1	K]	8	Pin DIP	AI	K—KACE
	D	Digital	Output D)evic	es C	Orderir	ng Ir	nfor	mation	_	
Part Number	Isolation Max. (\		Typ. Tr / Tf [R _L = 350 ol	• •		Tplh / Tph R _L = ohms	• •	P	ackage	Co	nfiguration
OPID804	5,00	00	30 / 30		4	5 / 45 [35	0]	8	Pin DIP	A	K—NAND
						ition of Ten Insor Identif		า			
LED	A = An	ode	K = Cathode								
Sensor	10K Lo	gic	10K Inverte	d Logic	NA	AND Gate		NA	ND Gate		
0611301	K = Ca	thode	A = Anode		B	= Base		С	= Collector	E = E	Emitter
Packaging	Part N	Number Si	uffix: TU = S	hip in Tu	ubes,	TR = Shi	p on T	ape a	nd Reel	Example	: OPID606D <u>TR</u>
Part Number		-			Pin #						
T art Number	1	2	3	4		5	6	;	7	8	
OPIA800		А	К			E	C	;	C-B	K-C	
OPIA801		А	К			Е	C	;	C-B	K-C	
OPIA802		А	К			E	C	;	A-B	к	
OPIA803		А	К			Е	C	;	A-B	К	
OPID804		А	К			GND	Out	put	Enable	Vcc	

Package Outline Dimensions and Schematics: Top-View

Absolute Maximum Ratings ($T_A = 25^{\circ}C$ unless otherwise noted)

Storage Temperature	-55° C to +125° C
Operating Temperature OPIA800 OPIA801 OPIA802 OPIA803	-40° C to +115° C 0° C to +125 ° C -55° C to +115° C -55° C to +110° C
OPID804	0° C to +85° C
Isolation voltage (1 minute) OPID804 OPIA800, OPIA801, OPIA802, OPIA803	5,000 Vrms 2,500 Vrms
Lead Soldering Temperature (1/16" (1.6 mm) from case for 5 seconds with soldering iron)	260° C
Input Diode	-
Continuous Forward Current OPIA802, OPIA803, OPID804 OPIA800, OPIA801	25 mA 20 mA
Peak Forward current (1 μs pulse width, 300 pps) OPIA800, OPIA801, OPIA802, OPIA803 OPID804	1 A 40 mA
Reverse Voltage OPIA800D, OPIA801D, OPIA802D, OPIA803D, OPID804D	5 V
Power Dissipation	

Absolute Maximum Ratings ($T_A = 0^\circ C$ to 70° C unless otherwise specified)

Output IC

Vcc—Collector-Emitter Voltage OPIA800D OPIA801D OPIA802D, OPIA803D	-0.5 V to +7 V -0.5 V to +18 V -0.5 V to +15 V
Collector Current OPIA802D, OPIA803D OPIA800D, OPIA801D	8 mA 60 mA
Power Dissipation OPIA800D, OPIA801D, OPIA802D, OPIA803D	100 mW

Output NAND Gate—OPID804D

OPIA802D, OPIA803D, OPID804D

OPIA800D, OPIA801D

Vcc—Supply voltage	7 V
Enable voltage	5.5 V
High Level Output voltage	7 V
Low Level Output current	50 mA
Output Collector Power Dissipation	85 mW

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

45 mW

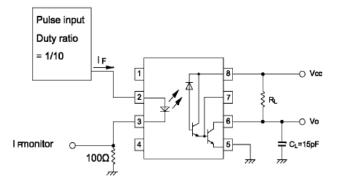
35 mW

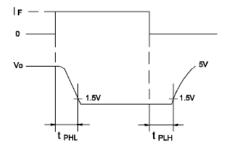
Electrical Characteristics: OPIA800D

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*6 Current transfer ratio	CTR	IF=1.6mA Vo=0.4V,Vcc=4.5V	300	1600	-	%
Logic (0) output volage	Vol	IF=1.6mA Io=4.8mA,Vcc=4.5V	-	0.1	0.4	V
Logic (1) output current	ЮН	IF=0,Vo=Vcc=7V	-	0.1	250	uA
Logic (0) supply current	ICCL	IF=1.6mA,Vo=open,Vcc=5V	-	0.5	-	mΑ
Logic (1) supply current	ССН	IF=0,V0=open,Vcc=5V	-	10	-	nA
Input forward voltage	VF	Ta=25°∁,I⊧=1.6mA	-	1.5	1.7	V
Input forward voltage temperature coefficient	∆V⊧/∆Ta	IF=1.6mA	-	-1.9	-	mV/°C
Input reverse voltage	BVR	Ta=25℃,IR=10uA	5.0	-	-	V
Input capacitance	CIN	VF =0,f=1M Hz	-	60	-	pF
*7 Leak current(input-output)	II-O	Ta=25℃,45% RH Vi₋o=3kVDC,t=5s	-	-	1.0	uA
*7 Isolation resistance(input-output)	RI-0	VI-0=500VDC	-	10 ¹²	-	Ω
*7 Capacitance(input-output)	CI-O	f=1MHz	-	0.6	-	pF

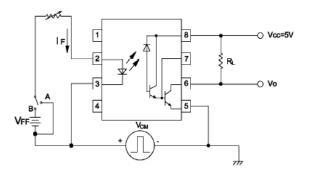
*6 Current transfer ratio is a ratio of input current and output current expressed in %.

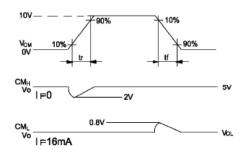
*7 Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)


Switching Characteristics: OPIA800D


Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time Output (1)>(0)	t PHL	R∟=2.2kΩ,I⊧=1.6mA	-	2	10	uS
*8 Propagation delay time Output (0)>(1)	t PLH	R∟=2.2kΩ,I⊧=1.6mA	-	7	35	uS
*9 Instantaneous common *10 mode rejection voltage "Output (1)"	СМн	IF=0,Vcm=10Vp-p,RL=2.2kΩ	-	500	-	V/uS
*9 Instantaneous common *10 mode rejection voltage "Output (0)"	CML	I⊧=1.6mA,Vcм=10Vp-p,R∟=2.2kΩ	-	-500	-	V/uS

*9 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).


*10 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).


*8 Test Circuit Propagation Delay Time

*10 Test Circuit for Instantaneous Common Mode Rejection Voltage

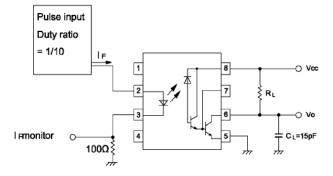
Electrical Characteristics: OPIA801D

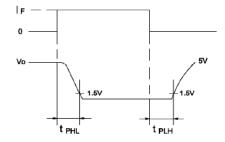
 $(T_A = 25^{\circ}C)$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*6 Current transfer ratio	CTR(1)	I_F =0.5mA, V_O =0.4V, V_{CC} =4.5V	400	1800	-	%
	CTR(2)	I _F =1.6mA, V _O =0.4V, V _{CC} =4.5V	500	1600	-	%
	V _{OL} (1)	$I_{\rm F}$ =6.4mA, $I_{\rm O}$ =1.6mA, $V_{\rm CC}$ =4.5V	-	0.1	0.4	V
Logic (0) output voltage	V _{OL} (2)	I_F =5mA, I_O =15mA, V_{CC} =4.5V	-	0.1	0.4	V
	V _{OL} (3)	I_F =12mA, I_O =24mA, V_{CC} =4.5V	-	0.1	0.4	V
Logic (1) output current	I _{он}	I _F =0, V _O =V _{CC} =18V	-	0.05	100	uA
Logic (0) supply current	I _{CCL}	I _F =1.6mA, V₀=open, V _{CC} =5V	-	0.5	-	mA
Logic (1) supply current	I _{CCH}	I_F =0, V_F =open, V_{CC} =5V	-	10	-	nA
Input forward voltage	V _F	Ta=25℃, I _F =1.6mA	-	1.5	1.7	V
Input forward voltage temperature coefficient	∆V _F /∆Ta	I _F =1.6mA	-	-1.9	-	mV/°C
Input reverse voltage	BV_R	Ta=25℃, I _R =10uA	5.0	-	-	V
Input capacitance	CIN	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25℃, 45%RH V _{I-0} =3KVDC, t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-0}	V _{I-0} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	CI-O	f=1MHz	-	0.6	-	pF

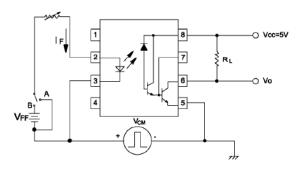
*6 Current transfer ratio is a ratio of input current and output current expressed in %.

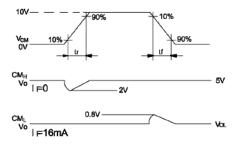
*7 Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)




Switching Characteristic	s: OPIA801E)				
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time Output $(1) \rightarrow (0)$	t _{PHL}	R _L =4.7KΩ, I _F =0.5mA	-	5	25	uS
° Output (1) \rightarrow (0)	PHL	R_L =270 Ω , I_F =12mA	-	0.3	1	uS
*8 Propagation delay time	t	R _L =4.7KΩ, I _F =0.5mA	-	10	60	uS
[°] Output (0) \rightarrow (1)	t _{₽LH}	R_L =270 Ω , I_F =12mA	-	1.5	7	uS
*9 *10 mode rejection voltage " Output (1) "	CM _H	I _F =0, V _{CM} =10V _{P-P} , R _L =2.2KΩ	-	500	-	V/uS
*9 *10 mode rejection voltage " Output (0) "	CML	I _F =1.6mA, V _{CM} =10V _{P-P} , R _L =2.2KΩ	-	-500	-	V/uS

*9 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).


*10 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).


*8 Test Circuit Propagation Delay Time

*10 Test Circuit for Instantaneous Common Mode Rejection Voltage

Electrical Characteristics: OPIA802D

 $(T_A = 0 \text{ to } +70^{\circ}\text{C} \text{ unless otherwise specified})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*5 Current transfer ratio	CTR(1)	Ta=25℃, I _F =16mA V _O =0.4V, V _{CC} =4.5V	19	40	-	%
	CTR(2)	I _F =16mA V₀=0.5V, V _{CC} =4.5V	15	43	-	%
Logic (0) output voltage	V _{OL}	*6 V _{CC} =4.5V, I _F =16mA	-	0.1	0.4	V
	I _{он} (1)	Ta=25℃, I _F =0 V ₀ =V _{CC} =5.5V	-	3.0	500	nA
Logic(1)output current	I _{он} (2)	Ta=25℃, I _F =0 V _o =V _{CC} =15V	-	0.01	1.0	uA
	I _{OH} (3)	V _{CC} =V _O =15V, I _F =0	-	-	50	uA
Logic (0) supply current	I _{CCL}	I _F =16mA V₀=open, V _{cc} =15V	-	200	-	uA
Logic(1)supply current	I _{ссн} (1)	Ta=25℃, I ₀ =0 V _F =open, V _{CC} =15V	-	0.02	1.0	uA
	I _{ссн} (2)	I₀=0 V₀=open, V _{CC} =15V	-	-	2.0	uA
Input forward voltage	VF	Ta=25℃, I _F =16mA	-	1.7	1.95	V
Input forward voltage temperature coefficient	∆V _F /∆Ta	I _F =16mA	-	-1.9	-	mV/°C
Input reverse voltage	BV _R	Ta=25℃, I _R =10uA	5.0	-	-	V
Input capacitance	CIN	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25℃, 45%RH V _{I-0} =3KVDC, t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-0}	V _{I-0} =500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	CI-0	f=1MHz	-	0.6	-	pF
Transistor current amplification factor	h _{FE}	V ₀ =5V, I ₀ =3mA	-	70	-	

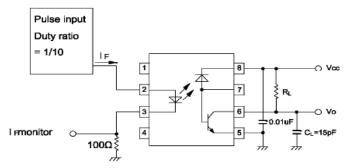
*5 Current transfer ratio is a ratio of input current and output current expressed in %.

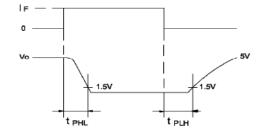
*6 lo = 2.4mA

*7 Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)

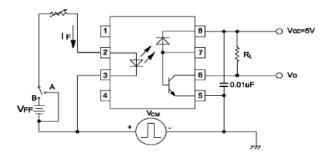
Switching Characteristics: OPIA802D

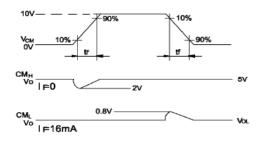
	cs: OPIA802D		$(T_A = 2)$	25°C, V _{CC}	=5V, I _F =1	6mA)
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time *9 Output $(1) \rightarrow (0)$	t _{PHL}	R_L =1.9K Ω	-	0.3	0.8	uS
*8 Propagation delay time *9 Output (0) \rightarrow (1)	t _{PLH}	R_L =1.9K Ω	-	0.3	0.8	uS
Instantaneous common *10 mode rejection voltage " Output (1) "	СМ _Н	$I_F=0, V_{CM}=10V_{P-P}$	-	1000	-	V/uS
Instantaneous common *10 mode rejection voltage " Output (0) "	CML	I_F =16mA, V_{CM} =10 V_{P-P}	-	-1000	-	V/uS
*12 Bandwidth	BW	R_L =100 Ω	-	2.0	-	MHz


*8 $R_L = 1.9k$ ohms is equivalent to on LSTTL and 5.6k ohm pull-up resistor.


*9 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).

*10 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).


*11 Bandwidth represents a point where AC input goes down by 3dB.


*9 Test Circuit Propagation Delay Time

*11 Test Circuit for Instantaneous Common Mode Rejection Voltage

Electrical Characteristics: OPIA803D

 $(T_A = 0 \text{ to } +70^{\circ}\text{C} \text{ unless otherwise specified})$

Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*5 Current transfer ratio	CTR(1)	Ta=25℃, I _F =16mA V _o =0.4V, V _{cc} =4.5V	7	40	-	%
	CTR(2)	I _F =16mA V ₀ =0.5V, V _{CC} =4.5V	5	43	-	%
Logic (0) output voltage	V _{OL}	*6 V _{CC} =4.5V, I _F =16mA	-	0.1	0.4	V
	I _{он} (1)	Ta=25℃, I⊧=0 V _o =V _{cc} =5.5V	-	3.0	500	nA
Logic (1) output current	I _{он} (2)	Ta=25℃, I⊧=0 Vo=Vcc=15V	-	0.01	1.0	uA
	I _{он} (3)	V _{cc} =V _o =15V, I _F =0	-	-	50	uA
Logic (0) supply current	I _{CCL}	I _F =16mA V _o =open, V _{cc} =15V	-	200	-	uA
Logic(1)supply current	I _{ссн} (1)	Ta=25℃, I _o =0 V _F =open, V _{cc} =15V	-	0.02	1.0	uA
	I _{CCH} (2)	I _o =0 V _o =open, V _{cc} =15V	-	-	- 0.4 500 1.0 50 -	uA
Input forward voltage	VF	Ta=25℃, I _F =16mA	-	1.7	1.95	V
Input forward voltage temperature coefficient	∆V _F /∆Ta	I _F =16mA	-	-1.9	-	mV/°C
Input reverse voltage	BV _R	Ta=25℃, I _R =10uA	5.0	-	-	V
Input capacitance	CIN	V _F =0, f=1MHz	-	60	-	pF
*7 Leak current (input-output)	I _{I-O}	Ta=25℃, 45%RH V _{I-0} =3KVDC, t=5s	-	-	1.0	uA
*7 Isolation resistance (input-output)	R _{I-0}	VI-0=500VDC	-	10 ¹²	-	Ω
*7 Capacitance (input-output)	C _{I-O}	f=1MHz	-	0.6	-	pF
Transistor current amplification factor	h _{FE}	V _o =5V, I _o =3mA	-	70	-	

*5 Current transfer ratio is a ratio of input current and output current expressed in %.

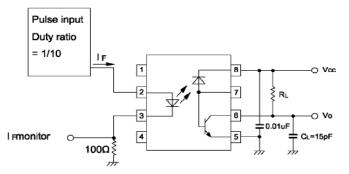
*6 lo = 1.1mA

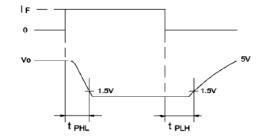
*7 Measured as 2-pin element (Short 1,2,3,4 and 5,6,7,8)

Switching Characteristics: OPIA803D

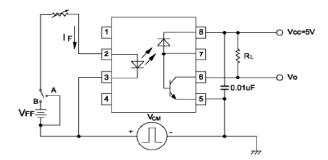
 $(T_A = 25^{\circ}C, V_{CC} = 5V, I_F = 16mA)$

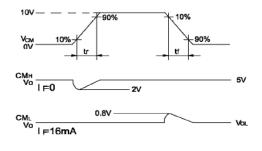
Parameter	Symbol	Conditions	MIN.	TYP.	MAX.	Unit
*8 Propagation delay time *9 Output (1) → (0)	t _{PHL}	RL=4.1KΩ	-	0.3	1.5	uS
*8 Propagation delay time *9 Output (0) → (1)	t _{PLH}	RL=4.1KΩ	-	0.4	1.5	uS
*10 *11 mode rejection voltage " Output (1) "	СМ _Н	I _F =0, V _{CM} =10V _{P-P}	-	1000	-	V/uS
*10 *11 mode rejection voltage " Output (0) "	CML	I _F =16mA, V _{CM} =10V _{P-P}	-	-1000	-	V/uS
*12 Bandwidth	BW	R _L =100Ω	-	2.0	-	MHz


*8 $R_L = 4.1k$ ohms is equivalent to on LSTTL and 6.1k ohm pull-up resistor.


*9 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (1) level (Vo>2.0V).

*10 Instantaneous common mode rejection voltage "output(1)" represents a common voltage variation that can hold the output above (0) level (Vo>0.8V).


*11 Bandwidth represents a point where AC input goes down by 3dB.


*9 Test Circuit Propagation Delay Time

*11 Test Circuit for Instantaneous Common Mode Rejection Voltage

Electric	al Characteristics: OPID804	$(T_A = 0 \text{ to } +70^{\circ}C \text{ unless otherwise specified})$								
SYMBOL	DL PARAMETER		ТҮР	MAX UNITS		TEST CONDITIONS				
Input Diod	le									
V_{F}	Forward Voltage (*4)		1.6	1.8	V	$I_F = 10 \text{ mA}, T_A = 25^{\circ} \text{ C}$				
BV_R	Reverse Breakdown Voltage		-	-	V	$I_R = 10 \ \mu A, \ T_A = 25^{\circ} \ C$				
C _{IN}	C _{IN} Input Capacitance		60	-	pf	$V_{F} = 0.0 V, f = 1M Hz$				
Output Ph	otologic									
V _{OL}	Low Level Output Voltage	-	0.4	0.6	v	I_{OL} = 13 mA, V_{CC} = 5.5 V, I_{F} = 5 mA, $V_{EH}{=}2V$				
I _{OH}	High Level Output Current	-	2	250	μA	V_{CC} =5.5 V, V_{O} =5.5 V, V_{E} =2.0 V, I_{F} =250 μ A				
I _{EH}	High Level Enable Current	-	-0.8	-	mA	$V_{CC} = 5.5 \text{ V}, V_{E} = 2.0 \text{ V}$				
I _{EL}	Low Level Enable Current	-2.0	-1.2	-	mA	$V_{CC} = 5.5 \text{ V}, \text{ V}_{E} = 2.0 \text{ V}$				
I _{CCL}	Low Level Output Current	-	13	18	mA	$V_{CC} = 5.5 \text{ V}, V_{E} = 0.5 \text{ V}, I_{F} = 10 \text{ mA}$				
I _{CCH}	High Level Output Current	-	7	15	mA	$V_{CC} = 5.5 \text{ V}, V_{E} = 0.5 \text{ V}, I_{F} = 0 \text{ mA}$				
I _{I-O}	Leakage Current	-	-	1.0	mA	$V_{I-O} = 3,000 \text{ V}, \text{ T}_A = 25^{\circ} \text{ C}, \text{ t} = 5 \text{ s},$ RH = 45%				
t _{EHL}	Enable Propagation delay "High to Low" (*8)	-	15	-		$V_{\text{EH}} = 3.0 \text{ V}, V_{\text{EL}} = 0.5 \text{ V}, \text{ R}_{\text{L}} = 350 \Omega,$				
t _{ELH}	Enable Propagation delay "Low to High" (*8)	-	40	-	ns	$I_F = 7.5 \text{ mA}, C_{LOAD} = 15 \text{ pf}$				
I _{FHL} / I _{FLH}	Hysteresis	-	0.8	-	Ratio	$V_{CC} = 5 \text{ V}, \text{ R}_{L} = 280 \Omega$				
R _{I-O}	Input-Output Isolation resistance (*5)	-	10 ¹²	-	ohm	V _{I-O} = 500 V, T _A = 25° C				
C _{I-O}	Input-Output Capacitance (*5)	-	0.6	-	pf	f = 1M Hz, T _A = 25° C				
t _{PHL &} t _{PLH}	Propagation delay "High to Low" and "Low to High" (*7)	-	45	75	ns	V_{CC} = 5 V, R _L = 350 Ω , I _F = 7.5 mA,				
t _{R &} t _F	Rise and Fall Time	-	30	-		$C_{LOAD} = 15 \text{ pf}, T_A = 25^{\circ}\text{C}$				
СМ _Н	Instantaneous common mode rejection voltage "High Output" (*9)	-	500	-	\//	V_{CM} = 10 V, R_L = 350 Ω , I_F = 0 mA, V_O = 2.0 V				
CM_{L}	Instantaneous common mode rejection voltage "Low Output" (*9)	-	-500	-	V/us	V_{CM} = 10 V, R_{L} = 350 Ω , I_{F} = 5 mA, V_{O} = 0.8 V				

Notes: (Typical values are all at VCC = 5V, $Ta = 25^{\circ}C$.

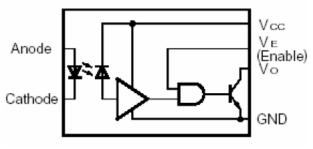
*5 Measured as 2-Pin element. Connect pins 2 and 3, connect pins 5,6,7 and 8.

*6 DC current transfer ratio is defined as the ratio of output collector current to forward bias input current.

*7 Refer to Figure 1.

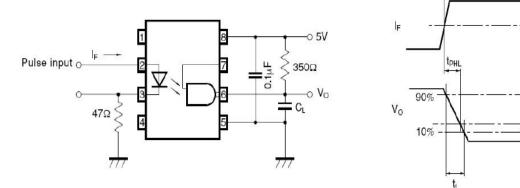
*8 Refer to Figure 2.

*9 CM_H represents a common mode voltage ignorable rise time ratio that can hold logic (1) state in output. CM_L represents a common mode voltage ignorable fall time ratio that can hold logic (0) state in output.


Recommended Operating Conditions: OPIA804D

Parameter	Symbol	Min	Max	Unit
Low level input current	IFL	0	250	uA
High level input current	IFH	7.0	15	mA
High level enable voltage	VEH	2.0	Vcc	V
Low level enable voltage	Vel	0	0.8	V
Supply voltage	Vcc	4.5	5.5	V
Fanout (TTL load)	N	-	8	-
Operating temperature	Topr	0	70	°C

Truth Table


Input	Enable	Ouput
Н	Н	L
L	Н	Н
Н	L	Н
L	L	Н

Circuit Block Diagram

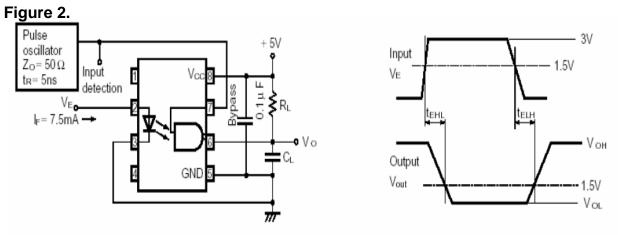
Figure 1.

Test Circuit Propagation Delay Time

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

7.5mA 3.75mA

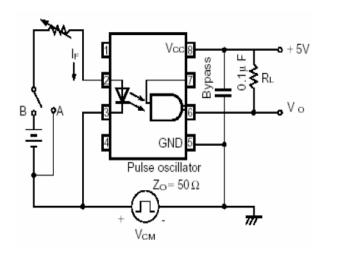
0mA

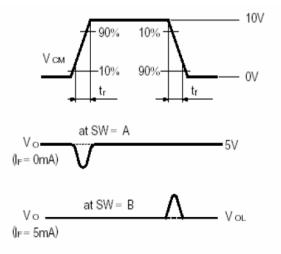

5V

1.5V

VOL

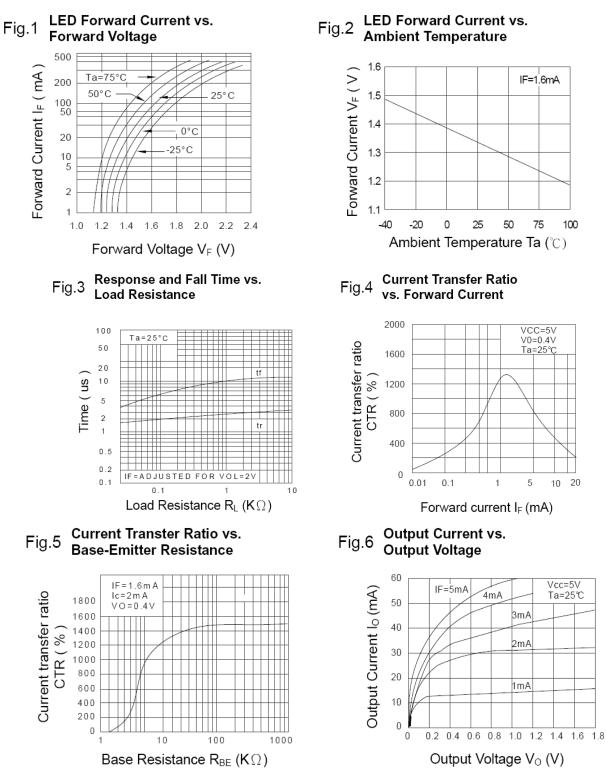
t_{PLH}

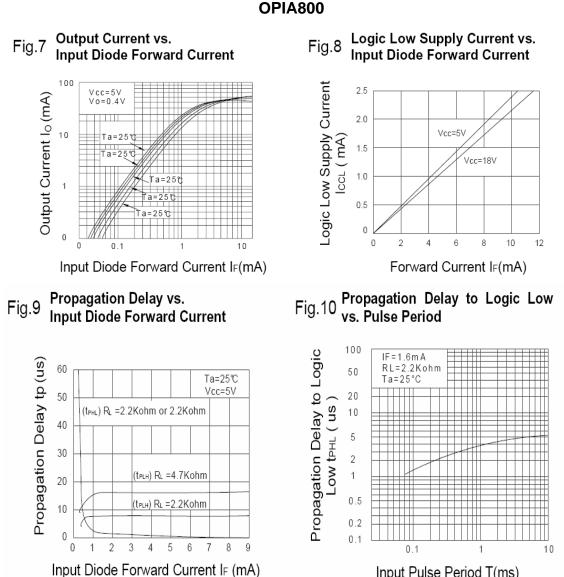




Test Circuit for Enable Propagation Delay Time

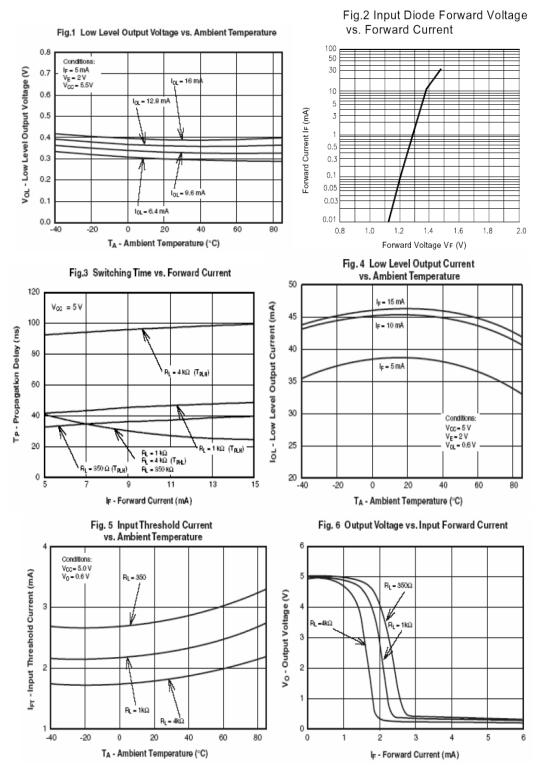
Figure 3.


Test Circuit for Instantaneous Common Mode Rejection Voltage


OPIA800

OPTEK reserves the right to make changes at any time in order to improve design and to supply the best product possible.

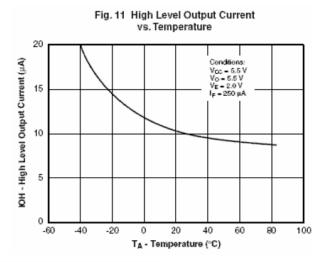
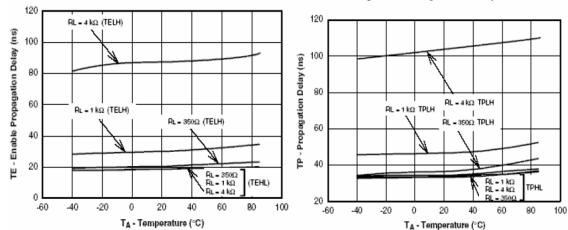
OPTEK Technology Inc. — 1645 Wallace Drive, Carrollton, Texas 75006Phone: (972) 323-2200 or (800) 341-4747FAX: (972) 323-2396 sensors@optekinc.comwww.optekinc.comwww.optekinc.com



Input Pulse Period T(ms)

OPID804

OPID804

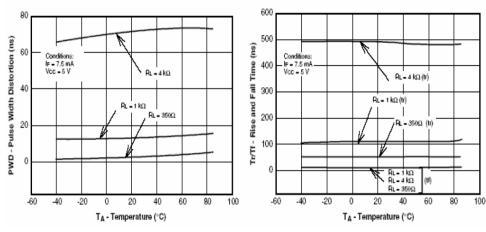


Fig. 10 Switching Time vs. Temperature

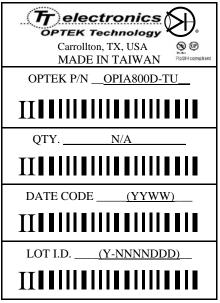
Quality / Reliability Requirements

Parameter	Failure Criteria	Conditions				
	± 10%	11 samples after 500Hrs				
HTRB D I _{C(OFF)}	0 Fail	@ VCE = 5.0VDC, Ta = 70°C				
	± 10%	50 samples after 96Hrs				
HTFB D I _{C(ON)}	0 Fail	@ Max P _D , Ta = 25°C				
MTTF @ 90% confidence	MTTF @ 90% confidence 150,000 Min.					
Moisture Sensitivity Level	MSL 1	per JDEC stnd J-STD-020B				
Lead Solderability	0 Fail	per Method 208 of MIL-STD-202.				
Glass Transition of body	125°C Min.	DSC test method				
Temperature Humidity-Bias	± 20%	85°C, 85%RH, 500Hrs, 80% min Iceo				
Temperature Cycle	± 20%	per Method 1010.7 of MIL-STD-883E				
High Temperature Storage	± 20%	85°C, 500Hrs				
Autoclave	0 Fail	$T_A = 121^{\circ}C$, Pressure = 15psi, Humidity = 100%, Time = 96Hrs				

Note: This is to be performed when a change occurs to form, fit or function.

Government and Industry Standard Compliance Requirements

European Union's Reduction of Hazardous Substances (RoHS) Directive 2002/95/EC


Label Identification:

DESCRIPTION:

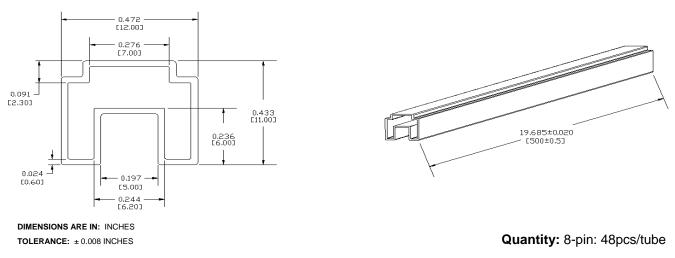
Size: 3" (7.4 cm) X 2.2" (5.5 cm) Lettering shall be black on white background. Format shall be as:

Notes:

- 1. The DATE CODE is a 4-digit code for date of manufacture where YY is the last two digits of the year, and WW is week number of manufacture.
- 2. The LOT I.D. is the manufacturing location lot identification where Y is the year of manufacture, NNNN is a sequential lot identifier, and DDD is the day of the year of manufacture. or use equivalent label format.

Packaging Information:

	k's Optocoupler	Packaging	Tube		Inner		Small Carton			Medium Carton			Large Carton		
Opte					52 x 7 x 7.5 cm		53.5 x 16 x 17.5 cm		53.5 x 30.7 x 17.5 cm			53.5 x 30.7 x 25 cm			
Part Numbers		Quantities	Qty	Weight		Weight	Qty	Weight	Gross Weight	Qty	Weight	Gross Weight	Qty		Gross Weig ht
P/H and SMD	4-PIN OPIA400D/A, OPIA410I OPIA413D/A	D/A -	100	44	3,000	1.40	12,000	6.0	6.5	24,000	12.0	12.5	36,000	18.0	18.5
	6-PIN OPIA6XXD/A Series		65	44	1,950	1.50	7,800	6.5	7.0	15,600	12.0	12.5	23,400	18.5	19.0
	8-PIN OPIA8XXD Series and OPID804D		48	44	1,440	1.44	5,760	6.0	6.5	11,520	12.0	12.5	17,290	18.0	18.5
M/F SOP	OPIA401B - OPIA404B, OPIA414B,		100	24	6,000	1.60	24,000	6.5	7.0	48,000	13.0	13.5	72,000	19.5	20.0
SSOP	4-PIN OPIA405C - OPIA409C	;	170		10,200										


P/H = Pin-Hole Packages (Referred as D = Dual-In-Line Package)

SMD = Standard Surface Mount Packages (Referred as A = 6.5mil SMD)

M/F or SOP = Mini-Flat Packages or Small Outside Packages (Referred as B = 4.40mil SMD w/ 2.54mil Lead-Spacing)

SSOP = Shrink SOP Packages (Referred as C = 3.60mil SMD with 1.27mil Lead-Spacing)

Tube Packaging Specifications (TU):

