

Revision 1.1 1 2016-02

About this document

Scope and purpose

This application note provides a brief introduction to the key features of the CCU4 module and typical
application examples. It also includes hints on its usage for users who wish to develop motor control

application with the XMC™ microcontroller family.

Intended audience

This document is intended for engineers who are familiar with the XMC™ microcontroller series.

Applicable products

 XMC1000

 XMC4000

 DAVE ™

References

The user’s manual can be downloaded from http://www.infineon.com/XMC.

DAVE™ and its resources can be downloaded from http://www.infineon.com/DAVE

XM C1 00 0, XM C4 00 0
32-bit microcontroller series for industrial applications

Capture Comp are Un it 4 (CCU4)
A P 3 2 2 8 7

Application Note

http://www.infineon.com/XMC
http://www.infineon.com/DAVE

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Table of contents

Application Note 2 Revision 1.1, 2016-02

Table of contents

1 Introduction to the CCU4 ... 4

1.1 Basic timer functions .. 4

1.2 CCU4 applications ... 6

1.3 Additional CCU4 features .. 8
1.4 CCU4 input control .. 8
1.4.1 Synchronized control of CAPCOM units on external events .. 8
1.4.2 External control basics .. 9

1.4.3 External events control ... 9

1.4.4 External event sources .. 9
1.4.5 External event input functions ... 10

1.5 Capture basics ... 10

1.6 CCU4 output control ... 11
1.6.1 External control by timer events .. 11

1.6.2 Top-level control of event request to/from a timer slice... 11
1.7 Compare basics ... 12
1.7.1 CCU4 shadow transfers ... 12

1.7.2 Shadow transfer of compare register values ... 12
1.7.3 Asymmetric compare events .. 13

1.7.4 Shadow transfers in general – compound shadow transfers .. 13
1.7.5 CCU4 output state and output pin PASSIVE/ACTIVE level control .. 13

1.7.6 How to start a timer .. 13

1.7.7 Global start of CCU4 .. 14
1.8 Example application: periodically changing the PWM duty cycle ... 15
1.8.1 Deriving the period and compare values ... 15

1.8.2 Macro and variable settings .. 16
1.8.3 XMC™ Lib peripheral configuration structure .. 16

1.8.4 Interrupt service routine function implementation .. 17
1.8.5 Main function implementation ... 17
1.8.6 Implementation to start timer by software ... 19

2 Output pattern generation with CCU4 ... 20
2.1 The principal compare blocks .. 20

2.1.1 PWM range 0 – 100% in up-count mode ... 20

2.1.2 PWM range 0 – 100% in down-count mode .. 20
2.1.3 PWM range 0 – 100% in center aligned mode .. 21

2.1.4 Compare reload with shadow transfer rules.. 21
2.1.5 CCU4 output control compare mode ... 24

2.1.6 Event request in compare mode .. 24
2.2 Example application: CCU4 as Digital-to-Analog Converter (DAC) ... 26

2.2.1 Theory of operation .. 27
2.2.2 Deriving the period value .. 28
2.2.3 Generating a look-up table ... 28

2.2.4 Circuit diagram and signals .. 30
2.2.5 Macro and variable settings .. 30
2.2.6 XMC™ Lib peripheral configuration structure .. 31
2.2.7 Interrupt service routine function implementation .. 32

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Table of contents

Application Note 3 Revision 1.1, 2016-02

2.2.8 Main function implementation ... 32

3 Advanced signal measurement .. 34

3.1 Capture mode .. 34

3.1.1 Slice timer setup in capture mode ... 34
3.1.2 The capture algorithm .. 34

3.1.3 Capture by externals events control .. 35
3.1.4 Timer inputs from capture .. 35
3.1.5 External control by capture events .. 36

3.1.6 Top-level control of event requests to/from a timer in capture mode 36

3.2 Example application: CCU4 capture mode to measure PWM duty cycle .. 37
3.2.1 Macro and variable settings .. 38

3.2.2 XMC™ Lib peripheral configuration structure .. 38
3.2.3 Interrupt service routine function implementation .. 39
3.2.4 Main function implementation ... 40

4 Event trigger delay by single shot .. 42

4.1 Introduction... 42

4.1.1 Timer setup in single shot mode .. 42

4.1.2 Using timer single shot delay for noise rejection ... 43
4.1.3 Timer-start in single shot mode by external event control ... 43
4.1.4 Timer inputs for start and stop facilities .. 43

4.1.5 External control by single-shot events ... 44

4.1.6 Top-level control of event request to/from a timer in single-shot mode 44

4.2 Example use case: triggering ADC conversion using CCU4 single shot ... 45

4.2.1 Macro and variable settings .. 45
4.2.2 XMC™ Lib peripheral configuration structure .. 46

4.2.3 Interrupt service routine function implementation .. 49

4.2.4 Main function implementation ... 49

5 Revision history .. 52

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 4 Revision 1.1, 2016-02

1 Introduction to the CCU4
The CAPCOM4 (CCU40/../43) is a multi-purpose timer unit for signal monitoring/conditioning and Pulse

Width Modulation (PWM) signal generation. It is designed with repetitive structures and multiple timer slices
that have the same base functionality. The internal modularity of the CCU4 translates into a software
friendly system for fast code development and portability between applications.

The following image shows the main functional blocks of one of the four CC4y slices on a CCU4x.

Figure 1 The timer slice block diagram

1.1 Basic timer functions

Each CCU4x has four 16-bit timer slices CC4y (y = 3-0) which can be concatenated up to 64-bits. Each slice
has:

 1 timer

 4 capture registers

 1 period register

 1 compare register

Both the period and compare registers have shadow registers. Each slice can work independently in
different modes, but they can also be synchronized, even to other CCU4x slices. They perform
multichannel/multi-phase pattern generation with parallel updates.

Each timer slice can be configured to handle the basic functions illustrated in Figure 2 below.

DEV_CCU4_00_Basics_Slice.vsd

CCU4x
x = 0 - 3

Multi Channel

Pattern
Generation

Input Matrix

Function Control
by 16 External
 Event Sources

Status Bit
Output Pin

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice y

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

Service

Request Lines

DMA

Reset- / Power

Control

Clock Control

y = 0 - 3

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 5 Revision 1.1, 2016-02

Figure 2 Basic functions of each timer slice

DEV_CCU4_00_Basics.vsd

Timer Compare Capture

Single ShotCounter Compare

Option: Up/Down Count Control Center Aligned Mode

Symmetric or Asymmetric PWM

Start Stop

6

5

4

3

2

1

0

T1 T2 T3 T1

Count Input:

t1 – t0

t0 t1

T1 T2

Edge Aligned Mode

PWM generation
Free Running Mode

Option: Reset / Gate

Reset (Clear):

Gate Input:

Time Time Time

Time

TimeTime

InterruptInterrupt

0

Period

Capture!Capture!

Period

Period

t0 t1

t1 – t0 = <period>
Count Down

Count Up

Count Period

PWM:

PWM:

Compare

Compare

Level (I)

Compare Level (II)

Symmetric

Asymmetric

Time Measurement

0

0 0

U/D Control
Input:

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 6 Revision 1.1, 2016-02

Figure 3 The four capture/compare unit CCU40-CCU43 basic system for CAPCOM4

1.2 CCU4 applications

Below are some typical application examples that demonstrate the various capabilities of the CAPCOM
timer slices of the CCU4:

1. Simple time base with synchronization option by external events control

2. Power conversion system (PFC, SMPS) using single shot mode

The CAPCOM4 ”RACK”

DEV_CCU4_00_CCU4xCC4y_Slices_rev1.vsd

Period Shadow PRS3

Period PR3

Timer T43

Compare CR3

CC40

Compare Shadow CRS3 Comp.

Comp.

Comp.

Comp.

zero

one
0

1

2

3

4
 x

 C
a

p
tu

re
4

 x
 C

a
p

tu
re Period Shadow PRS3

Period PR3

Timer T43

Compare CR3

CC40

Compare Shadow CRS3 Comp.

Comp.

Comp.

Comp.

zero

one
0

1

2

3

4
 x

 C
a

p
tu

re
4

 x
 C

a
p

tu
re Period Shadow PRS3

Period PR3

Timer T43

Compare CR3

CC40

Compare Shadow CRS3 Comp.

Comp.

Comp.

Comp.

zero

one
0

1

2

3

4
 x

 C
a

p
tu

re
4

 x
 C

a
p

tu
re

CCU40

CCU41

CCU42

CCU43

-
-

-
R

e
s
e

t
/
P

o
w

e
r

C
o

n
tr

o
l
-

-
-

C
lo

c
k
 C

o
n

tr
o

l
-

-
-

S
e

rv
ic

e
 R

e
q

u
e

s
t
L

in
e

s
 -

 -
 -

 D
M

A
 -

 -
 -

Timer Concatenation

Timer Concatenation

Timer Concatenation

 Switch

Control
G
lo
ba

l C
on

tro
l

Period Shadow PRS0

Period PR0

Timer T40

Compare CR0

CC40

Compare Shadow CRS0

PWM 0

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice 0

Prescaler

40

Multi Channel

Pattern / Update /

Transfer Request

INPUT0

Function Control
by 16 External
 Event Sources

STATUS0

OUTPUT40

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

PRS1

PR1

T41

CR1

CC41

CRS1

PWM 1

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice 1

CC41PSC

Multi Channel

MCI1 / PS1 /

CCU40MCSS

INPUT1

CCU40IN1
[P : A]

CCU40ST1

CCU40OUT41

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

CC41SR
[3 : 0]

PRS2

PR2

T42

CR2

CC42

CRS2

PWM 2

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice 2

CC42PSC

Multi Channel

MCI2 / PS2 /

CCU40MCSS

INPUT2

CCU40IN2
[P : A]

CCU40ST2

CCU40OUT42

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

CC42SR
[3 : 0]

PRS3

PR3

T43

CR3

CC43

CRS3

PWM 3

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice 3

CC43PSC

Multi Channel

MCI3 / PS3 /

CCU40MCSS

INPUT3

CCU40IN3
[P : A]

CCU40ST3

CCU40OUT43

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

CC43SR
[3 : 0]

 I
n

te
rf

a
c
e

 t
o

S

y
s
te

m
 T

o
p
-L

e
v
e

l
In

te
rc

o
n

n
e

c
ti
o

n

 M

a
tr

ix

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 7 Revision 1.1, 2016-02

3. Feedback sensor event monitoring and revolution by capture, count and position interface facilities
(POSIF)

4. Multi-signal pattern on output pins, created by parallel multi-channel control
5. Drive & motor control with multi-phase system, phase adjustment and trap handling
6. 3-Level PWM for inverters and direct torque control (DTC) of AC motors and high precision synchronous

motors

7. External events control of timer input functions by requests from external system units
8. Dithering PWM or period for DC-level precision, reduced EMI, fractional split of periods into micro step
9. Auto adjusting time base by floating prescaler for adaption of time measurement to a wide range of

dynamics

The same applications are illustrated in the following figure:

Figure 4 Some features and applications illustrating an CAPCOM Unit (CCU) features

Multi Channel Control
- Parallel Control of Output Pins by single pattern

 Stall Detection (via BEMF)

 Bipolar Stepper with Micro Steps:

Multi Phase Control
- 3-Phase Motor Control

- N Phase Power Supplies

- Asymmetric PWM (CCU8x) for Phase Shift

- Trap

Simple Time Base

- Interrupt Request on the Period Match

- Synchronize on External Event Control

Single Shots in PFC & SMPS Quadrature Encoder
- Event Counting

- Up/Down Counting

- Revolution Monitoring

- Velocity on Tick/ Velocity on Time Stamp

- Tick Compare

Encoder

CCU4/8POSIF

3-Level PWM

Event

- For Higher Resolution, EMC quality & Efficiency

Compare 3

Asymm. Comp. 2

Compare 1

PWM 3

Asymm. PWM 2

PWM 1

Dithering

- EMI Reduction by spectrum broadening

- Fractional Period Time Division into Micro Ticks

- DC-Level average precision (from 16 to 20 bits)

 E.g: How to achieve an average value of 28,9H

 by a Buck Converter with 200 kHz sampling

 rate, performing 10 bit DC-Level on average

Event Controlled Timer Functions

- Synchronous Control of Timers by other Units

Vin Vout
L

C C

IL ID

D

IL ID

I

Ton Toff

T

R
e

je
c
t

R
e

je
c
t

- Comprehensive Single Shots Handling

Auto Adjusting Time Base

DEV_CCU4_00_Use_Cases.vsd

- Adaption to unknown measurement dynamics

- Reduction of the SW read activities

- Floating Prescaler Mode, individual in All Timers

Polarity2

PWM2

Polarity1

PWM1

timer count Capture

event

PS Init

<period>

zero

T 2T 4T

<timer>

T 2T <timer>/<period+1> x 8T

tcapture
PS Init

T = 2
<PSIV>

 x (<period>+1) / fCCU; <PSIV> = 0-15

t

next tcapture

1 2 3

54

7 8 9

6

GPIO

ERU1

POSIF

CAN

CCU4x

USIC

ADC

CCU8x

SCU

start
stop
capture 0,1
capture 2,3
gate clock
up/down
load Timer
count
override bit
trap
modulate

External
Event

Sources

Event0
Detect

Event0

true

false

Function
of Inputs
Select

Event
Source
Select

3 Events

Control Connect

H L

Target
Timer
Slice

In
p

u
ts

Up to 3 Event
Profiles Select
Edge or Level

2
1
0

Vin

PWM

Vout
L

Dither

CD

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 8 Revision 1.1, 2016-02

1.3 Additional CCU4 features

Table 1 Summary of additional CCU4 features

Features Operation

Single shot

If a slice is set in timer single shot mode (CC4yTC.TSSM), the timer and its run bit

(TRB) are cleared by the period/one match that occurs next to when the TSSM bit
was set. As a result, the timer is stopped.

Timer concatenation Any timer slice can be concatenated with an adjacent timer slice by setting

CC4yTC.TCE = 1.

Dithering PWM It can be used with very slow control loops that cannot update the

period/compare values in a fast manner. The precision can be maintained on a

long run.

Dithering period time Micro ticks can be used in the Interpolation between sensor pulses to achieve

higher precision position monitoring.

Floating prescaler By successive changing of the timer clock frequency periodically (no

compare/capture event), the dynamic range is autonomously adapted to any

time length.

External modulation The output pin signal of a slice is modulated by external events.

Output state override An external input signal source may override a slice’s status bit (CC4yST) on an

edge event by other external input signal source.

Multi-channel control The output state of timer slices PWM signal(s) can be controlled in parallel by a

single pattern.

External load Each slice of CCU4 allows the user to select an external signal as a trigger for

reloading the timer value with current compare/period register value.

Trap function This function forces the PWM output into a predefined state, preset in the

active/passive PSL bit. The power device can then be safely switched off.

1.4 CCU4 input control

1.4.1 Synchronized control of CAPCOM units on external events

External events control distribution to CCUs (including CCU8) starts for advanced applications with
synchronized timer control. For example, in motor drive and power control, where 3-level inverters might
require 12 synchronized PWMs. The limits are the realizable topography or timing pattern complexity range.

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 9 Revision 1.1, 2016-02

1.4.2 External control basics

The input functions of a slice are controlled by external sources. The external source(s), active mode(s) and
input function(s) should be mapped to the 3 inputs of the slice in the CC4yINS and CC4yCMC registers.
Function mode extension alternatives can be added by selecting them in the CC4yTC timer slice control

register.

1.4.3 External events control

An external event control request can be an edge or level signal from a peripheral unit or a GPIO. It can be
linked to the input selection stage of a CCU4xCC4y slice by using a comprehensive connection matrix. A slice

with any of its 3 events setup detects a considered source-event-input profile and can be function controlled

“remotely” this way.

Figure 5 External control of timer input functions on events by an external units

1.4.4 External event sources

CCU4xCC4y input functions can be linked to external trigger requests from sources such as: GPIO, ERU,

POSIF, CAN, CCU4x, USIC, ADC, CCU8x or SCU. Signal connections are given by the top-level interconnect
matrix and the CC4yINS input select vector. The CC4yCMC register is used for function selection.

DEV_CCU4_00_Basics_External_Events_Control_Komplex.vsd

Multi Channel

Pattern
Generation

Input Matrix

Function Control
by 16 External
 Event Sources

Status Bit
Output Pin

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice y

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

Service

Request Lines

DMA

Reset- / Power

Control

Clock Control

y = 0 - 3

CCU4x
x = 0 - 3

External

Event

Sources

Event0
Detect

Event0

true

false

Function

of Inputs

Select

Event

Source

Select

3 Events

Control Connect Matrix

H

Target

Timer

Slice

In
p

u
ts

Up to 3 Events

Profile Selectable

Edge or Level

2
1
0

L
Edge signal to start the timer

Edge signal to stop the timer

Edge signal to capture into reg. 0 & 1

Edge signal to capture into reg. 2 & 3

Level signal to gate the timer clock

Level signal to up/down count direction

Edge signal to load the Timer

Edge signal to count events

Status bit override with an input value

Level signal to trap for fail-safe op.

Level signal to modulate the output

Timer Input Functions

that may be controlled

by the Events 0, 1 or 2

Period Reg.

Timer Reg.

Compare Reg.

GPIO

ERU1

POSIF

CAN

CCU4x

USIC

ADC

CCU8x

SCU

 - - -

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 10 Revision 1.1, 2016-02

1.4.5 External event input functions

There are 11 timer input functions (e.g. ‘Start the Timer ’) each controllable by external events via 3
selectable input lines with configurable source-event profile conditions to the timer slices CC4y (y=0-3) of a
CCU4x unit for start, stop, capture0-3, gate, up/down, load, count, bit override, trap and modulate output

control.

There are also some extended input functions in the register CC4yTC for extended start, stop with
flush/start, flush/stop or flush or extended capture mode. Together, with a read access register (ECRD),
these simplify the administration of capture registers and full-flags when more than one slice is used in
capture mode.

1.5 Capture basics

Each CAPCOM4 (CCU4x) has 4 timer-slices. Each slice has 4 capture value registers, split into 2 pairs that
capture on selected event control input: Capt0 or Capt1, according to 2 possible pair schemes: either as 2
pairs for different events respectively to Capt0 and Capt1, or cascaded for the same event via Capt1.

Figure 6 Timer slice with four capture registers

DEV_CCU4_00_Basics_Slice_Capture.vsd

Multi Channel

Pattern
Generation

Input Matrix

Function Control
by 16 External
 Event Sources

Status Bit
Output Pin

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice y

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

Service

Request Lines

DMA

Reset- / Power

Control

Clock Control

y = 0 - 3

CCU4x
x = 0 - 3

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 11 Revision 1.1, 2016-02

Figure 7 Basic capture mechanism – setup in two possible scheme alternatives

1.6 CCU4 output control

1.6.1 External control by timer events

A timer event can trigger external actions via the top-level interconnect matrix or on request for an

interrupt. Each CAPCOM4 has four service request lines and each slice has a dedicated output signal
CC4ySR[3…0], selectable to a line by CC4ySRS. This means timer slice events can request direct peripheral
actions or an interrupt.

1.6.2 Top-level control of event request to/from a timer slice

Top-level control also means conditional control of event requests between a slice and other action

providers. The Event Request Unit (ERU1) and the top-level interconnect matrix can combine, control and

link event signals according to user defined request-to-action event patterns. For example, they can invoke
I/O states, time windowing etc.

DEV_CCU4_00_Capture_Logic.vsd

Capture Inputs:

CCycapt1

CCycapt0

CC4yC3V CC4yC2V

CC4yC1V CC4yC0V

T4y

CC4yC3V CC4yC2V

CC4yC1V CC4yC0V

T4y

Capture Input:

CCycapt1

fCCU4

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

fCCU4

Capture reg. 3: Capture reg. 2:

Capture reg. 1: Capture reg. 0:

Capture reg. 3: Capture reg. 2:

Capture reg. 1: Capture reg. 0:

Capture

on

Different

Events

Capture

on Same

Event

and Edge

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 12 Revision 1.1, 2016-02

1.7 Compare basics

Figure 8 Timer slice compare registers and PWM related blocks

1.7.1 CCU4 shadow transfers

Whatever the slice configuration, whatever level of complexity, whatever the signal patterns, all the timer

function parameters of the CAPCOM4 timers are assured coherent updates by hardware. They are updated
from values in the shadow registers that, on a global preset request, are transferred simultaneously to all

function registers at a period match or one match.

1.7.2 Shadow transfer of compare register values

The compare values that are targeted for an update operation have to be written into both the CC4yCRS

shadow registers and the corresponding slice transfer set enable bits. For example, SySE in GCSS must be
preset before period match (in edge aligned mode) or period/one match (in center aligned mode) for an
update operation to be completed.

Figure 9 Basic shadow transfer mechanism for compare registers values

DEV_CCU4_00_Basics_Slice_Compare.vsd

Multi Channel

Pattern
Generation

Input Matrix

Function Control
by 16 External
 Event Sources

Status Bit
Output Pin

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice y

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

Service

Request Lines

DMA

Reset- / Power

Control

Clock Control

y = 0 - 3

CCU4x
x = 0 - 3

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

DEV_CCU4_00_Shadow_Transfer_with_Compare_Registers.vsd

Shadow TrAnsfer

on Period-Match

and REquest is

cleared by HW

CC40CR = 20

CC41CR = 40

CC42CR = 60

CC40CR = 10

CC41CR = 20

CC42CR = 30

HW

Shadow transfer mechanism:

Coherent update of compare registers by HW.

SW can write asynchronously to the timer state. After all values are updated the shadow transfer is

requested by setting SySE. At every Period-Match or One-Match event the HW can perform the

transfer and clears the request.

No Shadow

Transfer since

 No request

 CC40CRS = 20

 CC41CRS = 40

 CC42CRS = 60

 SySE = 1

SW

 CC40CRS = 10

 CC41CRS = 20

 CC42CRS = 30

 SySE = 1

SW

No Shadow

Transfer since

 No request

Shadow TrAnsfer

on One-Match

and REquest is

cleared by HW

Timer CC4y

HW

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 13 Revision 1.1, 2016-02

1.7.3 Asymmetric compare events

The benefit of shadow transfers on both period match and one match is to allow asymmetric compare
events to be provided in center-aligned mode. The real-time conditions are similar to handling shadow
value updates in edge-aligned mode.

Figure 10 Asymmetric compare by shadow transfers on both period match and one match

1.7.4 Shadow transfers in general – compound shadow transfers

Beside the compare register (CR) values, there are also the timer period register (PR) and the PWM
active/passive control bit (PSL) that are updated simultaneously on the SySE flag. Dithering or floating

prescaler values are able to get a simultaneous update via the SyDSE and SyPSE request flags.

1.7.5 CCU4 output state and output pin PASSIVE/ACTIVE level control

The PASSIVE/ACTIVE state of a slice’s internal output CCUxSTy (i.e. status bit CC4yST) is controlled by the
compare level and the external modulation mode. The CC4yPSL passive/active bit PSL controls whether the

external output pin state CCU4xOUTy (e.g. the PWM) is passive low / active high or vice-versa.

1.7.6 How to start a timer

There are two ways to start a timer:

 Directly by software, by setting the Timer Run Bit Set (TRBS)

 Indirectly by hardware when a specific event occurs in an external unit as determined by the top-level
connection matrix for external events control for CAN, ADC, USIC, IO, CCU4/8, ERU1, POSIF etc.

DEV_CCU4_00_Basics_Asymmetric_PWM_by_SW_Center_Aligned.vsd

Asymm. Comp. (|)

(Symm. Compare)

Asymm. PWM

Symmetric PWM

CR value1

(y = 0 - 3)

time

Phase Shift

Asymm. Comp. (||)

Period (PR)

Timer (TRy)

 CRS = value2
 SySE = 1
 by Service Req.

SW

 CR = value2
 by Shadow

Transfer

HW

CR value2

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 14 Revision 1.1, 2016-02

1.7.7 Global start of CCU4

To achieve a synchronized start, the CCU4 uses either:

 A global start by software, with CCUx global start control bits in the CCUCON global start control register

 A global start by hardware, indirectly with external events control using the CC4yINS and CC4yCMC

registers

The global start command enables almost an unlimited number of timers to be started, independently of
the CAPCOM unit they belong to. The global start means that the timers are synchronized and all timings can
be controlled in parallel, with many different kinds of generated output patterns.

Figure 11 External event control with global start command

DEV_CCU4_00_StartTimer.vsd

CC40

CC41

CC42

CC43

CC40INS Select Considered

Source-Event Profiles

CCUCON

GSC40GSC41

CCU40

CC80

CC81

CC82

CC83

CCU80

GSC80

CC40CMC

This mechanism allows synchronous start of different timer slices within

one CCU but also different slices from different CCUs

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 15 Revision 1.1, 2016-02

1.8 Example application: periodically changing the PWM duty cycle

This example uses a slice of the CCU4 (CCU40 Slice 0) to generate a PWM signal (output to P0.0). The CCU4
slice is configured in edge-aligned mode with a frequency of 1 Hz. An interrupt is generated on every
compare match event, which alternates the PWM duty cycle between 33.3% and 66.7%. The CCU4 slice is

started by an external start event on Event 0 connected to SCU.GSC40. It is targeted for the XMC1200.

Figure 12 Example: periodic duty cycle update

1.8.1 Deriving the period and compare values

The clock relationship between 𝑓𝑃𝑊𝑀, 𝑓𝑡𝑐𝑙𝑘 and 𝑓𝑐𝑐𝑢4 is calculated as shown below:

 𝑓𝑐𝑐𝑢4 is the frequency of the CCU4 peripheral clock . It is the input to the PWM module.

 𝑓𝑡𝑐𝑙𝑘 is the timer resolution used to increment a timer counter. Each timer slice supports a dedicated
prescaler value selector. In this example, a prescaler factor of 10 is chosen. This results in a prescaler

value of 1024, resulting in a 16 uS resolution.

 In order for, 𝑓𝑃𝑊𝑀 (frequency of the PWM signal) to be 1 Hz, the CCU4_CC40.PRS register is loaded with
the value 62499.

Timer frequency: 𝑓𝑡𝑐𝑙𝑘 =
𝑓𝑐𝑐𝑢4

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

Period value: 𝐶𝐶𝑈4𝐶𝐶40. 𝑃𝑅𝑆 =
𝑓𝑡𝑐𝑙𝑘

𝑓𝑃𝑊𝑀
 − 1

Compare value: 𝐶𝐶𝑈4𝐶𝐶40. 𝐶𝑅𝑆 = (1 − 𝐷𝐶) ∗ (𝑃𝑅𝑆 + 1)

Table 2 Calculated prescaler factor, period and compare values

Type Calculated value

Prescaler value 210 = 1024

Period @1Hz frequency 62499

Compare value @33.33% DC 41668

Compare value @66.67% DC 20831

CCU40.CC40

SCU.GSC40

#1

CMUS

Compare Match

CCU40.OUT0, P0.0

#2

Period (PR)

CR (33.33% DC)

CR (66.67% DC)

#1: SCU.GSC40 is connected to the
input of Event 0. It is set high by
software and starts CCU40.40 timer on
an external start event on Event 0.

#2 – An interrupt is triggered on every
compare match event. In this ISR, the
compare value is updated between
33.33% and 66.67% duty cycle.

Note: New compare value is updated at
each period match event for this
example.

SLICE Configuration:
XMC1200
System Clock = 32MHz
Peripheral Clock = 64MHz
PWM frequency = 1Hz
Mode = Edge aligned

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 16 Revision 1.1, 2016-02

1.8.2 Macro and variable settings

XMC™ Lib project includes:
#include <xmc_ccu4.h>

#include <xmc_gpio.h>

#include <xmc_scu.h>

Project macro definitions:
#define MODULE_PTR CCU40

#define MODULE_NUMBER (0U)

#define SLICE0_PTR CCU40_CC40

#define SLICE0_NUMBER (0U)

#define SLICE0_OUTPUT P0_0

Project Variables Definition:
volatile uint8_t count=1;

uint16_t comparevalue[]=

{

 /* Calculated based on PCLK of 64MHz */

 20831U, /* 66.67% duty cycle */

 41668U /* 33.33% duty cycle */

};

1.8.3 XMC™ Lib peripheral configuration structure

XMC™ System Clock Unit (SCU) configuration:

The PWM period is calculated based on PCLK which is equivalent to 64 MHz.

XMC_SCU_CLOCK_CONFIG_t clock_config =

{

 .pclk_src = XMC_SCU_CLOCK_PCLKSRC_DOUBLE_MCLK,

 .rtc_src = XMC_SCU_CLOCK_RTCCLKSRC_DCO2,

.fdiv = 0,

.idiv = 1,

};

XMC™ Capture/Compare Unit 4 (CCU4) configuration:
XMC_CCU4_SLICE_COMPARE_CONFIG_t SLICE0_config =

{

 .timer_mode = (uint32_t) XMC_CCU4_SLICE_TIMER_COUNT_MODE_EA,

 .monoshot = (uint32_t) false,

 .shadow_xfer_clear = (uint32_t) 0,

 .dither_timer_period = (uint32_t) 0,

 .dither_duty_cycle = (uint32_t) 0,

 .prescaler_mode = (uint32_t) XMC_CCU4_SLICE_PRESCALER_MODE_NORMAL,

 .mcm_enable = (uint32_t) 0,

 .prescaler_initval = (uint32_t) 10, /* in this case, prescaler = 2^10 */

 .float_limit = (uint32_t) 0,

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 17 Revision 1.1, 2016-02

 .dither_limit = (uint32_t) 0,

 .passive_level = (uint32_t) XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_LOW,

 .timer_concatenation = (uint32_t) 0

};

XMC_CCU4_SLICE_EVENT_CONFIG_t SLICE0_event0_config=

{

 .mapped_input = XMC_CCU4_SLICE_INPUT_I, /* mapped to SCU.GSC40 */

 .edge = XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_RISING_EDGE,

 .level = XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH,

 .duration = XMC_CCU4_SLICE_EVENT_FILTER_3_CYCLES

};

XMC™ GPIO configuration:
XMC_GPIO_CONFIG_t SLICE0_OUTPUT_config =

{

 .mode = XMC_GPIO_MODE_OUTPUT_PUSH_PULL_ALT4,

 .input_hysteresis = XMC_GPIO_INPUT_HYSTERESIS_STANDARD,

 .output_level = XMC_GPIO_OUTPUT_LEVEL_LOW,

};

1.8.4 Interrupt service routine function implementation

The CCU40 interrupt handler function is created to periodically modify the timer compare match values to
achieve a PWM duty cycle between 33.3% and 66.7%.

void CCU40_0_IRQHandler(void)

{

 /* Clear pending interrupt */

 XMC_CCU4_SLICE_ClearEvent(SLICE0_PTR,XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP);

 /* Set new duty cycle value */

 XMC_CCU4_SLICE_SetTimerCompareMatch(SLICE0_PTR, comparevalue[count]);

 count++;

 if(count==2)

 {

 count=0;

 }

 /* Enable shadow transfer for the new PWM value update */

 XMC_CCU4_EnableShadowTransfer(MODULE_PTR, XMC_CCU4_SHADOW_TRANSFER_SLICE_0);

}

1.8.5 Main function implementation

Before the start and execution of the timer slice software for the first time, the CCU4 must have been
initialized appropriately using the following sequence:

 Set up the system clock

 /* Ensure clock frequency is set at 64MHz (2*MCLK) */

 XMC_SCU_CLOCK_Init(&clock_config);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 18 Revision 1.1, 2016-02

 Enable clock, enable prescaler block and configure global control
 /* Enable clock, enable prescaler block and configure global control */

 XMC_CCU4_Init(MODULE_PTR, XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR);

 /* Start the prescaler and restore clocks to slices */

 XMC_CCU4_StartPrescaler(MODULE_PTR);

 /* Start of CCU4 configurations */

 /* Ensure fCCU reaches CCU40 */

 XMC_CCU4_SetModuleClock(MODULE_PTR, XMC_CCU4_CLOCK_SCU);

 Configure slice(s) functions, interrupts and start-up
 /* Initialize the Slice */

 XMC_CCU4_SLICE_CompareInit(SLICE0_PTR, &SLICE0_config);

 /* Program duty cycle = 33.33% at 1Hz frequency */

 XMC_CCU4_SLICE_SetTimerCompareMatch(SLICE0_PTR, comparevalue[count]);

 XMC_CCU4_SLICE_SetTimerPeriodMatch(SLICE0_PTR, 62499U);

 /* Enable shadow transfer */

 XMC_CCU4_EnableShadowTransfer(MODULE_PTR, \

 (uint32_t)(XMC_CCU4_SHADOW_TRANSFER_SLICE_0| \

 XMC_CCU4_SHADOW_TRANSFER_PRESCALER_SLICE_0));

 /* Enable External Start to Event 0 */

 XMC_CCU4_SLICE_ConfigureEvent(SLICE0_PTR, \

 XMC_CCU4_SLICE_EVENT_0, &SLICE0_event0_config);

 XMC_CCU4_SLICE_StartConfig(SLICE0_PTR, XMC_CCU4_SLICE_EVENT_0, \

 XMC_CCU4_SLICE_START_MODE_TIMER_START_CLEAR);

 /* Enable compare match events */

 XMC_CCU4_SLICE_EnableEvent(SLICE0_PTR, XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP);

 /* Connect compare match event to SR0 */

 XMC_CCU4_SLICE_SetInterruptNode(SLICE0_PTR, \

 XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP, XMC_CCU4_SLICE_SR_ID_0);

 /* Set NVIC priority */

 NVIC_SetPriority(CCU40_0_IRQn, 3U);

 /* Enable IRQ */

 NVIC_EnableIRQ(CCU40_0_IRQn);

 /* Enable CCU4 PWM output */

 XMC_GPIO_Init(SLICE0_OUTPUT, &SLICE0_OUTPUT_config);

 /* Get the slice out of idle mode */

 XMC_CCU4_EnableClock(MODULE_PTR, SLICE0_NUMBER);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Introduction to the CCU4

Application Note 19 Revision 1.1, 2016-02

 Start timer running
 /* Create a low to high transition on SCU.GSC40 to start timer */

 XMC_SCU_SetCcuTriggerLow(XMC_SCU_CCU_TRIGGER_CCU40);

 XMC_SCU_SetCcuTriggerHigh(XMC_SCU_CCU_TRIGGER_CCU40);

1.8.6 Implementation to start timer by software

Alternatively, the timer can be started directly by software, setting the Timer Run Bit Set (TRBS).
 /* Start the TImer*/

 XMC_CCU4_SLICE_StartTimer(SLICE0_PTR);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 20 Revision 1.1, 2016-02

2 Output pattern generation with CCU4

2.1 The principal compare blocks

Figure 13 The compare blocks

2.1.1 PWM range 0 – 100% in up-count mode

The up-count mode of the compare rule is very simple: As long as the timer register value is equal or greater
than the compare register value, the status bit (CCST or even named CCU4xSTy) is set to one. Otherwise it is

set to zero. The dynamic PWM range can be set to any value from 0% to 100%.

Figure 14 PWM Range in up-count mode

2.1.2 PWM range 0 – 100% in down-count mode

The down-count mode of the compare rule is the same as in up-count mode: When the timer register value
is equal or greater than the compare register value, the status bit (CCST, CCU4xSTy) is set to one. Otherwise
it is set to zero. The dynamic PWM range can be set to any value from 0% to 100%.

DEV_CCU4_01_Compare_Principle_Blocks.vsd

PRy

TRy

CRy

y=0-3 Period Register

Compare

Compare Register

DEV_CCU4_01_Compare_PWM_Range_Edge_Aligned_in_Up_Count_Mode.vsd

Status Bit – (PWM)

time

Compare Level

Period (PR)

Timer (TR)

0 < (CR) < (PR)

(CR) > (PR)

(CR) == 0

Duty Cycle = 100 %

Duty Cycle = 0 %

Duty Cycle

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 21 Revision 1.1, 2016-02

Figure 15 PWM range in down-count mode

2.1.3 PWM range 0 – 100% in center aligned mode

The center-aligned mode of the compare rule is the same as up or down count modes: when the timer
register value is equal or greater than the compare register value, the Status Bit (CCST or CCU4xSTy) is set to

one. Otherwise it is set to zero. The PWM value can be varied from 0% to 100%.

Figure 16 PWM range 0% - 100% in center aligned mode

2.1.4 Compare reload with shadow transfer rules

A reload of registers by shadow transfers from the associated shadow registers occurs according to the

following rules:

 In the next clock cycle after a period match while counting up

 In the next clock cycle after a one match while counting down

 Immediately if the timer is stopped and a transfer request was triggered

DEV_CCU4_01_Compare_PWM_Range_Edge_Aligned_in_Down_Count_Mode.vsd

time

Period (PR)

(CR) > (PR)

(CR) == 0

Duty Cycle = 100 %

Duty Cycle = 0 %

Duty Cycle

Status Bit – (PWM)

Compare Level

Timer (TR)

0 < (CR) < (PR)

DEV_CCU4_01_Compare_PWM_Duty_Cycle_Range_Center_Aligned_Mode.vsd

time

Period (PR)

(CR) > (PR)

(CR) == 0

Duty Cycle = 100 %

Duty Cycle = 0 %

Duty Cycle

Status Bit – (PWM)

Compare Level

Timer (TR)

0 < (CR) < (PR)

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 22 Revision 1.1, 2016-02

Figure 17 Compare reload scheme in detail

Whatever the slice configuration, whatever level of complexity, whatever the signal patterns, all the timer

function parameters of the CAPCOM4 timers are assured coherent updates by hardware. They are updated

from values in the shadow registers that, on a global preset request, are transferred simultaneously to all

function registers at a period match or one match.

There is a global register, GCSS, carrying all enable-flags that have to be preset by software to selectively
activate the targeted shadow transfer requests that will be cleared by hardware after the transfer. The total
real-time correctness is achieved by the logic operations that are essential for safe power switching.

The compare values that are targeted for an update operation must be written into the CC4yCRS shadow

register and the corresponding slice transfer set enable bit. For example, for an update operation to be
completed, SySE in GCSS must be preset before period match (in edge aligned mode) or period/one match
(in center aligned mode).

Shadow
Values 3

Shadow
Values 2

Shadow
Values 2

Shadow
Values 3

Shadow
Values 4

DEV_CCU4_01_Compare_Schemes_Reload.vsd

Period Value1

Compare Value1

Zero

Period Value1 +1

Period Value1 -1

CCTclk:

Compare Value2

Count Direction (CDIR):

Zero

One

”One

Match”

”Period

Match”

Zero

One

Compare Value3

”Period

Match”

Shadow Registers

Values:

Register Values:

e.g. CR/PR/PSL/..etc

CCST Bit Status:

Timer:
Period Value2

Service Req. SW:

Shadow Update

SW Dead-Lines

”Period

Match”

Values
2

Values
1

Values
1

Values
2

Value
3

Values
3

CCTclk: CCTclk:

CCCM_U
Interrupt

upper limit

CCCM_U
Interrupt

CCCM_U
Interrupt

upper limit

CCCM_U
Interrupt

CCCM_D
Interrupt

CCPM_U
Interrupt

CCCM_D
Interrupt

upper limit

CCOM_D
Interrupt

CCOM_D
Interrupt

CCPM_U
Interrupt

Shadow Updates

on Period-Match

Shadow Updates

on Compare-Match

Service Req. SW:

Last CCTclk Cycle

”One

Match”

Period Value1

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 23 Revision 1.1, 2016-02

Figure 18 Shadow transfer mechanism with compare registers

Beside the compare (CR) values, there are also the timer Period Register (PR) and the PWM Active/Passive
control bit (PSL) that are updated simultaneously on the SySE flag. The SyDSE and SyPSE request flags can

also simultaneously update dithering or floating prescaler values.

DEV_CCU4_01_Shadow_Transfer_with_Compare_Registers.vsd

Shadow TrAnsfer

on Period-Match

and REquest is

cleared by HW

CC40CR = 20

CC41CR = 40

CC42CR = 60

CC40CR = 10

CC41CR = 20

CC42CR = 30

HW

Shadow transfer mechanism:

Coherent update of compare registers by HW.

SW can write asynchronously to the timer state. After all values are updated the shadow transfer is

requested by setting SySE. At every Period-Match or One-Match event the HW can perform the

transfer and clears the request.

No Shadow

Transfer since

 No request

 CC40CRS = 20

 CC41CRS = 40

 CC42CRS = 60

 SySE = 1

SW

 CC40CRS = 10

 CC41CRS = 20

 CC42CRS = 30

 SySE = 1

SW

No Shadow

Transfer since

 No request

Shadow TrAnsfer

on One-Match

and REquest is

cleared by HW

Timer CC4y

HW

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 24 Revision 1.1, 2016-02

Figure 19 Compound shadow transfer mechanism with coherent update of PWM

2.1.5 CCU4 output control compare mode

The passive/active state of a slice internal output CCUxSTy (status bit CC4yST) is controlled by the compare
level and external modulation mode. The CC4yPSL passive/active bit PSL controls whether the external

output pin state CCU4xOUTy (for example, the PWM) should be passive low / active high or vice versa.

2.1.6 Event request in compare mode

A compare event can trigger external actions via the top-level interconnect matrix or by an interrupt. Each
CAPCOM4 has four service request lines and each slice has a dedicated output signal CC4ySR[3…0],

selectable to a specific line by CC4ySRS. For example, compare events can request for immediate ADC
actions or interrupts.

DEV_CCU4_01_Shadow_Transfer_in_General_v1.vsd

Shadow

Transfers on

Period-Match

and Requests

cleared by HW

 CC40CRS = 40

 CC41CRS = 50

 CC42CRS = 60

 SySE = 1

SW

HW

No shadow

Transfers since

No requests

CC40CR = 40

CC41CR = 50

CC42CR = 60

CC4yPR = 60

CC4yPSL = 0

 CC40CRS = 20

 CC41CRS = 25

 CC42CRS = 30

 CC4yPRS = 120

 CC4yPSL = 1

 SySE = 1

SW

CC40CR = 20

CC41CR = 25

CC42CR = 30

CC4yPR = 120

CC4yPSL = 1

HW

 Status Bit CC40ST:

PWM out from Port Pin:

Shadow

Transfers on

One-Match

and Requests

cleared by HW

 CC40CR=10

 CC40CR=40

 CC40CR=20

New

Shadow

Values

+

Transfer

Request

Flags

Registers

Updated

by Shadow

Values

&

Transfer

Requests

Cleared

CC40CR = 10

CC41CR = 20

CC42CR = 30

CC4yPR = 60

CC4yPSL = 0

y = 0 - 2

CC40CR = 80

CC41CR = 25

CC42CR = 30

CC4yPR = 120

CC4yPSL = 1

Only CC40CR

has changed!

Shadow

Transfers on

Period-Match

and Requests

cleared by HW

 CC40CRS = 80

 SySE = 1

SW

HW

y = 0 - 2 y = 0 - 2 y = 0 - 2

Passive Level CC4yPSL:

 CC40CR=80

time

Timer CC4y:

Output Passiv High

Output Passiv Low

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 25 Revision 1.1, 2016-02

Top-level control also means conditional control of event requests between a slice and other action
providers. The Event Request Unit (ERU1) can be combined with the top-level interconnect matrix to control

and link event signals according to user defined request-to-action event patterns. For example, ADC
triggering combined on I/O events.

A slice interface to ERU1 and to the top-level interconnect matrix can be represented by a simplified scheme.

To complete the picture of the possible interaction, this scheme also shows how operations can be
extended to involve DMA transfers (by the GPDMA), triggered by a handler (DLR) on the service request lines
(SRn).

If an application requires ADC conversion to start on timer events under specific conditions rather than

directly via a top-level interconnect matrix path, then the ERU1 is able to offer an alternate signal path. This
may involve dependence on a port pin, a time window from a second timer, or a certain sequence of event

patterns.

Figure 20 Using CCU4 and ERU1 for delayed ADC start controlled by an IO

The above example shows CCU4xCC4y is a single shot delay timer. The status bit (red) is delayed and set by

the compare event, and delays an ADC-start when triggered by a PWM timer (blue) on a GPIO state (orange).
The ERU1 combines, detects and links it all as a trigger (green) via the delay timer and the top-level

interconnect matrix to the ADC.

DEV_CCU4_01_Compare_Top_Level_Interconnect_with_CCU4_Slice_and_ERU.vsd

TRIGGER

LEVEL

ERU1_IOUTy

ERU1_PDOUTy

ERU1_xA[3:0]

ERU1_xB[3:0]
S

R
5
-8

CHIP EXTERNAL EVENTS

C
H

IP
 I
N

T
E

R
N

A
L

 E
V

E
N

T
S

x y

- Select
- Combine
- Detect
- Cross-
 Connect
- Gate

x=0-3 y=0-3

DLR

NVIC.SRn

GPDMA

Req Ack

GPIO

GPIO

ERU1

E.g. ADC

Cross
Inter-

connect

Top-Level

E.g.PWM

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CCU4xCC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice xy

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

Service
Requests

x = 0 - 3
y = 0 - 3

Multi Channel

Pattern
Generation

Input Matrix

Function Control

by 16 External

 Event Sources

Status Bit
Output Pin

Function Control

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 26 Revision 1.1, 2016-02

2.2 Example application: CCU4 as Digital-to-Analog Converter (DAC)

Many embedded microcontroller applications require the generation of analog signals. Sometimes, a
dedicated DAC IC is used for this purpose. In fact, PWM signals can often be used to create DC and AC analog
signals with CCU4. CCU4 can be used as a form of signal modulation where data is represented by the ratio

of the ON time (T1) to the period (also known as the duty cycle). In this example, the CCU4 timer is used to
generate a sinusoidal waveform of 1 kHz.

Figure 21 Example: generating a sinusoidal waveform

#1

Period (PR)
(2665)

30 45 60 75 90

Angle

CMUS

Compare Match

CCU40.OUT0, P0.0

667 390 179 45 0 45

CCU40.CC40

#1: Based on a pre-generated lookup
table, the new compare value is loaded
during a compare match event ISR.

Settings for this example
PWM frequency = 24 KHz
Generated sinusoidal frequency = 1KHz
(based on 24 sample points in lookup
table)

Number of Sample points = 24

Angle Step = 360 / Number of Samples
 = 15 degree

3.3V

0V

1.65V

36090 180 2700

SLICE Configuration:
XMC1200
System Clock = 32MHz
Peripheral Clock = 64MHz
PWM frequency = 24Hz
Mode = Edge aligned

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 27 Revision 1.1, 2016-02

2.2.1 Theory of operation

Figure 22 CCU4 PWM signal with variable duty cycle

A given ON time (T1) corresponds to an average DC voltage, which is linearly proportional to the duty cycle.

In the implementation of DAC using CCU4, the duty cycle can be varied while fixing the period value, or vice

versa. Theoretically if the duty cycle of CCU4 is varied with time, the signal is filtered, the output of the filter
is an analog signal. In fact, passing the CCU4 PWM signal through a low-pass filter (LPF) removes a
reasonable amount of ripple. A simple RC low-pass filter circuit or built-in LPF function in signal

measurement equipment could be used to eliminate the inherent noise components.

Figure 23 Process involves ADC to DAC conversion

CCU40_CC40

Time

Period (PR)

CR value

0

PWM
T1

TPWM Duty Cycle =
T1

TPWM

T1 is the ON period

TPWM is the PWM period

ADCAnalog AnalogDAC Filter

Time

Time

0

-50

50

100

Amplitude

{…, 0, 0, 15, 58, 83, 69, 25, -20, -33, -24, -8, -1, …}

Time Time

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 28 Revision 1.1, 2016-02

2.2.2 Deriving the period value

In this example, the frequency of the sinusoidal waveform generated is fixed at 1 kHz with 24 sample points.
Therefore, the PWM frequency is fixed at 24 kHz. The clock relationship between 𝑓𝑃𝑊𝑀, 𝑓𝑡𝑐𝑙𝑘 and 𝑓𝑐𝑐𝑢4 is
calculated as shown below:

 𝑓𝑐𝑐𝑢4 is the frequency of the CCU4 peripheral clock. It is the input to the PWM module.

 𝑓𝑡𝑐𝑙𝑘 is the timer resolution used to increment a timer counter. Each timer slice supports a dedicated
prescaler value selector.

 In order for, 𝑓𝑃𝑊𝑀 (frequency of the PWM signal) to be 24 kHz, the CCU4_CC40.PRS register is loaded with
the value 2667.

Timer frequency: 𝑓𝑡𝑐𝑙𝑘 =
𝑓𝑐𝑐𝑢4

𝑃𝑟𝑒𝑠𝑐𝑎𝑙𝑒𝑟

Period value: 𝐶𝐶𝑈4𝐶𝐶40. 𝑃𝑅𝑆 =
𝑓𝑡𝑐𝑙𝑘

𝑓𝑃𝑊𝑀
 - 1

Table 3 Calculated prescaler factor and period values

Type Calculated value

Prescaler value 20 = 1

Period @24 kHz frequency 2665

2.2.3 Generating a look-up table

DAC resolution is the smallest increment in the analog output voltage that corresponds to an increment in
the DAC digital count. In other words, the finest increment of output voltage level is directly proportional to

incrementing the CCU4 PWM duty cycle value.

In general, the resolution increases with the increase of sample points in the PWM signal.

Figure 24 Deriving the sine value with reference to signal voltage

3.3V

0V

1.65V

36090 180 2700

Offset

Angle Step

Signal
Voltage

Number of Sample points = 24

Angle Step
= 360 / Number of Samples
 = 15 degree

Sine Value
= Sine (Angel Step)

Sine Value with Offset
= (Sine Value * Vpeak) + Offset

Vpeak

degree

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 29 Revision 1.1, 2016-02

In this example, the sinuoisodal waveform is divided into 24 sample points. Each change in PWM duty cycle
is the equivalent of one DAC sample.The CCU4 period is fixed at 24 kHz. The calculation for the look-up table

is as shown below:

Signal frequency: Signal frequency = 𝑓𝑃𝑊𝑀 ∗ 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑎𝑚𝑝𝑙𝑒𝑠

Duty cycle: 𝐷𝐶 =
𝑆𝑖𝑛𝑒 𝑉𝑎𝑙𝑢𝑒 𝑤𝑖𝑡ℎ 𝑜𝑓𝑓𝑠𝑒𝑡

𝑆𝑖𝑔𝑛𝑎𝑙 𝑉𝑜𝑙𝑡𝑎𝑔𝑒

Compare value: 𝐶𝐶𝑈4𝐶𝐶40. 𝐶𝑅𝑆 = (1 − 𝐷𝐶) ∗ (𝑃𝑅𝑆 + 1)

Table 4 Calculated look-up table for compare values

Angle step

(degree)

Sine value Sine value

with offset

Duty cycle

(%)

Compare value

(CRS)

0 or 360 0.000 1.650 50.00 1333

15 0.259 2.077 62.94 988

30 0.500 2.475 75.00 667

45 0.707 2.817 85.36 390

60 0.866 3.079 93.30 179

75 0.966 3.244 98.30 45

90 1.000 3.300 100.00 0

105 0.966 3.244 98.30 45

120 0.866 3.079 93.30 179

135 0.707 2.817 85.36 390

150 0.500 2.475 75.00 667

165 0.259 2.077 62.94 988

180 0.000 1.650 50.00 1333

195 -0.259 1.223 37.06 1678

210 -0.500 0.825 25.00 2000

225 -0.707 0.483 14.64 2276

240 -0.866 0.221 6.70 2487

255 -0.966 0.056 1.70 2621

270 -1.000 0.000 0.00 2666

285 -0.966 0.056 1.70 2621

300 -0.866 0.221 6.70 2487

315 -0.707 0.483 14.64 2276

330 -0.500 0.825 25.00 2000

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 30 Revision 1.1, 2016-02

345 -0.259 1.223 37.06 1678

2.2.4 Circuit diagram and signals

To achieve DAC conversion, the output of CAPCOM4 (CCU40.OUT0) is internally connected to the pull-up
register. The RC low pass filter can be added externally as shown in Figure 25. Another option is to use the
internal RC filter that is built into many oscilloscopes.

Figure 25 Low pass RC circuit with XMC CCU40.OUT0 to attenuate high frequency

2.2.5 Macro and variable settings

XMC™ Lib project includes:
#include <xmc_ccu4.h>

#include <xmc_gpio.h>

#include <xmc_scu.h>

Project macro definitions:
#define MODULE_PTR CCU40

#define MODULE_NUMBER (0U)

#define SLICE0_PTR CCU40_CC40

#define SLICE0_NUMBER (0U)

#define SLICE0_OUTPUT P0_0

Project variables definition:
volatile uint8_t count=0;

uint16_t comparevalue[24]= /* sine table for duty cycle*/

{

 1333U,

 988U,

 667U,

 390U,

 179U,

 45U,

C

Duty Cycle Vary

XMC

Internal Pull-up

R1

P0.0/CCU40.OUT0

RC Low Pass Filter

Output Signal

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 31 Revision 1.1, 2016-02

 0U,

 45U,

 179U,

 390U,

 667U,

 988U,

 1333U,

 1678U,

 2000U,

 2276U,

 2487U,

 2621U,

 2666U,

 2621U,

 2487U,

 2276U,

 2000U,

 1678U,

};

2.2.6 XMC™ Lib peripheral configuration structure

XMC™ System Clock Unit (SCU) configuration:

PWM period is calculated based on PCLK which is equivalent to 64 MHz.

XMC_SCU_CLOCK_CONFIG_t clock_config =

{

 .pclk_src = XMC_SCU_CLOCK_PCLKSRC_DOUBLE_MCLK,

 .rtc_src = XMC_SCU_CLOCK_RTCCLKSRC_DCO2,

.fdiv = 0,

.idiv = 1,

};

XMC™ Capture/Compare Unit 4 (CCU4) configuration:
XMC_CCU4_SLICE_COMPARE_CONFIG_t SLICE0_config =

{

 .timer_mode = (uint32_t) XMC_CCU4_SLICE_TIMER_COUNT_MODE_EA,

 .monoshot = (uint32_t) false,

 .shadow_xfer_clear = (uint32_t) 0,

 .dither_timer_period = (uint32_t) 0,

 .dither_duty_cycle = (uint32_t) 0,

 .prescaler_mode = (uint32_t) XMC_CCU4_SLICE_PRESCALER_MODE_NORMAL,

 .mcm_enable = (uint32_t) 0,

 .prescaler_initval = (uint32_t) 0, /* in this case, prescaler = 2^0 = 1 */

 .float_limit = (uint32_t) 0,

 .dither_limit = (uint32_t) 0,

 .passive_level = (uint32_t) XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_LOW,

 .timer_concatenation = (uint32_t) 0

};

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 32 Revision 1.1, 2016-02

XMC™ GPIO configuration:
XMC_GPIO_CONFIG_t SLICE0_OUTPUT_config =

{

 .mode = XMC_GPIO_MODE_OUTPUT_PUSH_PULL_ALT4,

 .input_hysteresis = XMC_GPIO_INPUT_HYSTERESIS_STANDARD,

 .output_level = XMC_GPIO_OUTPUT_LEVEL_LOW,

};

2.2.7 Interrupt service routine function implementation

The CCU40 interrupt handler function is created to update the timer compare match values to achieve a sine
signal.

void CCU40_0_IRQHandler(void)

{

 /* Clear pending interrupt */

 XMC_CCU4_SLICE_ClearEvent(SLICE0_PTR,XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP);

 /* Set new duty cycle value */

 XMC_CCU4_SLICE_SetTimerCompareMatch(SLICE0_PTR, comparevalue[count]);

 count++;

 if(count==24)

 {

 count=0;

 }

 /* Enable shadow transfer for the new PWM value update */

 XMC_CCU4_EnableShadowTransfer(MODULE_PTR, XMC_CCU4_SHADOW_TRANSFER_SLICE_0);

}

2.2.8 Main function implementation

Before the start and execution of timer slice software for the first time, the CCU4 must be initialized

appropriately using the following sequence:

 Set up the system clock

 /* Ensure clock frequency is set at 64MHz (2*MCLK) */

 XMC_SCU_CLOCK_Init(&clock_config);

 Enable clock, enable prescaler block and configure global control
 /* Enable clock, enable prescaler block and configure global control */

 XMC_CCU4_Init(MODULE_PTR, XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR);

 /* Start the prescaler and restore clocks to slices */

 XMC_CCU4_StartPrescaler(MODULE_PTR);

 /* Start of CCU4 configurations */

 /* Ensure fCCU reaches CCU40 */

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Output pattern generation with CCU4

Application Note 33 Revision 1.1, 2016-02

 XMC_CCU4_SetModuleClock(MODULE_PTR, XMC_CCU4_CLOCK_SCU);

 Configure slice(s) functions, interrupts and start-up
 /* Initialize the Slice */

 XMC_CCU4_SLICE_CompareInit(SLICE0_PTR, &SLICE0_config);

 /* Program 100kHz frequency */

 XMC_CCU4_SLICE_SetTimerCompareMatch(SLICE0_PTR, comparevalue[count]);

 XMC_CCU4_SLICE_SetTimerPeriodMatch(SLICE0_PTR, 2665U);

 /* Enable shadow transfer */

 XMC_CCU4_EnableShadowTransfer(MODULE_PTR, \

 (uint32_t)(XMC_CCU4_SHADOW_TRANSFER_SLICE_0| \

 XMC_CCU4_SHADOW_TRANSFER_PRESCALER_SLICE_0));

 /* Enable compare match event */

 XMC_CCU4_SLICE_EnableEvent(SLICE0_PTR, XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP);

 /* Connect compare match event to SR0 */

 XMC_CCU4_SLICE_SetInterruptNode(SLICE0_PTR, \

 XMC_CCU4_SLICE_IRQ_ID_COMPARE_MATCH_UP, XMC_CCU4_SLICE_SR_ID_0);

 /* Set NVIC priority */

 NVIC_SetPriority(CCU40_0_IRQn, 3U);

 /* Enable IRQ */

 NVIC_EnableIRQ(CCU40_0_IRQn);

 /* Enable CCU4 PWM output */

 XMC_GPIO_Init(SLICE0_OUTPUT, &SLICE0_OUTPUT_config);

 /* Get the slice out of idle mode */

 XMC_CCU4_EnableClock(MODULE_PTR, SLICE0_NUMBER);

 Start timer running
 /* Start the TImer*/

 XMC_CCU4_SLICE_StartTimer(SLICE0_PTR);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 34 Revision 1.1, 2016-02

3 Advanced signal measurement

3.1 Capture mode

3.1.1 Slice timer setup in capture mode

Each CCU4x has 4 timer-slices. Each slice has 4 capture value registers, split into 2 pairs that capture on
selected event control input either Capt0 or Capt1, according to 2 possible pair schemes: either as 2 pairs for

different events for Capt0 with respect to Capt1, or cascaded for the same event via Capt1.

Figure 26 Slice capture logic

3.1.2 The capture algorithm

Each capture register has a full-flag that is set on a capture to the register and cleared on a read from the

register.

At a capture input event (Capt1 or Capt0), each register captures data from the next higher indexed register

only if that higher register is full and also a lower indexed register is empty. The timer is seen as the highest

index.

DEV_CCU4_02_Capture_Logic.vsd

Capture Inputs:

CCycapt1

CCycapt0

CC4yC3V CC4yC2V

CC4yC1V CC4yC0V

T4y

CC4yC3V CC4yC2V

CC4yC1V CC4yC0V

T4y

Capture Input:

CCycapt1

fCCU4

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

Full/
Empty

fCCU4

Capture reg. 3: Capture reg. 2:

Capture reg. 1: Capture reg. 0:

Capture reg. 3: Capture reg. 2:

Capture reg. 1: Capture reg. 0:

Capture

on

Different

Events

Capture

on Same

Event

and Edge

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Trigger Distribution & Full-Flag Handling Logic

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 35 Revision 1.1, 2016-02

Continuous capturing without any effect from any full-flags is enabled by changing the bit CC4yTC.CCS = 1.
When set, registers capture data on the capture input events without taking account of the full flag status.

3.1.3 Capture by externals events control

This scenario involves linking the Capture0 or the Capture1 register pairs to an external trigger request from
any of the following: GPIO, ERU, POSIF, CAN, CCU4x, USIC, ADC, CCU8x or SCU. A connection pin table is
given by the top-level interconnection matrix.

Figure 27 Capture by external events control

3.1.4 Timer inputs from capture

There are 3 selectable input lines with configurable source-event-condition profiles available for capture by

external event control functions, extendable in the CC4yTC register. There is also a read access register
(ECRD) that simplifies the administration of capture registers and full-flags, when more than 1 slice is used in
capture mode.

DEV_CCU4_02_Capture_External_Events_Control_Komplex.vsd

Multi Channel

Pattern
Generation

Input Matrix

Function Control
by 16 External
 Event Sources

Status Bit
Output Pin

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice y

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

Service

Request Lines

DMA

Reset- / Power

Control

Clock Control

y = 0 - 3

CCU4x
x = 0 - 3

External

Event

Sources

Event0
Detect

Event0

true

false

Function

of Inputs

Select

Event

Source

Select

3 Events

Control Connect Matrix

H

Target

Timer

Slice

In
p

u
ts

Up to 3 Events

Profile Selectable

Edge or Level

2
1
0

L

Timer Input Functions

that may be controlled

by the Events 0, 1 or 2

Period Reg.

Timer Reg.

Compare Reg.

GPIO

ERU1

POSIF

CAN

CCU4x

USIC

ADC

CCU8x

SCU

 - - -

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

Edge signal to start the timer

Edge signal to stop the timer

Edge signal to capture into reg. 0 & 1

Edge signal to capture into reg. 2 & 3

Level signal to gate the timer clock

Level signal to up/down count direction

Edge signal to load the Timer

Edge signal to count events

Status bit override with an input value

Level signal to trap for fail-safe op.

Level signal to modulate the output

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 36 Revision 1.1, 2016-02

3.1.5 External control by capture events

A capture event can trigger external actions via the top-level interconnect matrix or request for an interrupt.
Each CAPCOM4 has four service request lines and each slice has a dedicated output signal CC4ySR[3…0]
selectable to a line by using CC4ySRS. For example, a capture event may request action from some other

unit for an interrupt.

3.1.6 Top-level control of event requests to/from a timer in capture mode

Top-level control means conditional control of event requests between a slice and other action providers.
The event request unit (ERU1) and the top-level interconnect matrix may combine, control and link event

signals according to user defined request-to-action event patterns. For example, capture on timer and other

event status.

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 37 Revision 1.1, 2016-02

3.2 Example application: CCU4 capture mode to measure PWM duty cycle

Each timer slice can make use of two or four capture registers. By using only two capture registers, one
event is linked to a capture trigger. To use four capture registers, both capture triggers need to be mapped
to an event - it can be same signal with different edge selections or two different signals. The CC4yTC.SCE

needs to be set to 1, which enables the linking of the 4 capture registers. The internal slice mechanism for
capturing is the same for the capture trigger one or capture trigger zero.

In this example, based on XMC1200, a PWM signal is generated on the CCU40.40 slice for 24 kHz frequency
with a 33.33% duty cycle. The PWM output is generated on Port 0.0. This signal shall be connected manually
to P0.1, which is the external capture input for CCU40.41 slice. This slice is configured as a capture slice,

where the timer is cleared on capture event 0 (which is the rising edge of the input signal). On the rising edge

event, a capture event stores the timer value to capture register 1 (C1V). This is the timer value

corresponding to the period for the whole signal. On a falling edge event, a capture event stores the timer
value to capture register 3 (C3V), corresponding to the duty cycle for the input signal.

Figure 28 Example: using the CCU4 in capture mode to measure a duty cycle of a signal

CCU40.OUT0, P0.0

Period

CV (33.33% DC)

CCU40.CC40
(PWM Input)

CCU40.CC41
(Capture Slice)

E1AS, Event 1 SR

#2

CCcapt1
(C3V)

CCcapt0
(C1V)

#1

#1 – A rising edge on the input PWM
triggers Event0 for a capture event to
store the captured timing in capture
register 1 (C1V).

#2 – Timer is cleared on a capture
event into capture register, C1V.

#3

#3 – A falling edge on the input PWM
triggers Event1 for a capture event to
store the captured timing in capture
register 3 (C3V). Also, this triggers an
interrupt event and enters the ISR to
read the duty and period of the
captured signal.

Note: INPUT PWM can be either a
generated output from a function
generator output or a CCU slice as
shown in this example.

SLICE Configuration:
XMC1200
System Clock = 32MHz
Peripheral Clock = 64MHz
Mode = Edge aligned

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 38 Revision 1.1, 2016-02

3.2.1 Macro and variable settings

XMC™ Lib project includes:
#include <xmc_ccu4.h>

#include <xmc_gpio.h>

#include <xmc_scu.h>

Project macro definitions:
#define MODULE_PTR CCU40

#define MODULE_NUMBER (0U)

#define SLICE0_PTR CCU40_CC40

#define SLICE0_NUMBER (0U)

#define SLICE0_OUTPUT P0_0

#define CAPTURE_SLICE_PTR CCU40_CC41

#define CAPTURE_SLICE_NUMBER (1U)

Project variables definition:
volatile uint32_t duty;

volatile uint32_t period;

3.2.2 XMC™ Lib peripheral configuration structure

XMC™ System Clock Unit (SCU) configuration:

PWM period is calculated based on PCLK which is equivalent to 64 MHz:

XMC_SCU_CLOCK_CONFIG_t clock_config =

{

 .pclk_src = XMC_SCU_CLOCK_PCLKSRC_DOUBLE_MCLK,

 .rtc_src = XMC_SCU_CLOCK_RTCCLKSRC_DCO2,

.fdiv = 0,

.idiv = 1,

};

XMC™ Capture/Compare Unit 4 (CCU4) configuration for PWM input:
XMC_CCU4_SLICE_COMPARE_CONFIG_t SLICE0_config =

{

 .timer_mode = (uint32_t) XMC_CCU4_SLICE_TIMER_COUNT_MODE_EA,

 .monoshot = (uint32_t) false,

 .shadow_xfer_clear = (uint32_t) 0,

 .dither_timer_period = (uint32_t) 0,

 .dither_duty_cycle = (uint32_t) 0,

 .prescaler_mode = (uint32_t) XMC_CCU4_SLICE_PRESCALER_MODE_NORMAL,

 .mcm_enable = (uint32_t) 0,

 .prescaler_initval = (uint32_t) 0, /* range: 0 to 15; 2^prescaler */

 .float_limit = (uint32_t) 0,

 .dither_limit = (uint32_t) 0,

 .passive_level = (uint32_t) XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_LOW,

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 39 Revision 1.1, 2016-02

 .timer_concatenation = (uint32_t) 0

};

XMC™ Capture/Compare Unit 4 (CCU4) configuration for capture:
/* Capture Slice configuration */

XMC_CCU4_SLICE_CAPTURE_CONFIG_t capture_config =

{

 .fifo_enable = false,

/* Clear only when timer value has been captured in C1V and C0V */

 .timer_clear_mode = XMC_CCU4_SLICE_TIMER_CLEAR_MODE_CAP_LOW,

 .same_event = false,

 .ignore_full_flag = true,

 .prescaler_mode = XMC_CCU4_SLICE_PRESCALER_MODE_NORMAL,

 .prescaler_initval = (uint32_t) 0,

 .float_limit = (uint32_t) 0,

 .timer_concatenation = (uint32_t) 0

};

XMC_CCU4_SLICE_EVENT_CONFIG_t capture_event0_config = //off time capture

{

 .mapped_input = XMC_CCU4_SLICE_INPUT_C, //CAPTURE on P0.1

 .edge = XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_RISING_EDGE,

 .level = XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH,

 .duration = XMC_CCU4_SLICE_EVENT_FILTER_7_CYCLES

};

XMC_CCU4_SLICE_EVENT_CONFIG_t capture_event1_config = //on time capture

{

 .mapped_input = XMC_CCU4_SLICE_INPUT_C, //CAPTURE on P0.1

 .edge = XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_FALLING_EDGE,

 .level = XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH,

 .duration = XMC_CCU4_SLICE_EVENT_FILTER_7_CYCLES

};

XMC™ GPIO configuration:
XMC_GPIO_CONFIG_t SLICE0_OUTPUT_config =

{

 .mode = XMC_GPIO_MODE_OUTPUT_PUSH_PULL_ALT4,

 .input_hysteresis = XMC_GPIO_INPUT_HYSTERESIS_STANDARD,

 .output_level = XMC_GPIO_OUTPUT_LEVEL_LOW,

};

3.2.3 Interrupt service routine function implementation

The CCU40 interrupt handler function reads the captured values to calculate the duty cycle on Event 1:

/* Interrupt handler - at event 1 to read the captured value for the duty cycle and period

of the input signal */

void CCU40_2_IRQHandler(void)

{

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 40 Revision 1.1, 2016-02

 uint32_t capturedvalue1;

 uint32_t capturedvalue3;

 /* Clear pending interrupt */

 XMC_CCU4_SLICE_ClearEvent(CAPTURE_SLICE_PTR, XMC_CCU4_SLICE_IRQ_ID_EVENT1);

 Capturedvalue1 = XMC_CCU4_SLICE_GetCaptureRegisterValue(CAPTURE_SLICE_PTR,1U);

 Capturedvalue3 = XMC_CCU4_SLICE_GetCaptureRegisterValue(CAPTURE_SLICE_PTR,3U);

 /* Captured value for the period and duty cycle of the signal */

 period = capturedvalue1 & CCU4_CC4_CV_CAPTV_Msk;

 duty = capturedvalue3 & CCU4_CC4_CV_CAPTV_Msk;

}

3.2.4 Main function implementation

Before the start and execution of timer slice software for the first time, the CCU4 must have been initialized
appropriately using the following sequence:

 Set up the system clock

 /* Ensure clock frequency is set at 64MHz (2*MCLK) */

 XMC_SCU_CLOCK_Init(&clock_config);

 Enable clock, enable prescaler block and configure global control
 /* Enable clock, enable prescaler block and configure global control */

 XMC_CCU4_Init(MODULE_PTR, XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR);

 /* Start the prescaler and restore clocks to slices */

 XMC_CCU4_StartPrescaler(MODULE_PTR);

 /* Start of CCU4 configurations */

 /* Ensure fCCU reaches CCU40 */

 XMC_CCU4_SetModuleClock(MODULE_PTR, XMC_CCU4_CLOCK_SCU);

 Configure slice(s) Functions, interrupts and start-up:
 /* Initialize the Slice */

 XMC_CCU4_SLICE_CompareInit(SLICE0_PTR, &SLICE0_config);

 XMC_CCU4_SLICE_CaptureInit(CAPTURE_SLICE_PTR, &capture_config);

 /* Program duty cycle[33.3%] and frequency [24 KHz] */

 XMC_CCU4_SLICE_SetTimerCompareMatch(SLICE0_PTR, 1777);

 XMC_CCU4_SLICE_SetTimerPeriodMatch(SLICE0_PTR, 2665U);

 /* Enable shadow transfer for PWM and Capture Slices */

XMC_CCU4_EnableShadowTransfer(MODULE_PTR, \

 (uint32_t)(XMC_CCU4_SHADOW_TRANSFER_SLICE_0| \

 XMC_CCU4_SHADOW_TRANSFER_SLICE_1));

 /* Configure events */

 XMC_CCU4_SLICE_Capture0Config(CAPTURE_SLICE_PTR, XMC_CCU4_SLICE_EVENT_0);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Advanced signal measurement

Application Note 41 Revision 1.1, 2016-02

 XMC_CCU4_SLICE_Capture1Config(CAPTURE_SLICE_PTR, XMC_CCU4_SLICE_EVENT_1);

 XMC_CCU4_SLICE_ConfigureEvent(CAPTURE_SLICE_PTR, \

 XMC_CCU4_SLICE_EVENT_0, &capture_event0_config);

 XMC_CCU4_SLICE_ConfigureEvent(CAPTURE_SLICE_PTR, \

 XMC_CCU4_SLICE_EVENT_1, &capture_event1_config);

 /* Enable events */

 XMC_CCU4_SLICE_EnableEvent(CAPTURE_SLICE_PTR, XMC_CCU4_SLICE_IRQ_ID_EVENT1);

 /* Connect capture on event 1 to SR2 */

 XMC_CCU4_SLICE_SetInterruptNode(CAPTURE_SLICE_PTR, \

 XMC_CCU4_SLICE_IRQ_ID_EVENT1, XMC_CCU4_SLICE_SR_ID_2);

 /* Configure NVIC */

 /* Set priority */

 NVIC_SetPriority(CCU40_2_IRQn, 3U);

 /* Enable IRQ */

 NVIC_EnableIRQ(CCU40_2_IRQn);

 /*Enable CCU4 PWM output*/

 XMC_GPIO_Init(SLICE0_OUTPUT, & SLICE0_OUTPUT_config);

 /* Get the slices out of idle mode */

 XMC_CCU4_EnableClock(MODULE_PTR, SLICE0_NUMBER);

 XMC_CCU4_EnableClock(MODULE_PTR, CAPTURE_SLICE_NUMBER);

 Start timer running:
 XMC_CCU4_SLICE_StartTimer(SLICE0_PTR);

 XMC_CCU4_SLICE_StartTimer(CAPTURE_SLICE_PTR);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 42 Revision 1.1, 2016-02

4 Event trigger delay by single shot

4.1 Introduction

A timer in single shot mode has a specific role for applications where a certain delay has to be invoked
between trigger events and operations that should be triggered. For example, noise rejection in shunt
current signal measurement. Any CAPCOM4 timer could be setup in this mode to co-operate with other
timers, ADC, or other modules.

4.1.1 Timer setup in single shot mode

A slice can be set into Timer Single Shot Mode (TSSM). Both the timer and its run bit (TRB) is cleared by a
timer period end that occurs after the TSSM bit is set, and the timer is stopped. A time frame, for example, a
single shot delay, is set by the timer start conditions, selected counting mode and the period (PR) value.

Figure 29 Timer in Single Shot Mode(TSSM) for edge aligned and center aligned mode

DEV_CCU4_03_Single_Shot.vsd

Single Shot in Center Aligned Mode

(TCM=1)

Timer is Running Timer is

Stopped

TSSM

TRB

Single Shot in Edge Aligned Mode

(TCM=0)

Timer is Running Timer is

Stopped

TSSM

TRB

Timer Single Shot Mode

can be set anytime here

PR: Period Register

CR: Compare Register

TRB: Timer Run Bit

TCM: Timer Counting Mode

CCST: Status Bit

<PR> <PR>

CCST CCST

<CR>

<CR>

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 43 Revision 1.1, 2016-02

4.1.2 Using timer single shot delay for noise rejection

Figure 30 Timer in single shot mode for noise rejection in shunt-current measurement

4.1.3 Timer-start in single shot mode by external event control

A timer-start in single shot mode can be linked to external triggers from sources such as: GPIO, ERU, POSIF,

CAN, CCU4x, USIC, ADC, CCU8x or SCU. Pin connections are given by the top-level interconnect matrix and
the CC4yINS[P:A] input select vector and function select by the CC4yCMC register.

4.1.4 Timer inputs for start and stop facilities

A timer has 3 selectable function inputs with configurable source-event-condition profiles. These 3 function
inputs can each have up to 16 sources for external events control, such as timer start or stop. The extended

functions such as flush/start, flush/stop or flush only can also be added in single-shot mode via the CC4yTC
register.

DEV_CCU4_03_Single_Shot_Usage_Example.vsd

Timer

Shunt

Current

Control

Signal

Start

Single

Shot

Start

Single

Shot

Trigger

Event

Trigger

Event

Timer

Stop

Timer

Stop

Noise Noise

ADC

Delayed

Start

ADC

Delayed

Start

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 44 Revision 1.1, 2016-02

Figure 31 Single shot triggering on external events

4.1.5 External control by single-shot events

Single-shot events trigger external actions via the top-level interconnection matrix or they can request an
interrupt. Each CAPCOM4 has four service request lines and each slice has a dedicated output signal

CC4ySR[3…0] selectable to a line via CC4ySRS. Therefore, single-shot can act as a delayed trigger for ADC
actions or interrupts.

4.1.6 Top-level control of event request to/from a timer in single-shot mode

Top-level control also means conditional control of event requests between a slice and other action
providers. The Event Request Unit (ERU1) and the top-level interconnect matrix could combine, control and
link event signal according to user defined request-to-action event patterns, such as ADC triggering limited

by time windows.

DEV_CCU4_02_Capture_External_Events_Control_Komplex.vsd

Multi Channel

Pattern
Generation

Input Matrix

Function Control
by 16 External
 Event Sources

Status Bit
Output Pin

Period Shadow Reg.

Period Register

Timer 16-bit

Compare Register

CC4y

Compare Shadow Reg.

PWM

Edge /
Center
Align

Single
Shot

3 x Input
Selector

Slice y

Prescaler

Modula-
tion

Control

Active /
Passive
Control

4
 x

 C
a

p
tu

re

4 Service
Requests

Service

Request Lines

DMA

Reset- / Power

Control

Clock Control

y = 0 - 3

CCU4x
x = 0 - 3

External

Event

Sources

Event0
Detect

Event0

true

false

Function

of Inputs

Select

Event

Source

Select

3 Events

Control Connect Matrix

H

Target

Timer

Slice

In
p

u
ts

Up to 3 Events

Profile Selectable

Edge or Level

2
1
0

L

Timer Input Functions

that may be controlled

by the Events 0, 1 or 2

Period Reg.

Timer Reg.

Compare Reg.

GPIO

ERU1

POSIF

CAN

CCU4x

USIC

ADC

CCU8x

SCU

 - - -

Prescaler /
Floating

Prescaler

4 Service
Request

Lines

Edge signal to start the timer

Edge signal to stop the timer

Edge signal to capture into reg. 0 & 1

Edge signal to capture into reg. 2 & 3

Level signal to gate the timer clock

Level signal to up/down count direction

Edge signal to load the Timer

Edge signal to count events

Status bit override with an input value

Level signal to trap for fail-safe op.

Level signal to modulate the output

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 45 Revision 1.1, 2016-02

4.2 Example use case: triggering ADC conversion using CCU4 single shot

In this example, based on the XMC1200, a push button is connected to P0.0 to simulate a trigger event used
to start a timer in single shot mode. This starts the timer and a period match event is generated at the end of
the timer count. This triggers an ADC queue conversion request. A conversion takes place on the selected

pin once it is triggered. The result is stored in the ADC result register corresponding to selected channel. An
interrupt is generated after the completion of a conversion.

Figure 32 Example: triggering an ADC conversion using CCU4 single shot

4.2.1 Macro and variable settings

XMC™ Lib project includes:
#include <xmc_ccu4.h>

#include <xmc_vadc.h>

Project macro definitions:
/* CCU4 Macros*/

#define MODULE_PTR CCU40

#define MODULE_NUMBER (0U)

#define SLICE0_PTR CCU40_CC40

#define SLICE0_NUMBER (0U)

/* VADC Macros */

PUSH BUTTON
(P0.0)

#1

CCU40.CC40

PMUS

Queue Conversion

#2

Period (PR)

Channel Event

#3

POTENTIOMETER
(P2.5)

#1: A falling edge on PUSH BUTTON
(P0.0) triggers starts CCU40.40 timer on
an external start event on Event 0.

#2 – An period match event starts an
ADC Queue Conversion on P2.5. At the
end of the conversion, a channel event
is generated. The value will be based
on the ADC input value.

#3 – A falling edge on PUSH BUTTON
(P0.0) is detected, after the timer is
started. Since the external start event is
configured as “clears the timer and
start timer”. The timer is cleared and
restarted.

SLICE Configuration:
XMC1200
System Clock = 32MHz
Peripheral Clock = 64MHz
PWM Frequency = 24kHz
Mode = Edge aligned

VADC G0CH1

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 46 Revision 1.1, 2016-02

#define RES_REG_NUMBER (0)

#define CHANNEL_NUMBER (7U)

#define VADC_GROUP_PTR (VADC_G1) /* P2.5 */

#define VADC_GROUP_ID (1)

#define IRQ_PRIORITY (10U)

4.2.2 XMC™ Lib peripheral configuration structure

XMC™ System Clock Unit (SCU) configuration:

PWM period is calculated based on PCLK which is equivalent to 64 MHz:

XMC_SCU_CLOCK_CONFIG_t clock_config =

{

 .pclk_src = XMC_SCU_CLOCK_PCLKSRC_DOUBLE_MCLK,

 .rtc_src = XMC_SCU_CLOCK_RTCCLKSRC_DCO2,

.fdiv = 0,

.idiv = 1,

};

XMC™ Versatile Analog-to-Digital Converter (VADC) configuration:
XMC_VADC_GLOBAL_CONFIG_t g_global_handle =

{

 .disable_sleep_mode_control = false,

 .clock_config = {

 .analog_clock_divider = 3,

 .msb_conversion_clock = 0,

 .arbiter_clock_divider = 1

 },

 .class0 = {

 .conversion_mode_standard = XMC_VADC_CONVMODE_12BIT,

 .sample_time_std_conv = 3U,

 .conversion_mode_emux = XMC_VADC_CONVMODE_12BIT,

 .sampling_phase_emux_channel = 3U

 },

 .class1 = {

 .conversion_mode_standard = XMC_VADC_CONVMODE_12BIT,

 .sample_time_std_conv = 3U,

 .conversion_mode_emux = XMC_VADC_CONVMODE_12BIT,

 .sampling_phase_emux_channel = 3U

 },

 .data_reduction_control = 0,

 .wait_for_read_mode = true,

 .event_gen_enable = false,

 .boundary0 = 0,

 .boundary1 = 0

 };

/* Initialization data of a VADC group */

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 47 Revision 1.1, 2016-02

XMC_VADC_GROUP_CONFIG_t g_group_handle =

{

 .class0 = {

 .conversion_mode_standard = XMC_VADC_CONVMODE_12BIT,

 .sample_time_std_conv = 3U,

 .conversion_mode_emux = XMC_VADC_CONVMODE_12BIT,

 .sampling_phase_emux_channel = 3U

 },

 .class1 = {

 .conversion_mode_standard = XMC_VADC_CONVMODE_12BIT,

 .sample_time_std_conv = 3U,

 .conversion_mode_emux = XMC_VADC_CONVMODE_12BIT,

 .sampling_phase_emux_channel = 3U

 },

 .arbitration_round_length = 0x0U,

 .arbiter_mode = XMC_VADC_GROUP_ARBMODE_ALWAYS,

 .boundary0 = 0, /* Boundary-0 */

 .boundary1 = 0, /* Boundary-1 */

 .emux_config = {

 .emux_mode = XMC_VADC_GROUP_EMUXMODE_SWCTRL,

 .stce_usage = 0,

 .emux_coding = XMC_VADC_GROUP_EMUXCODE_BINARY,

 .starting_external_channel = 0,

 .connected_channel = 0

 }

 };

/* Identifier of the hardware group */

XMC_VADC_GROUP_t *g_group_identifier =VADC_GROUP_PTR;

/* Channel configuration data */

XMC_VADC_CHANNEL_CONFIG_t g_channel_handle =

{

 .channel_priority = 1U,

 .input_class = XMC_VADC_CHANNEL_CONV_GROUP_CLASS1,

 .alias_channel = (uint8_t)-1,

 .bfl = 0,

 .event_gen_criteria = XMC_VADC_CHANNEL_EVGEN_ALWAYS,

 .alternate_reference = XMC_VADC_CHANNEL_REF_INTREF,

 .result_reg_number = (uint8_t) RES_REG_NUMBER,

 .sync_conversion = false, /* Sync Feature disabled*/

 .result_alignment = XMC_VADC_RESULT_ALIGN_RIGHT,

 .use_global_result = false,

 .broken_wire_detect_channel = false,

 .broken_wire_detect = false

};

/* Result configuration data */

XMC_VADC_RESULT_CONFIG_t g_result_handle = {

 .post_processing_mode = XMC_VADC_DMM_REDUCTION_MODE,

 .data_reduction_control = 0,

 .part_of_fifo = false, /* No FIFO */

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 48 Revision 1.1, 2016-02

 .wait_for_read_mode = true, /* WFS */

 .event_gen_enable = false /* No result event */

};

/* Queue hardware configuration data */

XMC_VADC_QUEUE_CONFIG_t g_queue_handle =

{

 .req_src_priority = (uint8_t)3, /* Highest Priority = 3, Lowest = 0 */

 .conv_start_mode = XMC_VADC_STARTMODE_WFS,

 .external_trigger = (bool) true, /* External trigger enabled*/

 .trigger_signal = XMC_CCU_40_SR2,

 .trigger_edge = XMC_VADC_TRIGGER_EDGE_FALLING,

 .gate_signal = XMC_VADC_REQ_GT_A,

 .timer_mode = (bool) false, /* No timer mode */

};

/* Queue Entry */

XMC_VADC_QUEUE_ENTRY_t g_queue_entry =

{

 .channel_num = CHANNEL_NUMBER,

 .refill_needed = true, /* Refill is needed */

 .generate_interrupt = true, /* Interrupt generation is needed */

 .external_trigger = true /* External trigger is required */

};

XMC™ Capture/Compare Unit 4 (CCU4) configuration:

XMC_CCU4_SLICE_COMPARE_CONFIG_t SLICE0_config =

{

 .timer_mode = (uint32_t) XMC_CCU4_SLICE_TIMER_COUNT_MODE_EA,

 .monoshot = (uint32_t) true,

 .shadow_xfer_clear = (uint32_t) 0,

 .dither_timer_period = (uint32_t) 0,

 .dither_duty_cycle = (uint32_t) 0,

 .prescaler_mode = (uint32_t) XMC_CCU4_SLICE_PRESCALER_MODE_NORMAL,

 .mcm_enable = (uint32_t) 0,

 .prescaler_initval = (uint32_t) 0,

 .float_limit = (uint32_t) 0,

 .dither_limit = (uint32_t) 0,

 .passive_level = (uint32_t) XMC_CCU4_SLICE_OUTPUT_PASSIVE_LEVEL_LOW,

 .timer_concatenation = (uint32_t) 0

};

XMC_CCU4_SLICE_EVENT_CONFIG_t SLICE0_event0_config =

{

 .mapped_input = XMC_CCU4_SLICE_INPUT_C, //P0.0

 .edge = XMC_CCU4_SLICE_EVENT_EDGE_SENSITIVITY_FALLING_EDGE,

 .level = XMC_CCU4_SLICE_EVENT_LEVEL_SENSITIVITY_ACTIVE_HIGH,

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 49 Revision 1.1, 2016-02

 .duration = XMC_CCU4_SLICE_EVENT_FILTER_7_CYCLES

};

4.2.3 Interrupt service routine function implementation

The ADC interrupt handler function is created to read the ADC conversion result. In this example, the ADC
result is stored to a local variable:

void VADC0_G1_0_IRQHandler(void)

{

 XMC_VADC_RESULT_SIZE_t result;

 /* Read the result register */

 result = XMC_VADC_GROUP_GetResult(g_group_identifier,RES_REG_NUMBER);

 /* Clear result event */

 XMC_VADC_GROUP_ClearResultEvent(g_group_identifier,RES_REG_NUMBER);

 /* Acknowledge the interrupt */

 XMC_VADC_GROUP_QueueClearReqSrcEvent(g_group_identifier);

 result = result;

 /* Application specific code using ADC result can added */

}

4.2.4 Main function implementation

Before the start and execution of timer slice software for the first time, the CCU4 must be initialized

appropriately using the following sequence:

 Set up the system clock

 /* Ensure clock frequency is set at 64MHz (2*MCLK) */

 XMC_SCU_CLOCK_Init(&clock_config);

 Enable clock, enable prescaler block and configure global control
 /* Enable clock, enable prescaler block and configure global control */

 XMC_CCU4_Init(MODULE_PTR, XMC_CCU4_SLICE_MCMS_ACTION_TRANSFER_PR_CR);

 /* Start the prescaler and restore clocks to slices */

 XMC_CCU4_StartPrescaler(MODULE_PTR);

 /* Start of CCU4 configurations */

 /* Ensure fCCU reaches CCU40 */

 XMC_CCU4_SetModuleClock(MODULE_PTR, XMC_CCU4_CLOCK_SCU);

 Configure slice(s) functions, interrupts and start-up:
 /* Initialize the Slice */

 XMC_CCU4_SLICE_CompareInit(SLICE0_PTR, &SLICE0_config);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 50 Revision 1.1, 2016-02

 /* Program duty cycle[33.3%] and frequency [24 KHz] */

 XMC_CCU4_SLICE_SetTimerCompareMatch(SLICE0_PTR, 1777);

 XMC_CCU4_SLICE_SetTimerPeriodMatch(SLICE0_PTR, 2665U);

 /* Enable shadow transfer for PWM Slice */

 XMC_CCU4_EnableShadowTransfer(MODULE_PTR, \

 (uint32_t)XMC_CCU4_SHADOW_TRANSFER_SLICE_0);

 /* Configure events – external Start */

 XMC_CCU4_SLICE_ConfigureEvent(SLICE0_PTR, \

 XMC_CCU4_SLICE_EVENT_0, &SLICE0_event0_config);

 XMC_CCU4_SLICE_StartConfig(SLICE0_PTR, \

 XMC_CCU4_SLICE_EVENT_0, XMC_CCU4_SLICE_START_MODE_TIMER_START_CLEAR);

 /* Enable events */

 XMC_CCU4_SLICE_EnableEvent(SLICE0_PTR, XMC_CCU4_SLICE_IRQ_ID_EVENT0);

 /* Connect event to SR2 to trigger an ADC conversion*/

 XMC_CCU4_SLICE_SetInterruptNode(SLICE0_PTR, \

 XMC_CCU4_SLICE_IRQ_ID_EVENT0, XMC_CCU4_SLICE_SR_ID_2);

 /* Get the slice out of idle mode */

 XMC_CCU4_EnableClock(MODULE_PTR, SLICE0_NUMBER);

 Configure the ADC:
 /* Initialize the VADC global registers */

 XMC_VADC_GLOBAL_Init(VADC, &g_global_handle);

 /* Configure a conversion kernel */

 XMC_VADC_GROUP_Init(g_group_identifier, &g_group_handle);

 /* Configure the queue request source of the aforesaid conversion kernel */

 XMC_VADC_GROUP_QueueInit(g_group_identifier, &g_queue_handle);

 /* Configure a channel belonging to the aforesaid conversion kernel */

 XMC_VADC_GROUP_ChannelInit(g_group_identifier,CHANNEL_NUMBER, &g_channel_handle);

 /* Configure a result resource belonging to the aforesaid conversion kernel */

 XMC_VADC_GROUP_ResultInit(g_group_identifier, RES_REG_NUMBER, &g_result_handle);

 /* Add the channel to the queue */

 XMC_VADC_GROUP_QueueInsertChannel(g_group_identifier, g_queue_entry);

 /* Set priority of NVIC node meant to e connected to Kernel Request source event */

 NVIC_SetPriority(VADC0_G1_0_IRQn, IRQ_PRIORITY);

 /* Connect RS Event to the NVIC nodes */

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Event trigger delay by single shot

Application Note 51 Revision 1.1, 2016-02

 XMC_VADC_GROUP_QueueSetReqSrcEventInterruptNode(g_group_identifier, \

 XMC_VADC_SR_GROUP_SR0);

 /* Configure NVIC */

 /* Set priority */

 NVIC_SetPriority(VADC0_G1_0_IRQn, 3U);

 /* Enable IRQ */

 NVIC_EnableIRQ(VADC0_G1_0_IRQn);

 /* Enable the analog converters */

 XMC_VADC_GROUP_SetPowerMode(g_group_identifier, XMC_VADC_GROUP_POWERMODE_NORMAL);

 /* Perform calibration of the converter */

 XMC_VADC_GLOBAL_StartupCalibration(VADC);

Capture Compare Unit 4 (CCU4)
32-bit microcontroller series for industrial applications

Revision history

Application Note 52 Revision 1.1, 2016-02

5 Revision history

Current version is revision 1.1, 2016-02

Page or reference Description of change

V1.0, 2015-07

 Initial version

V1.1, 2016-02

 Updated Section 3.2 for capturing the duty and period of input signal

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2016 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about any

aspect of this document?

Email: erratum@infineon.com

Document reference

Legal Disclaimer
THE INFORMATION GIVEN IN THIS APPLICATION
NOTE (INCLUDING BUT NOT LIMITED TO
CONTENTS OF REFERENCED WEBSITES) IS GIVEN
AS A HINT FOR THE IMPLEMENTATION OF THE
INFINEON TECHNOLOGIES COMPONENT ONLY
AND SHALL NOT BE REGARDED AS ANY
DESCRIPTION OR WARRANTY OF A CERTAIN
FUNCTIONALITY, CONDITION OR QUALITY OF THE
INFINEON TECHNOLOGIES COMPONENT. THE
RECIPIENT OF THIS APPLICATION NOTE MUST
VERIFY ANY FUNCTION DESCRIBED HEREIN IN THE
REAL APPLICATION. INFINEON TECHNOLOGIES
HEREBY DISCLAIMS ANY AND ALL WARRANTIES
AND LIABILITIES OF ANY KIND (INCLUDING
WITHOUT LIMITATION WARRANTIES OF NON-
INFRINGEMENT OF INTELLECTUAL PROPERTY
RIGHTS OF ANY THIRD PARTY) WITH RESPECT TO
ANY AND ALL INFORMATION GIVEN IN THIS
APPLICATION NOTE.

Information
For further information on technology, delivery terms
and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).

Warnings
Due to technical requirements, components may
contain dangerous substances. For information on
the types in question, please contact the nearest
Infineon Technologies Office. Infineon Technologies
components may be used in life-support devices or
systems only with the express written approval of
Infineon Technologies, if a failure of such components
can reasonably be expected to cause the failure of
that life-support device or system or to affect the
safety or effectiveness of that device or system. Life
support devices or systems are intended to be
implanted in the human body or to support and/or
maintain and sustain and/or protect human life. If
they fail, it is reasonable to assume that the health of
the user or other persons may be endangered.

www.infineon.com

Trademarks of Infineon Technologies AG
AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGaN™, CoolMOS™, CoolSET™, CoolSiC™, CORECONTROL™, CROSSAVE™, DAVE™, DI-POL™, DrBLADE™,
EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, HITFET™, HybridPACK™, ISOFACE™, IsoPACK™, i-
Wafer™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OmniTune™, OPTIGA™, OptiMOS™, ORIGA™, POWERCODE™, PRIMARION™, PrimePACK™,
PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, ReverSave™, SatRIC™, SIEGET™, SIPMOS™, SmartLEWIS™, SOLID FLASH™, SPOC™, TEMPFET™,
thinQ!™, TRENCHSTOP™, TriCore™.

Other Trademarks
Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM
Limited, UK. ANSI™ of American National Standards Institute. AUTOSAR™ of AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-
iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of
Microsoft Corporation. HYPERTERMINAL™ of Hilgraeve Incorporated. MCS™ of Intel Corp. IEC™ of Commission Electrotechnique Internationale. IrDA™ of
Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim
Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA.
muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc.
Openwave™ of Openwave Systems Inc. RED HAT™ of Red Hat, Inc. RFMD™ of RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun
Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc.
TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design
Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2014-07-17

Edition 2016-02

AP32287

mailto:erratum@infineon.com;ctdd@infineon.com?subject=Document%20question%20
http://www.infineon.com/
www.infineon.com

	1 Introduction to the CCU4
	1.1 Basic timer functions
	1.2 CCU4 applications
	1.3 Additional CCU4 features
	1.4 CCU4 input control
	1.4.1 Synchronized control of CAPCOM units on external events
	1.4.2 External control basics
	1.4.3 External events control
	1.4.4 External event sources
	1.4.5 External event input functions

	1.5 Capture basics
	1.6 CCU4 output control
	1.6.1 External control by timer events
	1.6.2 Top-level control of event request to/from a timer slice

	1.7 Compare basics
	1.7.1 CCU4 shadow transfers
	1.7.2 Shadow transfer of compare register values
	1.7.3 Asymmetric compare events
	1.7.4 Shadow transfers in general – compound shadow transfers
	1.7.5 CCU4 output state and output pin PASSIVE/ACTIVE level control
	1.7.6 How to start a timer
	1.7.7 Global start of CCU4

	1.8 Example application: periodically changing the PWM duty cycle
	1.8.1 Deriving the period and compare values
	1.8.2 Macro and variable settings
	1.8.3 XMC™ Lib peripheral configuration structure
	1.8.4 Interrupt service routine function implementation
	1.8.5 Main function implementation
	1.8.6 Implementation to start timer by software

	2 Output pattern generation with CCU4
	2.1 The principal compare blocks
	2.1.1 PWM range 0 – 100% in up-count mode
	2.1.2 PWM range 0 – 100% in down-count mode
	2.1.3 PWM range 0 – 100% in center aligned mode
	2.1.4 Compare reload with shadow transfer rules
	2.1.5 CCU4 output control compare mode
	2.1.6 Event request in compare mode

	2.2 Example application: CCU4 as Digital-to-Analog Converter (DAC)
	2.2.1 Theory of operation
	2.2.2 Deriving the period value
	2.2.3 Generating a look-up table
	2.2.4 Circuit diagram and signals
	2.2.5 Macro and variable settings
	2.2.6 XMC™ Lib peripheral configuration structure
	2.2.7 Interrupt service routine function implementation
	2.2.8 Main function implementation

	3 Advanced signal measurement
	3.1 Capture mode
	3.1.1 Slice timer setup in capture mode
	3.1.2 The capture algorithm
	3.1.3 Capture by externals events control
	3.1.4 Timer inputs from capture
	3.1.5 External control by capture events
	3.1.6 Top-level control of event requests to/from a timer in capture mode

	3.2 Example application: CCU4 capture mode to measure PWM duty cycle
	3.2.1 Macro and variable settings
	3.2.2 XMC™ Lib peripheral configuration structure
	3.2.3 Interrupt service routine function implementation
	3.2.4 Main function implementation

	4 Event trigger delay by single shot
	4.1 Introduction
	4.1.1 Timer setup in single shot mode
	4.1.2 Using timer single shot delay for noise rejection
	4.1.3 Timer-start in single shot mode by external event control
	4.1.4 Timer inputs for start and stop facilities
	4.1.5 External control by single-shot events
	4.1.6 Top-level control of event request to/from a timer in single-shot mode

	4.2 Example use case: triggering ADC conversion using CCU4 single shot
	4.2.1 Macro and variable settings
	4.2.2 XMC™ Lib peripheral configuration structure
	4.2.3 Interrupt service routine function implementation
	4.2.4 Main function implementation

	5 Revision history

